
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 75

Software Requirements Prioritization: What, Why, and How?

Narender Singh

Assistant Professor, Dept. of Computer Science, Govt. College, Ateli, Haryana, India.
---***---

Abstract - Software requirements prioritization pushes the
project towards success in any software development
process. In contrast to general assumption, which claims
that every software requirement is of equal importance, the
software development teams actually restricted by time,
money, and resource, which results in conflict between
various stakeholders. To resolve this issue, we need a
technique to prioritize software requirements, which
implements the most essential requirements first, reduces
the risk of project failure and ensures the success of
software project.

In this paper, an attempt is made to understand the terms
software engineering, requirements engineering, software
requirements prioritization, need of software requirements
prioritization software requirements prioritization process,
different aspects of software requirements prioritization,
software requirements prioritization techniques, and
challenges of software requirements prioritization.

Key Words: software engineering, requirements
engineering, software requirements prioritization.

1. INTRODUCTION

In recent decades, there is rapid progress in the field of
science and technology with much advanced technologies,
which leads to develop the complex software systems,
hence includes high level methods and concepts. The
gradually increasing complexity in present-day software
systems, though, has surpassed the growth of software
engineering concepts. Still, a lot number of projects have
failed which is termed as “software crisis” [1].

The NATO Software Engineering Conference [2], which
was held in 1968 has coined the term "Software
Engineering" to address the software crisis [3]. Software
professionals are able to develop high-quality software for
computers by using a process, a number of tools, and a
collection of approaches (practice) [4].

Only around 16% of software projects were successful,
53% had issues (cost or budget overruns, content
inadequacies), and 31% were abandoned, according to the
Standish Group in 1995 [5] [6]. Only 36% of all projects
succeed when they are delivered on time, on budget, and
with the required features and functions, 45% were
challenged when they are late, over budget, and/or have
fewer features and functions than required, and 19%
failed when they are cancelled before completion or

delivered but never used, according to the Standish
Group's recently released report, "CHAOS Report 2015
[7]".

These statistics indicate that despite some progress have
been made between 1995 and 2015; the current state of
software development still falls far from the ideal. Issues
such as budget overruns, missed deadlines, and
incomplete functionality continue to plague the industry.
Though, a lot of factors are there in the success and failure
of a software project. But, the success heavily depends on
three main factors: stakeholders’ participation,
unambiguous software requirements specification, and
executive management support. Similarly, inadequate user
involvement and incomplete requirements are the two
major factors which lead a software project to failure [5].

Further, no doubt, requirements are essential
determinants of the success or failure of software
engineering projects. Numerous software projects falter
due to prevalent issues such as ambiguous or absent
requirements, insufficient user engagement, and
constantly evolving specifications [5, 8, 9]. Neglecting to
address requirements comprehensively poses a significant
risk to a project's overall success, regardless of the actions
taken in subsequent phases.

In addition, the primary measure of a software system's
success is the extent to which it achieves its primary
objective. In general, identifying this objective is the
process of requirements engineering for a software
system. K. Wiegers defines it as “Requirements
engineering is a discipline based on requirements
development and requirements management.
Requirements development is related to elicitation,
analysis, specification and validation. The goals of these
activities are gathering… software. Requirements
management goal is to establish and maintain an
agreement with the customer on the requirements for the
software”. [10]

In this section, several terms are defined such as software
crisis, software engineering, requirements engineering etc.
The statistics of the two reports of Standish Group indicate
that despite some improvements but still we need much
more to achieve software systems’ success. If
requirements are not handled properly at early stages of
software development life cycle, they pose risk to project's
overall success, no matter what the actions taken in later
stages of it.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 76

2. SOFTWARE REQUIREMENTS PRIORITIZATION

In any software project, requirements play the critical role
that determines the success or failure of the project. If they
are not addressed accurately, the project is likely to fail,
regardless of what follows in subsequent phases of
software development life cycle. Large scale software
projects can have hundreds to thousands of software
requirements, and the development teams do not have the
sufficient budget, time, and resources to execute all of
them. Furthermore, not all requirements are of equal
importance. Hence, software requirements prioritization
becomes necessary. It is the process of identifying and
classifying requirements based on their importance,
urgency, feasibility and their effect on the project's
objectives to ensure that the most promising and critical
requirements are addressed first. By using various tools
and techniques, the development teams efficiently allocate
the efforts and resources which results in minimizing the
risk of project failure.

Khan et al. [11] depicts that the complexity of
requirements engineering occurs due its ability to adapt
and engage numerous stakeholders which includes
customers (clients and end-users), system analysts, and
system designers, developers, and project managers. The
success and failure of any software project heavily
depends on requirements and it needs to handle them
precisely and effectively. However, due to the global
nature of software development, stakeholders in the
requirements engineering process face a variety of
challenges, such as communication barrier, which can take
place when software organizations are spread out across
different geographic locations [11, 12].

In the era of globalized world, to ensure the development
of high-quality software within time and budget, the
requirements engineering is a critical process that must be
carried out thoroughly and accurately to succeed. “The
hardest single part of building a software system is deciding
what to build…. No other part of the work so cripples the
resulting system if done wrong. No other part is more
difficult to rectify later” [13].

During requirement engineering process, it is not an easy
task to prioritize software requirements. Almost all the
customers want that all their requirements be considered
first and development teams are constrained by budget,
time, and resources. Hence, effective combination of
analytical and interpersonal skills is a must for
development teams to perform this. From the above
discussion it is clear that not all requirements can be
fulfilled [14], and hence, it is essential to prioritize the
most critical requirement first.

3. NEED OF SOFTWARE REQUIREMENT
PRIORITIZATION

Software requirements prioritization can be interpreted
from different viewpoints. It is a significant task for
decision-making [15]. It emphasis on handling the
essential features first with efficient planning of software
versions and timely delivery of software product with all
essentials features [16]. Furthermore, it allows
stakeholders to understand the importance of
requirements and prioritize them accordingly [17]. This
helps in future planning, reduces the possibility of project
cancellation, and aids the estimation and ranking of funds,
as well as determining the economic impact of
implementing each requirement [18]. Due to limited
resources such as budget, time, and schedule; software
requirement prioritization becomes the most critical and
challenging [19]. Prioritizing software requirements is an
essential activity in any software project development that
ensures that the high-quality software project is delivered
that meets all user needs. There are a lot of reasons why
software requirement prioritization is needed, which are
as follows:

 Improving Resource Utilization: Setting
requirements in order of their importance makes
resource allocation more efficient and ensures
that the most essential features are developed
first. Ultimately, it leads to reduce time, money,
and efforts in long term by focusing on the most
essential features of the software.

 Decreasing Scope Creep: Scope creep in software
project development is a common problem where
the project's original limits are frequently being
surpassed. It can be avoided by prioritizing
software requirements.

 Increasing Quality: Software requirements
prioritization ensures that the most essential
requirements are handled first and more time and
efforts are dedicated to them. It guarantees that
these features are developed with the highest
quality possible. As a result, the software product
is of a higher quality and satisfies more user
needs.

 Faster Time-to-Market: Software requirements
prioritization allows the development teams to
focus on the most essential features first, which
speeds up the software delivery process. It is
needed significantly in dynamic markets where
sudden ideas and decisions are critical.

 Improving Stakeholder Satisfaction: Software
requirements prioritization ensures that the
software product will satisfy the essential needs

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 77

of its stakeholders, which improves acceptance
rates and stakeholder satisfaction.

 Decreasing Maintenance Costs: Software
requirements prioritization guarantees that the
most essential features are handled first with
maintainability in mind, which helps in decreasing
maintenance costs.

 Better User Experience: Software requirements
prioritization guarantees that the software is
developed with users in mind, which improves
user experience. It raises user happiness,
acceptance rates, and the performance of the
system.

 Minimizing Consequences of Changing
Requirements: There are many factors like new
business needs or competitive circumstances,
which may lead requirements to change during
software project development. Software
requirements prioritization ensures that the most
essential features are handled first, hence
minimizing the consequences of changing
requirements.

 Trade-offs: Establishing requirements based on
order of priority supports in balancing
requirements that are conflicting. It is easier to
determine what requirements need to be
implemented first and which of them may
postpone or be canceled totally while
requirements are actually prioritized.

In brief, prioritizing software requirements becomes
crucial for improving resource utilization, decreasing
scope creep, increasing quality, faster time-to-market,
improving stakeholder satisfaction, decreasing
maintenance costs, better user experience, handling risks,
enhancing business value, dealing with resource
constraints, controlling changing requirements, and
establishing accurate trade-offs between requirements
that conflict.

4. THE PROCESS OF PRIORITIZING
REQUIREMENTS

The process of prioritizing requirements provides support
for the following activities [20, 21, 22, 23]: to decide what
are the core software requirements of a software system
for stakeholders; to arrange and choose the most suitable
set of software requirements to be implemented in a
series of releases; in order to negotiate the intended
project's scope against constraints like schedule, budget,
time, resources, and quality; to assess each requirement's
cost along with its business benefit; to assess each
requirement's impact on the software architecture, the

product's successive development, and the related costs;
to produce a system that will satisfy the customer(s) by
selecting a limited number of the requirements; to predict
customer satisfaction; to gain a technical edge and
optimize the market opportunity; to minimize both the
rework and project schedule slippage; to resolve
conflicting requirements, it’s necessary to prioritize and
negotiate such requirements and to resolve disagreement
(if any) among different stakeholders; and finally, to
deliver a high quality software product at low cost by
assigning relative degree of significance to each
requirement [24].

5. ASPECTS FOR SOFTWARE REQUIREMENTS
PRIORITIZATION TECHNIQUES

A critical process that ensures that the most essential
requirements are handled first is to prioritize software
requirements. Different techniques are used to prioritize
requirements, and the choice of the most suitable
technique is influenced by various factors [25]. These
factors include the complexity of the project, the urgency
of the requirements, the resources available, and the
stakeholders' needs. The interpretation of the prioritized
requirements varies among stakeholders, as they perceive
the ordering of requirements according to their individual
perspectives. For instance, some stakeholders may
prioritize time over budget, while others may have
different priorities [26] [27]. Several factors affect
software requirement prioritization, including stability,
dependencies, risk, penalty, benefit, time, sensitivity, and
regulatory/policy compliance [28]. Among these factors,
cost and benefit are two key considerations that are
directly related to software requirement prioritization
[28].

In addition to cost and benefit, technical and commercial
aspects are also crucial in software requirement
prioritization. In the commercial realm, aspects like sales,
marketing strategies, competition, long-term business
goals, customer retention, product simplicity, innovation,
resource allocation, client-focused features, and
availability are of paramount significance. These
commercial considerations need to be carefully weighed
during the software requirement prioritization process, as
they directly impact the overall business success [26]. At
technical frontage, software requirements prioritization
must address factors such as risk management, complexity
analysis, value assessment, cost estimation, effort
estimation, speed of implementation, technical complexity,
time limitation, conflicting requirements, dependency
among requirements, changing requirements, and overall
project understanding and importance [28]. These are the
critical factors that must be considered to prioritize the
software requirements.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 78

In software project development, an approach to
requirement prioritization has been introduced by [29],
which emphasizes the significance of multiple
perspectives and is built on three key perspectives: the
customer perspective, the business perspective, and the
technical perspective. Customer perspective in software
requirement prioritization may differ from one individual
to another. On the other hand, business perspective takes
into account the specific priorities and objectives of the
organization by product manager. There is a distinct
criterion which is most suited defined by each
organization to prioritize its requirements to meet
strategic goals [30]. Also, the technical perspective to
prioritize software requirements focuses on the aspects
such as cost, time, and risk. It requires that the
development team members collaborate to each other to
optimize resources and lessen the potential challenges in
the software development process.

6. SOFTWARE REQUIREMENTS PRIORITIZATION
TECHNIQUES

Bukhsh, Faiza, et al. [31] categorized software
requirements prioritization techniques as follows:

 Software Requirements Prioritization based on
Analytical Hierarchy Process (AHP), which uses a
pair-wise comparison matrix for determining the
relative importance of each requirement based on
multiple criteria.

 Software Requirements Prioritization based on B-
Tree, which uses a decision tree to visualize and
compare the importance of requirements based
on specific criteria.

 Software Requirements Prioritization based on
fuzzy logic which uses a linguistic scale for
representing the importance or preference of
each requirement, and later they are transformed
into a numerical value for prioritization.

 Software Requirements Prioritization based on
stakeholders’ preferences, which collect and
aggregate preferences from different stakeholders
for determining the relative importance of each
requirement.

 Software Requirements Prioritization based on
numerical assignment, which assigns a numerical
value to each requirement based on specific factor
or criteria.

 Software Requirements Prioritization based on
advanced data processing, which uses machine
learning algorithms, neural networks, and other

advanced data processing techniques to predict
the relative importance of each requirement.

 Software Requirements Prioritization based on
binary inputs, which collects binary inputs from
stakeholders for determining the relative
importance of each requirement.

 Software Requirements Prioritization based on
cost-value approach, which evaluates the cost and
value of each requirement for determining its
relative importance.

 Software Requirements Prioritization based on
mutation testing and dependability analysis,
which analyze consequences of each requirement
on the system’s dependability and robustness.

Due to various challenges, several software requirements
prioritization techniques have been developed, which vary
in terms of measuring scales, focus areas, and complexity
[32]. Whereas, a few techniques present high-level
insights into the process of software requirements
prioritization, while some others present more extensive
prioritization methods. It is clear that different techniques
consider certain aspects while disregarding others.
Therefore, it is not convenient to directly compare
techniques on different criteria, as each technique focuses
on distinct priority aspects [33].

It is essential to ensure that the resources are optimally
utilized and all key stakeholders are kept engaged during
software project development. Further, the development
teams must try to deliver high-quality software product
that addresses all stakeholders’ needs while considering
organization goals. The importance of software
requirements prioritization techniques lies in their ability
to facilitate the allocation of resources, reduce
development time and risks, and finally contribute to the
successful delivery of software products.

7. CHALLENGES

Mostly, all techniques of software requirements
prioritization available in the literature are best suited for
small projects with few requirements and become useless
as the number of requirements increases in large projects.
So, these techniques face numerous challenges such as
failing to provide a feasible solution when scaling up from
small to large projects, too time-consuming, producing
erroneous or inaccurate results, and lacking the ability to
recall previous results [34].

Conventionally, the process of software requirements
prioritization has been regarded as an essential part of
requirements analysis [35]. However, Lehtola et al. [36]
have put forward the idea that software requirements

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 79

prioritization should be integrated into later stages of the
software development life cycle. But, it highlights a
common challenge which aspects to consider and to what
extent [36]. It emphasizes the need for a more holistic
approach to prioritize software requirements in software
development.

8. CONCLUSION

Software requirement prioritization plays a critical role in
the success or failure of any software project. So, it is
critical to ensure that the resources are optimally utilized
and all key stakeholders are engaged and well-informed
about the project's importance on the most essential
features during software project development. Further, it
relies on many factors which includes budget, schedule,
risk, resources, reward, time, stability, dependency,
sensitivity, and compliance with regulatory and policy
requirements. It includes techniques that are most
frequently used are such as Bubbles Sort, Kano Analysis,
Ranking, MoScoW Method, Numerical Assignments
(Grouping), Hundred Dollar Method, and Analytic
Hierarchy Process. It is a dynamic process to effectively
prioritize software requirement that evolves throughout
the project to ensure that the development efforts are
focused on the most critical aspects to achieve project
success.

In this paper, the author has made an attempt to answer
the questions related to software requirements
prioritization such as what is software requirements
prioritization; why it is needed; and the techniques of it.
Further, different aspects and challenges to prioritize
software requirements are also discussed. Finally, the
author has concluded that the software requirement
prioritization plays a critical role in the success or failure
of any software project.

REFERENCES

[1] R. Pressman, Software Engineering: A
Practitioner’s Approach, 3rd edition, McGraw Hill,
1992.

[2] P. Naur and B. Randell, “Software Engineering:
Report of the Working Conference on Software
Engineering,” Garmisch, Germany, October 1968,
NATO Science Committee, 1969. [Online]
Available:
http://homepages.cs.ncl.ac.uk/brian.randell/NAT
O/nato1968.PDF.

[3] Singh, Narender and Nasib Singh Gill. “Towards an
Integrated AORE Process Model for Handling
Crosscutting Concerns.” International Journal of
Computer Applications 37 (2012): 18-24.

[4] R. Pressman, Software Engineering - A
Practitioner's Approach, 6th ed., 007-123840-9,
McGraw Hill, 2005.

[5] The Standish Group, The Chaos Report (1995),
Technical Report, Standish Group International,
1995. [Online] Available: http://www.it-
cortex.com/Stat_Failure_Rate.htm#The%20Chaos
%20Report%20(1995).

[6] Singh, Narender and Nasib Singh Gill. “Aspect-
Oriented Requirements Engineering for Advanced
Separation of Concerns: A Review.” (2011).

[7] The Standish Group, The Chaos Report (2015),
Technical Report, Standish Group International,
2015. [Online] Available:
https://www.standishgroup.com/sample_researc
h_files/CHAOSReport2015-Final.pdf

[8] I. Sommerville, P. Sawyer, Requirements
Engineering - A Good Practice Guide, 978-
0471974444, John Wiley, 1997.

[9] S. Dusire, M. Flynn, N. Dardenne, “Requirements
Engineering: Applying Theory to Reality,” In
Proceeding of 10th Requirements Engineering
Conference (RE'02), Essen, Germany, pp. 300-302,
IEEE Computer Society, 2002.

[10] K. Wiegers, Software Requirements, 2nd ed., 978-
0735606319, Microsoft Press, 2003. [Online]
Available: http://www.amazon.com/Software-
Requirements-2-Karl-Wiegers/dp/0735618798

[11] H. Khan, A. Ahmad, C. Johansson and M. A.
Alnuem, Requirements Understanding in Global
Software Engineering: Industrial Surveys,
International Conference on Computer and
Software Modeling (ICCSM), Vol. 14, pp. 183-190,
2011.

[12] Khan, Hashim et al. “Requirements Understanding
in Global Software Engineering: Industrial
Surveys.” (2011).

[13] Brooks, F. P. (1995) “The Mythical Man-Month”
Essays on Software Engineering, Addison-Wesley
Longman, Boston, MA, USA.

[14] Anand Krishnan, Associate Consultant, Maveric-
Systems, Modern Analyst e-Journal - The Business
Analysis & Systems Analysis Magazine, [Online]
Available:
https://www.modernanalyst.com/Resources/Arti
cles/tabid/115/ID/3332/Techniques-to-
Prioritize-Requirements.aspx

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 80

[15] Sommerville, I., & Sawyer, P. (1997).
Requirements engineering: a good practice guide.
John Wiley & Sons, Inc.

[16] Greer, D., & Bustard, D. W. (1997). SERUM-
Software engineering risk: Understanding and
management. The International Journal of Project
& Business Risk, 1(4), 373-388.

[17] Kousalya, P., Reddy, G. M., Supraja, S., & Prasad, V.
S. (2012). Analytical Hierarchy Process approach–
An application of engineering education.
Mathematica Aeterna, 10, 861.

[18] Ibrahim, O., & Nosseir, A. (2016). A Combined AHP
and Source of Power Schemes for Prioritising
Requirements Applied on a Human Resources. In
MATEC Web of Conferences (Vol. 76, p. 04016).
EDP Sciences.

[19] Hudaib, Amjad et al. “Requirements Prioritization
Techniques Comparison”, Mathematical Models
and Methods in Applied Sciences 12 (2018): 62.

20] Karlsson, Joachim, Claes Wohlin, and Björn
Regnell. "An evaluation of methods for prioritizing
software requirements." Information and
software technology 39.14-15 (1998): 939-947.

[21] Sommerville, Ian, and Pete Sawyer. Requirements
engineering: a good practice guide. John Wiley &
Sons, Inc., 1997.

[22] P. Berander, A. Andrews, Requirements
prioritization, Engineering and managing
software requirements, Springer, 2005, pp. 69–94.

[23] Yeh, Albert C. "Requirements engineering support
technique (REQUEST): a market driven
requirements management process." Proceedings
of the second symposium on assessment of
quality software development tools. IEEE
Computer Society, 1992.

[24] Berander, P., Andrews, A. (2005). Requirements
Prioritization. In: Aurum, A., Wohlin, C. (eds)
Engineering and Managing Software
Requirements. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-28244-0_4

[25] L Lehtola and M. Kauppinen, "Empirical
evaluation of two requirements prioritization
methods in product development projects,"
Software Process Improvement, pp. 161-170,
2004.

[26] F. Sher, D. N. Jawawi, R. Mohamad, and M. I. Babar,
"Multi-aspects based requirements priortization
technique for value-based software

developments," in Emerging Technologies (ICET),
2014 International Conference on, 2014, pp. 1-6.

[27] A. Egyed, "A scenario-driven approach to trace
dependency analysis," Software Engineering, IEEE
Transactions on, vol. 29, pp. 116-132, 2003.

[28] Sher, Falak et al. “Requirements prioritization
aspects quantification for value-based software
developments.” (2019).

[31] Bukhsh, Faiza Allah, Zaharah Allah Bukhsh, and
Maya Daneva. "A systematic literature review on
requirement prioritization techniques and their
empirical evaluation." Computer Standards &
Interfaces 69 (2020): 103389.

[32] Berander, P., Andrews, A. (2005). Requirements
Prioritization. In: Aurum, A., Wohlin, C. (eds)
Engineering and Managing Software
Requirements. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-28244-0_4

[33] Berander, Patrik, Kashif Ahmed Khan, and Laura
Lehtola. "Towards a research framework on
requirements prioritization." SERPS 6 (2006): 18-
19.

[34] M. I. Babar, M. Ramzan and S. A. K. Ghayyur,
"Challenges and future trends in software
requirements prioritization," International
Conference on Computer Networks and
Information Technology, Abbottabad, Pakistan,
2011, pp. 319-324, doi:
10.1109/ICCNIT.2011.6020888.

[35] Sommerville, I.: Software Engineering. 5 edn.
Addison-Wesley, Wokingham, England (1996)

[36] Lehtola, Laura & Kauppinen, Marjo & Kujala, Sari.
(2004). Requirements Prioritization Challenges in
Practice. Proceedings of 5th International
Conference on Product Focused Software Process
Improvement. 497-508. 10.1007/978-3-540-
24659-6_36

