
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 198

Regular Expression to Non-Deterministic Finite Automata Converter

Pratik Dhame1, Siddhesh Shinde2, Rushikesh Sanjekar3, Soham Dixit4

1Student, Dept. of Information Technology, Vishwakarma Institute of Technology, Maharashtra, India
2Student, Dept. of Information Technology, Vishwakarma Institute of Technology, Maharashtra, India
3Student, Dept. of Information Technology, Vishwakarma Institute of Technology, Maharashtra, India
4Student, Dept. of Information Technology, Vishwakarma Institute of Technology, Maharashtra, India

---***---
Abstract - Regular Expression (RE) is an important
notation for specifying patterns. It is a shortened way of
writing the regular language from this we can know how
a regular language is built. Every Regular expression
contains a definite language. This way of describing is
known as algebraic description. NFA is also important as
it reduces the complexity of mathematical work required.
NFA is easier to construct than DFA and it rejects the
string whenever all branches refusing string. We require
conversion of RE to NFA because to recognize a token.
Another way of calling finite automata is token
recognition. That’s why we need to convert RE to NFA.

Key Words: Regular Expression, Non-Deterministic
Finite Automata, Automata Theory, Deterministic Finite
Automata, Transition Table, Automaton

1. INTRODUCTION

Non-deterministic finite automata (NFA) is a type of finite
automaton that allows for multiple changes from one input
sign to another from a single state this means that, unlike a
deterministic finite automaton (DFA), an NFA can have
multiple possible next positions for a given current position
and input symbol. Converting a regular expression to NFA is
often done as a preliminary phase in the implementation
process of regular expression check. NFA is a model of
computation that can be used to match a string against a RE.

1) Well organized implementation: An NFA can be more
structured to implement than RE in some cases, especially
when the RE is more complex.

2) Interoperability: Many software libraries and tools that
perform RE matching expect to receive an NFA as input,
rather than an RE. Implementing RE in NFA can allow these
tools to be used with RE.

3) Simplicity: An NFA is finite state machine, which means it
can be represented an manipulated as a data structure. This
can make it easier to work with than an RE, which is more
brief concept.

Regular expression is nothing but the simpler form of
representing a string. An expression over the alphabet ∑
using operator (+. *) is called regular expression. There are
many methods for nondeterministic implementation of RE

but the best among them are 2 methods one proposed by Mc
Naughton & Yamada and second one is Thomson. There are
few concepts that we need to know before creating NFA from
the existing RE.

First is what means finite automata:

Finite automaton (FA) is a mathematical model used to
recognize patterns within input. It is made up of a finite
collection of states, a group of input symbols, transitions
between those states, a starting state, and a group of accept
states. Here is how it works

 The automaton reads an input symbol at a time.

 For each symbol, according to the transition
function it changes states.

 If the automaton ever enters an accept state, it
“accepts” the input, If the automaton enters a non-
accept state or runs out of input symbols before
entering an accept state it “rejects” the input.

FA can be divided in two distinct types: DFA and NFA

Before going forward there are few things that we need to
keep in mind that are the 5 tuples used in finite automata.

 Finite collection of states `Q`: Set of states that
automaton can be in.

 An input alphabet `∑`: This is the group of all input
symbols that automaton can read.

 A transition function `δ`: This is an attribute that
determines the next state of the automaton.

 A start state `q0`: This is the state that the
automaton starts in when it begins processing an
input.

 Group of accept state `F`: Once the pattern is
successfully recognized in which automaton can be
then, if the automaton ever enters one of these
states, it “accepts” the input.

 δ: Transition function

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 199

DFA: DFA is a type of FA that has a unique transition for each
state/input symbol combination. DFA could be represented
graphically as a state diagram, with the states of the
automaton represented as a circles and the transitions
between states represented as labeled arrows.

Non-Deterministic finite automata: NFA is quite opposite and
there are few changes that we can transit to the next state
using the epsilon value and there is no need to just transfer
the unique value you can transmit any number of states of a
given value. This means that, unlike a deterministic finite
automaton (DFA), an NFA can have N number of possible
future states for a current state as well as input symbol. In
contrast, a DFA has a unique transition for every state and
input symbol combination.

Regular Expression: It is mainly used to match the pattern in
the text and is sequence of characters defining the search
pattern. Regular expressions can be used to match a variety
of patterns, including simple strings, digits, and complex
combinations of characters and symbols. Overall, regular
expressions are a powerful and widely used tool for working
with text and patterns in computer science and
programming.

2. LITERATURE REVIEW

1. A Method for Converting RE into DFA published by
International Journal of Applied Science and Engineering [1]
tells about the method proposed by them where in they
decompose the symbols one by one, and this experiment is
done in JFLAP tool.

2. McNaughton and Yamada’s Algorithm:

It is a general-purpose methodology for extracting state
graphs from regular expressions.[2] this algorithm produces
fewer states than 2p+1 which explains that while creating the
graph first comes start state. Although the resulting NFA may
have a large number of states. The NFA can then be
determinized.

3. Thompson’s Algorithm

This algorithm works by dividing the given regular
expressions into smaller chunks and then transforming them
into NFA later these small NFA are combined to form the
complete NFA. In addition, it minimizes the error by taking
single character at a time and converting it into an NFA, the
characters are checked from left to right.

4. On the Minimization of State NFA published by IEEE
Transactions on computer [2] tells us how to minimize the
given NFA. And reversing it to check whether the given NFA
is correct or not.

5. An improved Algorithm for Evaluating RE published by
ACM Digital Library [3] this algorithm gives the description

about how the DFA can be compressed so that it becomes
easy to extract the Regular expression from it.

6. From Regular Expression to Deterministic Finite Automata
published by Science Direct [4] states the best way to
transform the given RE to FA and study of 3 algorithms by
above mentioned researchers.

3. METHODOLOGY

Thompson’s algorithm is a method for constructing NFA from
a RE. The NFA produced by the algorithm can be used to
recognize patterns in strings.

This algorithm works by constantly dividing the expressions
into sub expressions, later from those subexpressions the
NFA is formed.

Here’s the algorithm:

1. Each symbol in the RE is treated as a separate NFA
with a single state.

2. The NFA for the empty string ` ε` is a single state
with an epsilon transition to itself and an accept
state.

3. The NFA for the concatenation of two Res is
constructed by combining the accept state of NFA
for first to the beginning state of the NFA for
second.

4. The NFA for union is constructed with a new
initial state and a new accept state, as well as the
addition of epsilon transitions from the new
initial to the start state of NFAs.

5. NFA for Kleene star is constructed by new start and
accept state by addition of epsilon transitions from
the fresh start state to the NFA for 'R'.

There are 5 simple rules this algorithm follows for
constructing the NFA from given regular expression.

1. An empty expression rule: Expression having e or
epsilon will be converted to:

Fig. -1: Empty expression rule

2. A symbol rule: Symbols like 'a' or 'b' will
transformed to:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 200

Fig -2: Symbol rule

3. Union Expression rule: Expressions like 'a+b' or 'a |
b' which are known as union expressions will be
converted to:

Fig -3: Union Expression rule

4. Concatenation Expression rule: An expressions like
'ab' or 'a.b' which are nothing but concatenated
expressions will be converted to:

Fig -4: Concatenation Expression rule

5. A closure/kleen star Expression: An expression like
'a*' or 'b*' will be converted to:

Fig -5: Closure/Kleen star Expression

After the text edit has been completed, the paper is ready for
the template. Duplicate the template file by using the Save As
command, and use the naming convention prescribed by your
conference for the name of your paper. In this newly created
file, highlight all of the contents and import your prepared
text file. You are now ready to style your paper.

3.1 PROPOSED SYSTEM

Steps required for converting regular expression to NFA have
been explained above, according to that our proposed project
is as follows.

1st step: To accept the regular expression string from the
user.

2nd step: Defining a 2D matrix having 3 columns and 20 rows
which will hold the transitions for particular sigma value.

3rd step: Traversing whole expression character by character
and checking it with the conditions.

1. First condition checks whether the input character is
single ‘a’.

2. Second condition checks whether the input
character is single ‘b’.

3. Third condition checks whether the input string is
‘a+b’.

These are some of the conditions checked.

4th step: If the condition is matched, we will fill the 2D matrix
with transition states.

5th step: Displaying the transition table to the user from the
2D matrix.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 201

3.2 FLOWCHART

4. RESULTS AND DISCUSSIONS

From the resulting output, we get the transition table of NFA
from the (a+b)* RE that is given in example below.

As seen below, the transition states have been increased due
to epsilons according to the Thompson's construction
algorithm.

This algorithm can be further developed to reduce the
epsilons which will further reduce the transition states.

5. LIMITATIONS

1. The code does not optimize the NFA for size or
performance. The NFA that is produced may be
unnecessarily large or may not be optimized for efficient
matching against strings.

2. Program code does not provide input validation and
error checking. If given input is invalid, it will produce
undesired results.

6. CONCLUSION

Regardless of the specific algorithm used, the resulting NFA
could be determinized (transformed into a DFA) using
another algorithm, such as McNaughton and Yamada's
algorithm for determinization. This can be useful for
implementing efficient regular expression matching
algorithms.

7. FUTURE SCOPE

1. Developing algorithms that can detect and handle errors
in the regular expression, or that can validate the input to
ensure it is a valid regular expression, would improve the
reliability and usability of the program.

2. Optimization of the NFA size and performance, such as
reducing the number of states and transitions or using more
efficient data structures to represent the transitions.

REFERENCES

[1] Singh, Abhishek. (2019). A Method to Convert Regular
Expression into Non-Deterministic Finite Automata.
International Journal of Applied Science & Engineering.
7. 10.30954/2322-0465.2.2019.3.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 202

[2] R. McNaughton and H. Yamada, "Regular Expressions
and State Graphs for Automata," in IRE Transactions on
Electronic Computers, vol. EC-9, no. 1, pp. 39-47, March
1960, doi: 10.1109/TEC.1960.5221603.

[3] B. Melnikov and A. Tsyganov, "The State Minimization
Problem for Nondeterministic Finite Automata: The
Parallel Implementation of the Truncated Branch and
Bound Method," 2012 Fifth International Symposium
on Parallel Architectures, Algorithms and
Programming, 2012, pp. 194-201, doi:
10.1109/PAAP.2012.36.

[4] Michela Becchi and Patrick Crowley. 2007. An
improved algorithm to accelerate regular expression
evaluation. In Proceedings of the 3rd ACM/IEEE
Symposium on Architecture for networking and
communications systems (ANCS '07). Association for
Computing Machinery, New York, NY, USA, 145–154.

[5] Gerard Berry, Ravi Sethi, From regular expressions to
deterministic automata, Theoretical Computer Science,
Volume 48, 1986, Pages 117-126, ISSN 0304-3975.

[6] Domenico Ficara, Stefano Giordano, Gregorio Procissi,
Fabio Vitucci, Gianni Antichi, and Andrea Di Pietro.
2008. An improved DFA for fast regular expression
matching. SIGCOMM Comput. Commun. Rev. 38, 5
(October 2008), 29–40.

[7] Brüggemann, Anne. (1993). Regular Expressions into
Finite Automata. Theoretical Computer Science. 120.
197-213. 10.1016/0304-3975%2893%2990287-4.

[8] Kuldeep Vayadande, Aditya Bodhankar, Ajinkya
Mahajan, Diksha Prasad, Shivani Mahajan, Aishwarya
Pujari and Riya Dhakalkar, “Classification of
Depression on social media using Distant Supervision”,
ITM Web Conf. Volume 50, 2022.

[9] Kuldeep Vayadande, Rahebar Shaikh, Suraj Rothe,
Sangam Patil, Tanuj Baware and Sameer Naik,”
Blockchain-Based Land Record SysteM”, ITM Web Conf.
Volume 50, 2022.

[10]Kuldeep Vayadande, Kirti Agarwal, Aadesh Kabra,
Ketan Gangwal and Atharv Kinage,” Cryptography
using Automata Theory”, ITM Web Conf. Volume 50,
2022

[11]Samruddhi Mumbare, Kunal Shivam, Priyanka
Lokhande, Samruddhi Zaware, Varad Deshpande and
Kuldeep Vayadande,” Software Controller using Hand
Gestures”, ITM Web Conf. Volume 50, 2022

[12]Preetham, H. D., and Kuldeep Baban Vayadande.
"Online Crime Reporting System Using Python Django."

[13]Vayadande, Kuldeep B., et al. "Simulation and Testing of
Deterministic Finite Automata Machine." International
Journal of Computer Sciences and Engineering 10.1
(2022): 13-17.

[14]Vayadande, Kuldeep, et al. "Modulo Calculator Using
Tkinter Library." EasyChair Preprint 7578 (2022).

[15]VAYADANDE, KULDEEP. "Simulating Derivations of
Context-Free Grammar." (2022).

[16]Vayadande, Kuldeep, Ram Mandhana, Kaustubh
Paralkar, Dhananjay Pawal, Siddhant Deshpande, and
Vishal Sonkusale. "Pattern Matching in File System."
International Journal of Computer Applications 975:
8887.

[17]Vayadande, Kuldeep, Ritesh Pokarne, Mahalakshmi
Phaldesai, Tanushri Bhuruk, Tanmay Patil, and Prachi
Kumar. "Simulation Of Conway’s Game Of Life Using
Cellular Automata." SIMULATION 9, no. 01 (2022).

[18]Gurav, Rohit, Sakshi Suryawanshi, Parth Narkhede,
Sankalp Patil, Sejal Hukare, and Kuldeep Vayadande.
"Universal Turing machine simulator." International
Journal of Advance Research, Ideas and Innovations in
Technology, ISSN (2022).

[19]Vayadande, Kuldeep B., Parth Sheth, Arvind Shelke,
Vaishnavi Patil, Srushti Shevate, and Chinmayee
Sawakare. "Simulation and Testing of Deterministic
Finite Automata Machine." International Journal of
Computer Sciences and Engineering 10, no. 1 (2022):
13-17.

[20]Vayadande, Kuldeep, Ram Mandhana, Kaustubh
Paralkar, Dhananjay Pawal, Siddhant Deshpande, and
Vishal Sonkusale. "Pattern Matching in File System."
International Journal of Computer Applications 975:
8887.

[21]Vayadande, Kuldeep B., and Surendra Yadav. "A Review
paper on Detection of Moving Object in Dynamic
Background." International Journal of Computer
Sciences and Engineering 6, no. 9 (2018): 877-880.

[22]Vayadande, Kuldeep, Neha Bhavar, Sayee Chauhan,
Sushrut Kulkarni, Abhijit Thorat, and Yash Annapure.
Spell Checker Model for String Comparison in
Automata. No. 7375. EasyChair, 2022.

[23]Vayadande, Kuldeep, Harshwardhan More, Omkar
More, Shubham Mulay, Atharva Pathak, and Vishwam
Talnikar. "Pac Man: Game Development using PDA and
OOP." (2022).

[24]Preetham, H. D., and Kuldeep Baban Vayadande.
"Online Crime Reporting System Using Python Django."

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 01 | Jan 2023 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 203

[25]Vayadande, Kuldeep. "Harshwardhan More, Omkar
More, Shubham Mulay, Atahrv Pathak, Vishwam
Talanikar,“Pac Man: Game Development using PDA and
OOP”." International Research Journal of Engineering
and Technology (IRJET), e-ISSN (2022): 2395-0056.

[26]Ingale, Varad, Kuldeep Vayadande, Vivek Verma,
Abhishek Yeole, Sahil Zawar, and Zoya Jamadar.
"Lexical analyzer using DFA." International Journal of
Advance Research, Ideas and Innovations in
Technology, www. IJARIIT. com.

[27]Manjramkar, Devang, Adwait Gharpure, Aayush Gore,
Ishan Gujarathi, and Dhananjay Deore. "A Review
Paper on Document text search based on
nondeterministic automata." (2022).

[28] Chandra, Arunav, Aashay Bongulwar, Aayush Jadhav,
Rishikesh Ahire, Amogh Dumbre, Sumaan Ali,
Anveshika Kamble, Rohit Arole, Bijin Jiby, and
Sukhpreet Bhatti. Survey on Randomly Generating
English Sentences. No. 7655. EasyChair, 2022.

