
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 10 Issue: 01 | Jan 2023               www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 384 
 

LEXICAL ANALYZER 

Rushikesh Lakhotiya1, Mayuresh Chavan2, Satwik Divate3, Soham Pande4 

1,2,3,4 Student, Dept. of Artificial Intelligence and Data Science, Vishwakarma Institute of Technology, Pune, 
Maharashtra, India 

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - An The process of turning a string of letters 
into a string of tokens is known as lexical analysis, 
commonly referred to as lexing or tokenization. These 
tokens may be keywords, identifiers, constants, operators, or 
other language-specific symbols. 

The word lexical is obtained from the native word i.e. lexeme 
which means tokens. 

The process of lexical analysis usually includes reading each 
character of the input one by one, grouping characters into 
tokens, and passing these tokens to a parser or other 
program for further processing. 

Lexical analysis is often first step in the operation of 
compiling or interpreting a program. It is also used in 
natural language processing, information retrieval, and 
other fields where it is necessary to identify and classify the 
elements of a body of text. 

In general, lexical analysis involves breaking up a stream of 
text into a sequence of tokens, which can then be further 
processed and analyzed by other programs. It is an 
important step in the compilation and interpretation of 
programming languages, as well as in the processing of 
natural language. 

Key Words:  Lexical Analyzer, Lexeme, Compiler, 
Syntax analysis, Deterministic Finite Automata, 
Regular Expression, Compiler, Tokens, Parallel 
Tokenization, Multi-core Machines. 

1. INTRODUCTION  

The initial step in the compilation procedure is the lexical 
analyzer. This phase, also referred to as a lexical scanner, 
scans the input string without going back and reading each 
symbol more than once before fully processing it. The 
primary responsibility of lexical analyzer is to take input 
characters and generate the output of the token sequence 
that the parser utilises for lexical analysis. The lexical 
analyzer receives input characters from the parser and 
reads them until it can recognize the next token. 

Tokens are generated from lexemes by a lexical analyzer. 
Internally, the tokens are frequently represented as 
distinct integers or an ordered type. In order to 
distinguish between the multiple name or numeric tokens 

in this example, the lexeme is necessary in addition to the 
token itself. 

The lexical analyzer normally functions independently and 
only uses one or two subprocesses and global variables to 
interact with rest of the compiler. Every time the parser 
requires a new token, it calls the lexical analyzer, which 
then delivers both the token and the lexeme that goes with 
it. 

The lexical anlyzer can be replaced or modified without im
pacting the remaining compiler, because the real input is 
concealed from the parser. The lexical analyzer normally 
functions independently and only uses one or two 
subprocesses and global variables to interact with the rest 
of compiler.  

When the parser requires a new token, it invokes the 
lexical analyzer, which then returns the token and its 
lexeme. The lexical analyzer may be changed or replaced 
without having an impact on the remainder of the 
compiler since actual input process is concealed from the 
parser. 

In this paper we study about the role of lexical analysis in 
the overall process of compiling or interpreting a program, 
Techniques for defining the tokens that a lexical analyzer 
should recognize, such as using regular expressions along 
with the implementation. 

2. LITERATURE REVIEW 

Daniele Paolo Scarpazza et al. [1] A parallel regexp-based 
tokenization technique has been suggested that makes use 
of the substantial thread- and data-level parallelism 
offered by multi-core architecture. It is derived from the 
Deterministic Finite Automation (DFA) model, which was 
created for branch elimination and SIMDization in 
prediction-like applications. 

Umarani Srikanth [2] The suggested approach divides the 
source programme into a predetermined number of blocks 
using a dynamic block splitter algorithm to carry out 
lexical analysis concurrently. By swiftly scanning through 
large dictionaries on multiple core IBM Cell processors for 
a string, the Aho-Corasick method tokenizes data. 

Swagat Kumar Jena et al. [3] According to the method, 
each block of the source file is divided into M lines, with 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 10 Issue: 01 | Jan 2023               www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 385 
 

the possible exception of last block, and each block is 
stored in memory as a separate file. Then, N lexical 
programme threads are created, and lexical analysis is 
carried out simultaneously for each file using N lexical 
programme threads. 

Amit Barve et al. [4] stated The method based on an open 
source automatic lexer generator Flex and exploiting the 
concept of processor affinity and partitioning code written 
in C/C++ programming language based on for-loop 
looping structures. 

Amit Barve et al. [5] said, The method is based on setting 
the pivot points, which divides the code into a 
predetermined block count equal to the amount of 
available CPUs. Considerations were made for white space 
characters, various topologies, and pivot components 
based on lines. 

Amit Barve et al. [6] Modernized version the approach 
provided by Amit Barve et al. is concluded when of 
developing fast parallel lexers for multi-core processors. A 
proposed algorithm stores block indicators of source code 
in a text file that will later be read. Based on the read 
indicators, processes are branched and assigned to 
different CPUs using processor affinity. The algorithm's 
efficiency is increased by assigning operations to an 
available processor only when a process is formed. This 
method eliminates the need to wait for a process to be 
allocated to a processor. 

Amit Barve et al., (2015) [7] explained an enhanced 
version for parallel lexical analysis algorithm. 
Furthermore, if the number of CPUs rises, the speed is 
seen as being higher. As a result, this approach can 
improve compilation time even more. The author asserts 
that the memory block-based approach exceeds the 
results of his earlier work, which used a round-robin CPU 
scheduling technique to run lexical analysis in parallel and 
the highest speed achieved is 6.84. The speed will be 
increased when number of CPU rises and also improves 
the overall compilation time. Daniele Paolo Scarpazza et 
al., (2007) investigated the importance of the efficiency of 
the cell processor system when it is used for the 
implementation of Deterministic Finite Automata based 
string matching process algorithms. 

Daniele Paolo Scarpazza et al., (2008) [8] the results of 
their experiment indicate that the Cell is the perfect 
candidate for managing security requirements. One cell 
processor has eight processing units, but only two of them 
have the processing ability to process a net connection 
with a data rate of even more than 10 Gbps. Using the Aho-
Corasick string searching algorithm, developed optimized 
string matching solutions for the Cell processor and the 
result showed a throughput of 40 Gbps per processor 
when The speed for bigger dictionaries is somewhere 
between 1.6 to 2.2 Gbps per processor, and the 

dictionaries are tiny enough to fit into local memory 
space of the processing cores. 

Wuu Yang et al (2002) [9] identified the issue of the 
longest-match rule's applicability and proposed a model. 
The method consists of two steps: the first is to determine 
the regular set of token patterns produced by non-
deterministic finite automaton while the automaton 
processes components of an input regular set, and the 
second is to determine whether a regular set and a free 
language have any non-trivial intersections with a set of 
equations. To enable parallel procedure model in the C 
programming language, Russell et al. (1992) created 
additions to the parallel procedural language and a 
runtime environment. In order to reduce the need for 
expensive process control blocks to be implemented, a 
novel method for nesting parallel process contexts in 
multiple stack frames is used in the run-time framework 
and the performance data for two parallel programs 
utilizing their proposed system is provided. 

Xiaoyan Lai., (2014) [10] begins an innovative 
implementation approach for syntactic analysis, 
interpretative execution, and lexical analysis. The 
experimental analysis provides integrity and reliability of 
compilation system. Amit Barve et al., (2012) presented a 
new approach of implementing lexical analyzer to run in 
parallel which is based on an open source automatic lexer 
generator Flex and exploiting the concept of processor 
affinity. It is measured to be a simple and faster process by 
partitioning code written in C/C++ programming language 
based on for-loop looping structures. Work reasonably 
illustrates the benefit of multi-core architecture machines 
in accelerating the process of lexical analysis tasks. 
Thomas Reps et al., (1998) described the compilation 
domain, where tokenization process can always be carried 
out in time linear in the input size, while most of the 
standard tokenization algorithm explains that, in the 
worst case, the scanner can exhibit quadratic behavior for 
some sets of token definition 

3. METHODOLOGY 

A) Proposed System 

There are several different approaches to performing 
lexical analysis, but a common methodology involves the 
following steps: 

i. Read each character of the input one at a time. 

ii. Identify the next token in the input. This may 
involve looking for patterns in the characters, 
such as sequences of digits that form a number, or 
strings of letters that form a keyword or 
identifier. 

iii. Extract the token from the input. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 10 Issue: 01 | Jan 2023               www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 386 
 

iv. Classify the token based on its type (e.g., keyword, 
identifier, constant, operator). 

v. Pass the token to a parser or other program for 
further processing. 

Some lexical analyzers also include additional steps, such 
as removing comments or white space from the input, or 
performing preprocessing on the input before 
tokenization. It is also possible to use regular expressions 
or finite automata to perform lexical analysis. Regular 
expressions are a way of describing patterns in strings, 
and can be used to identify and extract tokens from the 
input. Finite automata are mathematical models that can 
be used to recognize patterns in input and are often used 
in the implementation of lexical analyzers. 

B) Flowchart 

 

Fig -1: Lexical Analyzer with the Parser 

 

Fig -2: Dividing into Tokens 

4. RESULTS AND DISCUSSIONS 

 

Fig -3: Sample Input Program 

In fig.3 : A sample C language program passed to the 
lexical analyzer. 

 

Fig -4: Output 

In fig.4: The  sample C program given as input is converted  
into tokens i.e. Keywords, Identifiers, Mathematical 
Operators, Logical Operators, Numerical Values, Other 
(Separators). 

5. LIMITATIONS 

 The presence of an illegal character, often at the 
start of a token, results in a lexical mistake. 

 Some of the regular expressions are quite 
challenging to comprehend. 

 The lexer and also its token descriptions require 
more work to build and test. 

6. CONCLUSION 

The goal of this study was to conduct a thorough 
examination of recent research on lexical analyzer 
implementation methodologies. It is known from the 
review that various software tools for lexical analyzers 
have been developed in the past that are ideally suited for 
serial execution. The different stages of the compilation 
process must be updated to accommodate multi-core 
architecture technologies as a result of the rise of multi-
core architecture systems in order to attain a parallelism 
in compilation tasks and thereby minimize the time of 
compilation. An extensive analysis provides a deeper 
insight towards the lexical analyzer. Among the results 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 10 Issue: 01 | Jan 2023               www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 387 
 

recorded in the reviewed articles, it is observed, some of 
the high-level trends in scanner generation are the 
adaptation of parallel processing in lexical analysis tasks 
by using multi-core processor affinity principle to increase 
the efficiency of the compiler's runtime compared to the 
sequential execution of lexical analysis tasks on a single 
processor system. 

7. FUTURE SCOPE 

The development of computing power is moving rapidly 
towards massive multi-core platform due to its power and 
performance benefits. System software, including 
compilers, should be designed for parallel processing in 
order to take full use of multi-core technology. 
Implementing more pattern matching algorithms into the 
program. 

REFERENCES 

[1] Aho, A. V., Lam, M. S., & Sethi, R. (2009). 
Compilers Principles, Techniques and Tools, 2nd ed, 
PEARSON Education. 

[2] Lesk, M. E., & Schmidt, E. (1975). Lex: A lexical 
analyzer generator. Computing Science Technical 
Report No. 39, Bell Laboratories, Murray Hills, New 
Jersey. 

[3] Mickunas, M. D., & Schell, R. M. (1978, 
December). Parallel compilation in a multiprocessor 
environment. In Proceedings of the 1978 annual 
conference (pp. 241-246). 

[4] Kitchenham, B. (2004). Procedures for 
performing systematic reviews. Keele, UK, Keele 
University, 33(1), 1-26. 

[5]  Webster, J., & Watson, R. T. (2002). Analyzing 
the past to prepare for the future: Writing a 
literature review. MIS quarterly, 26(2), 8-23. 

[6] Glesner, S., Forster, S., & Jager, M. (2005). A 
program result checker for the lexical analysis of the 
gnu c compiler. Electronic Notes in Theoretical 
Computer Science, 132(1), 19-35. 

[7] Barve, A., & Joshi, B. K. (2012, September). A 
parallel lexical analyzer for multi-core machines. In 
2012 CSI Sixth International Conference on Software 
Engineering (CONSEG) (pp. 1-3). IEEE. 

[8] Barve, A., & Joshi, B. K. (2013). Automatic C 
Code Generation for Parallel Compilation. 
International Journal on Advanced Computer Theory 
and Engineering (IJACTE), 2(4), 26-28. 

[9] Omori, Y., Joe, K., & Fukuda, A. (1997, August). A 
parallelizing compiler by object-oriented design. In 

Proceedings Twenty-First Annual International 
Computer Software and Applications Conference 
(COMPSAC'97) (pp. 232-239). IEEE. 

[10] Barve, A., & Joshi, B. K. (2016). Fast parallel 
lexical analysis on multi-core machines. International 
Journal of High-Performance Computing and 
Networking, 9(3), 250- 257. 

[11] Scarpazza, D. P., Villa, O., & Petrini, F. (2007, 
March). Peak-performance DFA-based string 
matching on the Cell processor. In 2007 IEEE 
International Parallel and Distributed Processing 
Symposium (pp. 1-8). IEEE 

[12] Jena, S. K., Das, S., & Sahoo, S. P. (2018). Design 
and Development of a Parallel Lexical Analyzer for C 
Language. International Journal of Knowledge-Based 
Organizations (IJKBO), 8(1), 68-82. 

[13] Clapp, R. M., & Mudge, T. N. (1992). Parallel 
language constructs for efficient parallel processing. 
University of Michigan, Computer Science and 
Engineering Division, Department of Electrical 
Engineering and Computer Science. IEEE, 230-241. 

[14] Li, D. C., Cai, X. C., Han, C. Y., & Liu, Y. X. (2012). 
The Research and Analysis of Lexical Analyzer in 
Prolog Compiler. In Applied Mechanics and Materials 
(Vol. 229, pp. 1733-1737). Trans Tech Publications 
Ltd. 

[15] Maliavko, A. A. (2018, October). The Lexical and 
Syntactic Analyzers of the Translator for the EI 
Language. In 2018 XIV International Scientific-
Technical Conference on Actual Problems of 
Electronics Instrument Engineering (APEIE) (pp. 
360-364). IEEE. 

[16] Wang, X., Hong, Y., Chang, H., Park, K., Langdale, 
G., Hu, J., & Zhu, H. (2019). Hyperscan: a fast multi-
pattern regex matcher for modern cpus. In 16th 
{USENIX} Symposium on Networked Systems Design 
and Implementation ({NSDI} 19) (pp. 631-648). 

[17] Becchi, M., & Crowley, P. (2013). A-dfa: A time-
and space-efficient dfa compression algorithm for 
fast regular expression evaluation. ACM Transactions 
on Architecture and Code Optimization (TACO), 
10(1), 1-26. 

[18] Aithal, P. S., & Pai T, V. (2016). Concept of Ideal 
Software and its Realization Scenarios. International 
Journal of Scientific Research and Modern Education 
(IJSRME), 1(1), 826-837. 

[19] Ingale, Varad, Kuldeep Vayadande, Vivek 
Verma, Abhishek Yeole, Sahil Zawar, and Zoya 
Jamadar. "Lexical analyzer using DFA." International 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 10 Issue: 01 | Jan 2023               www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 388 
 

Journal of Advance Research, Ideas and Innovations 
in Technology, www. IJARIIT. com. 

[20] Chandra, Arunav, Aashay Bongulwar, Aayush 
Jadhav, Rishikesh Ahire, Amogh Dumbre, Sumaan Ali, 
Anveshika Kamble, Rohit Arole, Bijin Jiby, and 
Sukhpreet Bhatti. Survey on Randomly Generating 
English Sentences. No. 7655. EasyChair, 2022. 

[21] Manjramkar, Devang, Adwait Gharpure, Aayush 
Gore, Ishan Gujarathi, and Dhananjay Deore. "A 
Review Paper on Document text search based on 
nondeterministic automata." (2022). 

[22] Vayadande, Kuldeep, Neha Bhavar, Sayee 
Chauhan, Sushrut Kulkarni, Abhijit Thorat, and Yash 
Annapure. Spell Checker Model for String 
Comparison in Automata. No. 7375. EasyChair, 2022. 

[23] ayadande, Kuldeep, Ram Mandhana, Kaustubh 
Paralkar, Dhananjay Pawal, Siddhant Deshpande, and 
Vishal Sonkusale. "Pattern Matching in File System." 
International Journal of Computer Applications 975: 
8887. 

[24] VAYADANDE, KULDEEP. "Simulating 
Derivations of Context-Free Grammar." (2022). 

[25] Vayadande, Kuldeep B., Parth Sheth, Arvind 
Shelke, Vaishnavi Patil, Srushti Shevate, and 
Chinmayee Sawakare. "Simulation and Testing of 
Deterministic Finite Automata Machine." 
International Journal of Computer Sciences and 
Engineering 10, no. 1 (2022): 13-17. 

 


