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Abstract 

More than half of all commercial aircraft operation accidents could have been prevented by executing a go- around. Making 
timely decision to execute a go-around manoeuvre can potentially reduce overall aviation industry accident rate. In this 
paper, we describe a cockpit-deployable machine learning system to support flight crew go-around decision-making based 
on the prediction of a hard landing event. This work presents a hybrid approach for hard landing prediction that uses 
features modelling temporal dependencies of aircraft variables as inputs to a neural network. Based on a large dataset of 
58177 commercial flights, the results show that our approach has 85% of average sensitivity with 74% of average 
specificity at the go-around point. It follows that our approach is a cockpit-deployable recommendation system that 
outperforms existing approaches. 
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I. Introduction 

Between 2008-2017, 49% of fatal accidents involving 
commercial jet worldwide occurred during final approach 
and landing, and this statistic has not changed in several 
decades [1]. A considerable proportion of approach and 
landing accidents/incidents involved runway excursions, 
which has been identified as one of the top safety concerns 
shared by European Union Aviation Safety Agency (EASA) 
member states [2], as well as US National Transportation 
Safety Board and US Federal Aviation Administration [3]. 

According to EASA [2], there are several known precursors 
to runway excursions during landing. These include 
unstable approach, hard landing, abnormal attitude or 
bounce at landing, aircraft lateral deviations at high speed 
on the ground, and short rolling distance at landing. Some 
precursors can occur in isolation, but they can also cause 
the other precursors, with unstable approach being the 
predominant one. Boeing reported that whilst only 3% of 
approaches in commercial aircraft operation met the criteria 
of an unstable approach, 97% of them continued to 
landing rather than executing a go-around [4]. 

A study conducted by Blajev and Curtis [5] found that 83% 
of runway excursion accidents in their 16-year analysis 
period could have been avoided by a go-around decision. 
Therefore, making timely decision to execute a go-around 
manoeuvre could therefore potentially reduce the overall 
aviation industry accident rate [4]. A go-around occurs 
when the flight crew makes the decision not to continue an 
approach or a landing, and follows procedures to conduct 

 another approach or to divert to another airport. Go-
around decision can be made by either flight crew 
members, and can be executed at any point from the final 
approach fix point to wheels touching down on the runway 
(but prior to activation of brakes, spoilers, or thrust 
reversers). In addition to unstable approaches, traffic, 
blocked runway, or adverse weather conditions are other 
reasons for a go- around. Despite a clear policy and 
training on go-around policies in most airlines, 
operational data show that flight crew decision-making 
process in deciding for a go-around could be influenced 
by many other factors. These include fatigue, flight 
schedule pressure, time pressure, excessive a head-down 
work, incorrect anticipation of aircraft deceleration, 
visual illusions, organizational policy/culture, 
inadequate training or practice, excessive confidence in 
the ability to stabilize approach, and Crew Resource 
Management issues [5]. It is for these reasons that on-
board realtime performance monitoring and alerting 
systems that could assist the flight crew with the 
landing/go-around decision are needed [5], [6]. 

Such on-board systems could utilize the huge and ever 
increasing amount of data collected from aircraft systems 
and the exponential advances in machine learning 
methods and artificial intelligence. EASA is anticipating a 
huge impact of machine learning on aviation, including 
helping the crew to take decisions in particular in high 
workload circumstances (e.g. go-around, or diversion [7]. 
Artificial Intelligence in aviation is considered one of the 
strategic priorities in the European Plan for Aviation 
Safety 2020-2024 [8]. 
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Under the hypothesis that a hard-landing (HL) 
occurrence has precursors and, thus, it can be predicted, 
this paper presents a cockpit deployable machine learning 
system to predict hard landings considering the aircraft 
dynamics and configuration. In particular, this paper 
evaluates three main hypothesis. A primary hypothesis is 
to assess to what extend HL can be predicted at DH for 
go-around recommendation from the analysis of the 
variables recorded from FMS. A second hypothesis is to 
analyze if precursors are particular to aircraft types. A 
third hypothesis is to validate if the variability on the 
aircraft state variables can provide enough information 
to predict a HL regardless of the operational context 
(like environmental conditions and automation factors).  

CONTRIBUTIONS 

This paper presents an analysis of approaches for early 
prediction of hard-landing events in commercial flights. 
Unlike previous works, experiments are designed to 
analyse to what extend methods can be deployable in the 
cockpit as go-around recommendation systems. With 
this final goal, we contribute to the following aspects: 

1) Hybrid model with optimized net 
architecture. We propose a hybrid approach that uses 
features modelling temporal dependencies of aircraft 
variables as input to a neural network with an optimized 
architecture. In order to avoid any bias caused by a lack 
of convergence of complex models (like LSTM), we use a 
standard network and model potential temporal 
dependencies associated with unstable approaches as 
the variability of different types of aircraft variables at a 
selected set of altitudes. The concatenation of such 
variability for variables categorized into 4 main types 
(physical, actuator, pilot operations and all of them) are 
the input features of different architectures in order to 
determine the optimal subset. 

2) Exhaustive comparison to SoA in a large 
database of commercial flights. A main contribution 
compared to existing works is that our models have been 
tested and compared to SoA methods on a large database 
of Flight Management System (FMS) recorded data of an 
airline no longer in operation that includes 3 different 
aircraft models (A319, A320, A321). Results show that 
the optimal classification network when all variable 
types are considered achieves an average recall of HL 
events of 85% with a specificity of 75% in average, 
which outperforms current LSTM methods found in the 
literature. Regarding regression networks, our hybrid 
model performs similarly to LSMT methods with an 
average MSE of the order of 10−3 in accelerations 
estimated at TD. 

 

3) Analysis of the performance of classifiers and 
regressors. With the final goal of developing a cockpit 
deployable recommendation system we have conducted a 
study of the performance of classification and regression 
models in terms of the flight height and different aircraft 
variables including the impact of automation and pilot 
manoeuvres. Results on our large dataset of commercial 
flights, show that although our regression networks 
performs similarly to SoA methods (with MSE of 10−3 in 
estimations at TD), the accuracy for detecting HL is very 
poor (46% of sensitivity). This indicates that regression 
models might not be the most appropriate for the detection 
of HL events in a cockpit deployable support system. 

4) Sources of errors and capability for go- around 
recommendation. Unlike previous approaches, we analyse 
the capability of networks for the detection of HL before the 
decision height, as well as, the influence of the operational 
context. We have also performed an analysis of the sources 
of errors, including selection of the best variable type, 
optimal altitude range used for predictions, biases due to 
aircraft type and capability of regressors for HL prediction. 

The paper is organized as follows. Section 2 describes the 
methodology, including the description of variables, 
analysis of automation factors and network models. Section 
3 reports the experiments conducted to assess the 
performance of models and error analysis. Section 4 
discusses the results obtained and compares them to 
existing methods. 

II. METHODS 

A. DATASET DESCRIPTION 

The authors have access to a large database of Flight 
Monitoring System (FMS) recorded data of an airline no 
longer in operation. This database has the following 
information: 

• Fleet: A319/A320/A321. 

• Various airports. 

• 377,446 flights. 

• 370 parameters available at various sampling 
frequencies. 

Several primary criteria were defined to limit the data to 
what is considered meaningful for the hard landing 
predictions and the evaluation of the 3 hypothesis posed in 
this paper: 

• All (A319/A320/A321). 

• LHR - Heathrow Airport. 
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• Start of data: Final Approach Fix (FAF). 

• End of data: 20 seconds after touch down. 

• 58 parameters selected. 

Heathrow airport was chosen as the sole airport to ease 
flight comparison and training of ML. Moreover, aircraft 
landing at Heathrow must follow a straight corridor 
further easing the landing comparison. This drops the 
number of available flights to 178,654. The data 
retrieved from the FMS starts at the FAF defined as 3 
minutes before touching down and ends 20 seconds 
after touching down to capture the maximum G, labelled 
maxG, at touch down. A binary variable, labelled 
Wheel_on_Ground, was added to indicate the time of 
touch down when set to 1. Then, maxG was computed as 
the maximum value of Normal_acc_g in a window of +/- 
5 seconds around Touch Down (TD) time as the 
maximum time Wheel_on_Ground equals 1. 

Parameters linked to characterizing unstable approaches 
are selected for the study. These parameters are linked 
to the aircraft dynamics (e.g. accelerations, rates, angle 
of attack), the position relative to the runway (glideslope 
and localizer), the aircraft configuration (landing gear 
state, control surfaces position) and the cockpit activity 
with the stick and throttle inputs. This reduces the 
number of raw parameters from 370 to 58. Additionally, 
dropouts and a significant amount of noise and data 
quantisation were identified. The poor data quality led to 
a reduction in the number of flights to approximately 
58,177. Flights with maxG higher than the Mean plus 2x 
Standard Deviation of the normal acceleration at TD are 
classified as HL. This defines the threshold at 1.4037g 
and 2673 flights are flagged as HL. This represents 
approximately 4,6% of the total number of flights, which 
is consistent with the numbers reported [26]. 

The selected dataset allows to validate the 3 hypothesis 
posed in this paper. The temporal window always 
includes the decision height in order to validate to what 
extend the analysis of the aircraft dynamic state 
variables is enough for a go-around recommendation. 
The inclusion of the 3 types of aircraft allows to evaluate 
if HL precursors are particular to aircraft types, which is 
the second hypothesis of the paper. Finally, in order to 
validate the impact of environmental conditions (third 
hypothesis) data did not included the weather 
measurements rather its impact on the aircraft 
parameter features. The selected parameters were 
recorded at sampling frequencies between 0.25 and 8 
Hz. However, since pilots make decisions according to 
altitude, we resampled all numerical variables as a 
function of altitude. To do such a change of variables, we 
used a linear interpolation of the values sampled at the 

frequencies to obtain values sampled at a uniform 
sampling of altitudes. 

The final set of selecte0.82 cmd parameters were split 
into four different categories: 

1) actuators, linked to actuators states, 2) pilot, 
related to pilot activity in the cockpit, 3) physical, as 
those parameters related to physical magnitudes as 
well as other factors such as 4) automation factors, as 
those binary parameters indicate whether an 
automatic system or guidance is engaged. 

B. IMPACT OF AUTOMATION FACTORS IN HL 

In order to explore the impact of automation in HL, 
the correlation between maxG and the following pilot 
decision making variables:  autopilot, flight director, 
speed break, landing gear, and autothrust is 
evaluated. Autopilot, autothrust and flight director are 
computed as the last time/ altitude they are engaged. 
Landing gear and speed break are computed as the 
time/altitude they are first engaged. To better explore 
the impact of the above factors in HL, the data has been 
split into hard landing (labelled HL) and non-hard 
landing (labelled NHL) events to detect any bias in the 
factors associated with HL.   

Figure 1 shows the boxplots for the factors grouped 
according to their label. Notice that there are no 
significant differences between the values obtained in 
HL and NHL. Therefore automation factors do not 
seem to have an impact on the maxG and do not 
favour HL. Consequently, they will not be included in 
prediction models. 

C. HL PREDICTION MODELS 

A hard landing (HL) is defined as an event where 
vertical (or normal) acceleration exceeds a threshold 
value specific to the airplane type during the landing 
phase. A threshold on such normal acceleration 
(Airbus uses vertical acceleration > 2G at touch down, 
TD) triggers maintenance requirement and, thus, can 
be considered as a criterion for HL detection. Under 
this criterion, a Machine Learning System (ML) for HL 
prediction could be a classifier to discriminate flights 
with normal acceleration at TD above a given 
threshold from other flights. However, the values of 
the normal acceleration at TD follow a continuous 
unimodal probabilistic distribution. This fact also 
suggests using a regressor to predict the normal 
acceleration at TD and use either its value or a 
threshold on it as the HL predictor. In this work, we 
have considered both approaches: 
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• Regressors. The dependent variable to be 
predicted is the maximum normal acceleration (labelled 
maxG) at TD. This variable is computed as the maximum 
value of Normal_acc_g in a window of ±5 seconds around 
TD time set as the maximum time Wheel_on_Ground = 1. 

• Classifiers. We have considered a binary 
problem to classify hard landing (labelled HL) from non-
hardlanding (labelled NHL). In our dataset flights with 
maxG > 1.4037 at TD are classified as HL. 

For all ML methods (both regressors and classifiers) the 
input features are the concatenation of the variability of 
the continuous variables described in subsection III-A at 
a discrete set of flight altitudes which include the 
decision height, DH. The discrete sampling altitudes are 
[1500,1000,500,400,300,200,150,100,50,40,30] and the 
decision height was set to 100 feet. The lower altitude of 
30 feet was selected as the limit point the pilot can safely 
avoid a HL event. 

 

Fig. Altitude Sampling 

III. EXPERIMENTS 

A. EXPERIMENTAL DESIGN 

The performance of the different approaches for detection 
of HL events was assessed using sensitivity and 
specificity measures, which are common metrics in 
classification assessment. The sensitivity measures the 
capability of the system to detect HL events, while the 
specificity measures the capability for detection NHL. 

Let us note TP the number of true positives (i.e. HL 
correctly detected by the system), FP, the number of 
false positives (NHL detected as HL by the IA system), 
TN the number of true negatives (NHL detected by the 
system) and FN the number of false negatives (HL missed 
by the system), then sensitivity and specificity are given 
by equations in (3) and (4). 

Sensitivity = T P /T P + F N (3) 

Specificity = T N /T N + F P (4) 

 

The following experiments have been conducted: 

1) Predictive Power of Models. Optimal 
architectures were chosen as the ones that achieved 
better quality scores (sensitivity, specificity for 
classifiers and MSE for regressors) in training. The 
optimal regression neural network is compared to 
the optimal classification nets in terms of sensitivity, 
specificity in testing. 

2) Cockpit Deployable Potential. In order to assess 
to what extent models can be effectively deployed in 
the cockpit, we have analyzed their performance 
according to the categorization of variables to 
determine the minimum set of variables and 
according to the altitude ranges to assess their 
capability for early detection of HL and for 
recommending a go-around. 

B. RESULTS 

Cockpit Deployable Potential 

The analysis indicates that the performance of 
models (both, classifiers and regressors) depends on 
the type of aircraft variable used to train models. 

In the case of the regressor detected significant 
differences between the range AP2DH and the ones 
that used data until TD. This indicates that regressors 
might only accurately predict maxG if data close to TD 
is taken into account. This together with their poor 
performance for actually detecting HL events, discards 
regression models as the approach to use in a cockpit 
deployable system for early detection of HL. 

IV. DISCUSSION IMPROVEMENTS 

The proposed models only use the selected parameters on 
the final approach (below 2000 ft above ground). Wind 
direction and amplitude, the level of turbulence and the 
risk of gusts can have a significant impact on the possibility 
of an unstable approach resulting into a hard landing. The 
current analysis capture some of these effects as the 
variability the aircraft physical parameters are directly 
linked to the aforementioned Accuracy results of different 
models weather conditions. 
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Fig. Accuracy results of different models 

Low visibility conditions, such as fog, and icing conditions 
can also impair the quality of the landing thus increasing 
the risk of hard landings but they are not considered in 
the study. The distance of flight has no specific influence 
on the results but the quality of the approach before 
reaching the final straight will have a significant impact. 
The aircraft might not be correctly configured or still 
have a significant level of energy to dissipate. This can be 
the result of ATC commands such as delayed descent 
instructions. 

Another issue to be considered is that models did not 
include some key parameters that could have an impact 
in predictions. First, aircraft weight (mass) was missing 
in the study because the aircraft mass dataset from the 
flight database is unreliable. However, aircraft weight has 
several potential impacts: 

• The potential energy needed to be dissipated to 
land is directly proportional to aircraft weight. In 
other words, the heavier the aircraft, the more 
energy needs to be dissipated to land at an 
acceptable speed and descent rate. 

• The aircraft weight will have an impact on the 
aircraft dynamics. The aircraft inertias are directly 
linked to the aircraft weight. The aircraft centre of 
gravity is another parameter impacting aircraft 
stability and controllability and thus takeoff and 
landing performance. That is the reason why an 
aircraft will have load planner as well as in-flight 
centre of gravity target system with a trim tank to 
maintain it within operational ranges. The more 
forward the centre of gravity is, the higher the 
minimum speed, the higher the landing speed. 

Secondly, the aircraft centre of gravity, or the point at 
which the total weight of the aircraft is centred, is 
also a key parameter in the vehicle stability and 
control margins calculation which can greatly impact 
aircraft take-off and landing performance. Although 
commercial aircraft have trim-tank with centre of 
gravity target systems, the centre of gravity can vary 
within a range of certified positions within its 
airworthiness requirements. Therefore, including the 
centre of gravity and mass within the model could 
substantially improve the accuracy of the hard 
landing prediction. 

The machine learning approach can also be improved 
in several aspects. Although results appear superior 
to existing methods, our models would benefit from a 
more complex analysis of temporal dependencies 
using a convolutional neural network to extract deep 
dependencies. The impact in predictions of 
meteorological conditions affecting visibility or 
aircraft aerodynamics should also be investigated to 
assess the benefits of their incorporation into our 
models. Given that the combination of all categories 
by straight concatenation of features does not 
significantly improve the performance of models 
trained with any single category, alternative 
architectures for their combination should be further 
investigated. Finally, the percentage of HL due to 
condition changes at TD should be determined to 
properly assess the capability of systems for early 
prediction of HL. 

Finally, for a cockpit-deployable machine learning 
system to support flight crew go-around decision, 
some results regarding the hardware and software 
requirements, especially for the speed of networks 
should be investigated. The deployment of fully 
connected networks is already available even for low 
resource microcontrollers [27] and the latency in 
such cases [28], and with similar models as ours, is 
below 50 ms o 1 s, which are our main sampling rates. 
Hence, deployment software and latency are not 
considered as strong impediments for the future 
deployment in a cockpit. 
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V. CONCLUSION 

The following conclusions can be extracted from the 
analysis carried out in this paper. 

The analysis of automation factors (autopilot, flight 
director and auto-thrust) suggests that these factors do 
not have any influence on the probability of a HL event 
and, thus, it might not be necessary to incorporate them 
into models. 

Experiments for the optimization of architectures show 
that the configurations that achieve higher sensitivity 
are the ones with the lowest number of neurons. As 
reported in the literature [24] increasing the number of 
layers and neurons does not improve the performance of 
neither classifiers nor regressors. 

Models using only Physical variables achieve an average 
recall of 94% with a specificity of 86% and outperform 
stateof-the-art LSTM methods. 

This brings confidence into the model for early 
prediction of HL in a cockpit deployable system. 
Regarding capability for go-around recommendation 
before DH, even if we perform better than existing 
methods, there is a significant drop in recall and 
specificity due to the dynamic nature of a landing 
approach and factors influencing HL close to TD. 

Comparing classifiers and regression approaches, 
experiments show that a low MSE error in estimation of 
maxG does not guarantee accurate HL predictions. 
Experiments for assessing the capability of models for 
early detection of HL show that classifiers are able to 
accurately predict HL before DH. The study suggests that 
classifiers are a better approach for early prediction of 
hard landing. 

Finally, there are some issues that have not been covered 
in this work, that remain as future work, and should be 
further developed. Among such cases, stand out the 
robustness of the classifier (regressor) to unseen cases 
and its behaviour under a drifting data environment. In a 
safety demanding environment as aviation, it surely be 
needed to investigate such issues and we expect to do in 
further works. In the future, such a system could be 
expanded to also include Air Traffic Management in 
which the information is shared with the Air Traffic 
Controller in order to anticipate the likely scenario and 
optimize runway use. 
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