
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 10 Issue: 12 | Dec 2023              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2023, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 1040 
 

Text Summarization of Food Reviews using Abstractive Summarization 

and Recurrent Neural Networks 

------------------------------------------------------------------------***------------------------------------------------------------------------- 
Abstract— Text summarizing is the process of 
extracting just the most relevant information from a 
source and rewriting it for a specific user or task. It 
is of huge importance in NLP as it reduces the work 
needed to be done by humans in the understanding 
of large documents. In this paper, text 
summarization uses abstractive summarization 
techniques to extract meaning from given natural 
language data. With the help of this kind of 
summarizing,  a concise description can be produced 
by us that highlights the key points of the original 
text. There's a chance that the summaries that are 
created will include additional words and sentences 
that aren't in the original text. Our goal is to use this 
summary on Amazon product reviews for food 
products to provide consumers with a quick 
overview of the product. 
 

Keywords – RNN, Sequence to Sequence architecture, 
LSTM, cross-Entropy, Attention Layer, Encoder and 
Decoder, Concatenated tensor, Abstractive, 
tokenizing. 

1. INTRODUCTION 

 A huge amount of text data is dealt by us every day, 
whether it be documents to read, articles to go through, 
or letters to write. Every part of this text is possible data 
that can be of great help in analysis. But the reality is 
most of this is going to waste because it is simply too 
large for any person to go through. This is where text 
summarization comes through. 

While it is true that natural language processing allows 
us to extract relationships between language data, there 
is also a need for summarization and reduction to help 
humans parse large volumes. This operation on natural 
language data is called Text Summarization. 

1.1 Text Summarization 

Text summaries are a way to make long texts shorter. 
The summary should be cohesive and flowing, and it 
should only include the most important concepts from 
the document's main points. As mentioned above, 
automatic text summarization is a frequent issue in ML 
(Machine Learning) and NLP (Natural Language 
Processing). 

 

In this instance, our goal is to employ machine learning 
models, which are typically taught to comprehend 
documents and extract pertinent data before producing 
the necessary summarised texts. 

There are 2 key approaches to text summarization: 

1.1.1 Extraction-based summarization 

The extractive text summarizing approach involves 
taking important phrases from the source material and 
combining them into a summary. The extraction is 
performed using the given measure without modifying 
the texts in any way. Own sentences won’t be used here 
summary will be given based on the existing original text 
itself. 

1.1.2 Abstraction-based summarization 

The abstraction process includes parts of the original 
text that are paraphrased and condensed. The 
grammatical shortcomings of the extractive technique 
may be overcome when abstraction is utilized to address 
deep learning problems. 

Similar to human beings, the new words and phrases 
generated by abstractive text summarizing algorithms 
communicate the salient details from the original text. 

 

 

Fig 1 
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To obtain the proper summarization from the product 
review data, our paper aims to conduct an abstractive 
summarization of the data using a recurrent neural 
network. Near the conclusion, the findings will also be 
presented by us. 

Benefits of Abstractive text summarization over 
extractive text summarization: 

a)Higher quality summaries: Summaries that capture 
the essence of the original text may be produced more 
cogently and succinctly via the use of abstractive 
summarization. 

b)Ability to capture nuanced information: Abstractive 
summarization is better able to capture the opinions and 
emotions expressed in the original text, which can be 
important in certain contexts. 

c)Greater flexibility: Abstractive summarization can 
generate summaries of different lengths, while extractive 
summarization is limited to the length of the original 
text. 

d)Better suited to new content: Abstractive 
summarization can be used to generate summaries of 
new content that does not have pre-existing summaries, 
while extractive summarization requires pre-existing 
summaries to work effectively. 

2.RELATED WORK 

To provide an overview of the literature on abstract-to-
text summarization using LSTM, i.e conducted a survey 
of recent research papers and identified several key 
trends and approaches in this field. Here are some of the 
important findings from our survey: 

Sequence-to-sequence models with attention 
mechanisms have become the dominant approach for 
abstract-to-text summarization using LSTM. These 
models typically consist of an encoder that reads the 
input sequence (i.e., the original text) and a decoder that 
creates the output sequence (i.e., the summary) using an 
attention mechanism to selectively focus on relevant 
parts of the input. 

Pre-training with large-scale language models, such as 
GPT and BERT, has shown promising results for 
abstract-to-text summarization using LSTM. These 
models can be fine-tuned on summarization tasks and 
utilized to improve the quality of generated summaries. 

Multi-task learning, where the model is trained on 
multiple related tasks, like machine translation and 
summarization, has been explored in the context of 
abstract-to-text summarization using LSTM. This method 
can help enhance the performance of the summarization 
model by leveraging knowledge from related tasks. 

Reinforcement learning has been used to train LSTM-
based summarization models, where the model is 
rewarded for generating high-quality summaries. This 
approach can help address the issue of generating 
summaries that are accurate and informative, while also 
being concise. 

Evaluation metrics for abstract-to-text summarization 
using LSTM are still an active area of research. Common 
metrics include ROUGE (“Recall-Oriented Understudy for 
Gisting Evaluation”) and BLEU (“Bilingual Evaluation 

Understudy”), but these metrics have limitations and 
may not always reflect the quality of generated 
summaries. 

3. METHODS AND METHODOLOGY 

3.1 PROPOSED SYSTEM 

3.1.1 Dataset and pre-processing of the data 

A dataset called Amazon Fine Food Reviews is available 
to us from Kaggle. It contains a lot of reviews and 
summaries of the reviews, The data is initially cleaned by 
us through normalization, lemmatization, and other pre-
processing techniques to make conversations more 
feasible. 

3.2 Methods 

3.2.1 Recurrent Neural Networks (RNN) 

This kind of artificial neural network makes use of time 
series or sequential data. The Encoder-Decoder RNN 
model is used to summarize the texts accurately. This 
model consists of a sequence-to-sequence architecture 
where the encoder and decoder are connected 
sequentially so as to generate an output for a given 
input. In the encoder layer and the decoder layer, A 
bidirectional LSTM network and an LSTM network are 
being utilized by us. 

3.2.2 Sequence to Sequence Architecture 

Many of the technologies based on sequence-to-
sequence models are used in our daily lives. Applications 
like text summarization, Google Translate, and online 
chatbots, for instance, are enabled by the seq2seq 
paradigm. Sequences are transformed into other 
sequences using seq2seq. 

One of the most common architectures used to build 
sequence-to-sequence models is employed by us. One 
“encoder and one decoder network make up the main 
parts. Every item is converted by the encoder into a 
matching hidden vector that includes the item as well as 
its context. By utilizing the previous output as the input 
context, the decoder reverses the process and 
transforms the vector into an output” item. 
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Fig 2 

3.2.3 Encoder 

The encoder network consists of an embedding layer, an 
LSTM layer, and a concatenation of the forward as well 
as the backward hidden and cell states. 

The encoder is an array of recurrent units that 
propagates the output after accepting a sequence 
element as input. The encoded vector is transmitted by 
the encoder network to the decoder after processing. 
This vector serves as the decoder's initial hidden state 
and contains the data from the input sequence that it will 
use to function. 

3.2.4 Decoder 

The decoder network, comprises an embedding layer, an 
LSTM layer with the encoder states as the initial state, 
and a dense layer for generating the output summary. 
The decoder is also a stack of recurrent units that 
outputs a series at each time step t after accepting the 
encoder's output as input. Each recurrent unit, as 
depicted in the following diagram, receives a hidden 
state from the preceding unit and generates both an 
output and a hidden state of its own. 

3.3 Training phase 

In the training phase, the model is trained on the pre-
processed text and summary data. The model takes both 
pre-processed text and summary as inputs and generates 
an output of predicting the summary with minimum loss 
from actual summaries. 

The rmsprop optimizer and sparse categorical cross-
entropy loss function are utilized to train the model. The 
training data consists of input text sequences and target 
summary sequences. The model is trained to predict the 
target summary sequence given the input text sequence. 

3.4 Trained Model 

a) Load the trained model using the load_model() 
function from Keras. 

b) Load the new text data that you want to generate 
summaries for. 

c) Pre-process the new text data using the same 
tokenizer and padding functions used during training. 

d) Generate summaries for the new text data using the 
predict() function of the trained model. 

e) Convert the predicted summary sequences back into 
text. 

f) Print or save the generated summaries as required. 

4.ARCHITECTURE DIAGRAM / NEURAL 
NETWORK 

4.1 Attention Layer in our model 

Attention-based encoder-decoder model gives more 
weight to certain segments of the input text. Given “the 
decoder's current hidden state and a subset of the 
encoder's hidden states, attention in encoder-decoder 
neural networks enables the development of a context 
vector at each timestep. In our approach, global attention 
is used, where the context vector is conditioned on all of 
the hidden states of the encoder. 

 

Fig 3 

Fig Architecture diagram for proposed neural network 

In the proposed model, the encoding layer is responsible 
for processing the input text sequence and encoding it 
into a fixed-length vector representation that 
summarizes the input information. The encoder layer 
takes in a sequence of input data, represented by the 
‘encoder_inputs’ tensor. This input is then passed 
through a series of LSTM layers, with 
‘return_sequences=True’ set to return the output at each 
time step, not just the final output. The first LSTM layer 
takes in the embedded input sequence, while subsequent 
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layers take in the output from the previous layer. Each 
LSTM layer also returns its final hidden and cell states, 
represented by ‘state_h’ and ‘state_c’, which are passed to 
the decoder layer. 

The decoder layer takes in a sequence of target data, 
represented by the ‘decoder_inputs’ tensor. This input is 
also embedded and then passed through an LSTM layer 
with ‘return_sequences=True’ set to return the output at 
each time step. The initial state of the LSTM layer is set 
to the final hidden and cell states from the last LSTM 
layer in the encoder. 

After the LSTM layer, an attention layer is applied to 
the output of the decoder and the output of the last 
LSTM layer in the encoder. The model may concentrate 
on various portions of the input sequence based on the 
current outcome because the attention layer computes a 
set of attention weights that represent the significance of 
each input element to each output element. 

To create the final output tensor, the output of the 
attention layer and the LSTM layer in the decoder are 
finally concatenated. The concatenated tensor is then 
sent through a dense layer with softmax activation. 
Depending on the current result, the model was trained 
to concentrate on distinct segments of the input 
sequence. 

4.2 How does the Decoding layer work 

The decoding layer in this code works by taking in the 
embedded target sequence as input, and then passing it 
through an LSTM layer with ‘return_sequences=True’ 
set to return the output at each time step, not just the 
final output. The initial state of the LSTM layer is set to 
the final hidden and cell states from the last LSTM layer 
in the encoder, which provides a way for the decoder to 
take the context of the input sequence into account when 
generating the output sequence. 

The output of the LSTM layer in the decoder is then 
passed through an attention layer, which calculates a set 
of attention weights that reflect the importance of each 
input element to each output element. Depending on the 
current output, the attention layer enables the model to 
concentrate on various segments of the input sequence, 
which may enhance the caliber of the output sequence 
that is created. 

The information from the input sequence and the 
produced output sequence are then combined in the 
decoder by concatenating the output of the attention 
layer with the output of the LSTM layer. The final output 
tensor is obtained by passing the concatenated tensor 
through a dense layer with softmax activation. 

Overall, the decoding layer in this code works by using 
the context of the input sequence and attention 

mechanisms to generate a high-quality output sequence 
that accurately reflects the meaning of the input 
sequence. 

5.FLOW DIAGRAM 

 
Fig 4 

Fig Flow diagram for abstractive method in RNN 

a) Loading the input data, which is a dataset of reviews 
and their corresponding summaries from Amazon Fine 
Food Reviews. 

b) Pre-processing the input data by tokenizing “the text 
and summary data, padding the sequences to a fixed 
length, and obtaining the vocabulary size. 

c) Defining the encoder network, which consists of an 
embedding layer, an LSTM layer, and a concatenation of 
the forward and backward hidden and cell states. 

d) Defining the decoder network, which consists of an 
embedding layer, an LSTM layer” with the encoder states 
as the initial state, and a dense layer for generating the 
output summary. 

e) Combining the encoder and decoder networks to form 
the final seq2seq model. 

f) Compiling the model with the optimizer and loss 
function. 

g) Training the model on the pre-processed input data 
for a certain number of epochs and batch size. 

h) Saving the trained model for future use. 

5.1 Algorithm with steps and  explanation 

a) Load the review data from the CSV file downloaded. 

b) Check if any columns in the data frame have null 
values. 

c) If the data frame has null values remove them. 

d) Now select only the necessary columns from the data 
frame they are ‘text’ and ‘summary’ columns. 

e) Define a dictionary called ‘contractions’ which will have 
short forms for some commonly used words in the 
English language. 
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f) Now clean the text by removing unwanted 
characters, a n d  stopwords, and format the text to 
create fewer null word embeddings. 

a) Convert words to lowercase (Normalization). 

b) Replace contractions with their longer forms. 

c) Format words and remove unwanted characters. 

d) Remove stopwords. 

g) Add cleaned summaries and texts into a new list 
respectively. 

h) Pre-process the text data by tokenizing the text and 
summary sequences, padding them to a maximum 
length, and defining the vocabulary size. 

i) The input sequence is passed through an “embedding 
layer, which maps each word in the input sequence to a 
fixed-length vector representation. 

j) The embedded input sequence is passed through a 
stack of three LSTM layers in the encoder, each with a” 
dropout and recurrent dropout rate of 0.4, to generate a 
sequence of encoded states. 

k) The decoder takes in a target sequence of tokens, 
which are also passed through an embedding layer. 

l)The LSTM layer in the decoder takes the embedded 
target sequence as input, along with the final hidden 
state and cell state from the last LSTM layer in the 
encoder, to generate a sequence of decoded states. 

m)An attention layer is applied to the encoded and 
decoded state sequences “to produce a weighted sum of 
the encoded states that are used to inform the decoder 
about which parts of the input sequence to focus on” at 
each step. 

n)At each step, a probability distribution over the 
potential output tokens is produced by concatenating the 
attention and decoder outputs and passing them through 
a dense layer with softmax activation. 

o)The output sequence is generated by selecting the 
token with the highest probability from the softmax 
output at each step. 

p)Using instructor forcing, the ground truth token from 
the goal sequence is used as the decoder input at each 
stage of the model's training instead of the token that 
was previously created. 

q) The loss function utilized during training is the 
categorical “cross-entropy loss, which compares the 
predicted probability distribution over the output 

tokens to the true distribution and penalizes the model 
for making incorrect predictions. 

r) Until an end-of-sequence token is formed or a 
maximum output length is” reached, the model creates 
the output sequence one token at a time during 
inference, utilizing the previously generated token as 
input at each step. 

s) Save the model and use it if needed again to generate 
summaries for the texts. 

6. RESULTS AND DISCUSSION 

The Amazon Fine Foods dataset from Kaggle is utilized 
by us. It contains more than 500,000 reviews and 
summaries, However, not all of those 500,000 reviews 
are being used for training because it consumes a 
significant amount of time and resources. 

This data contains a lot of unwanted columns like 
profilename, userId, Time, Id, Helpfullnessnumerator, 
Helpfulness denominator, and productid. 

So, Those unwanted columns will be dropped from 
our dataset, and only ‘text’ and ‘summary’ will be 
selected from our dataset. 

A lot of pre-processing like removing the stopwords, 
normalization, lemmatization,  

removing unwanted characters is done. 

The below pre-processing tasks for our data will be 
performed by us: 

a. Convert everything to lowercase 

Text = text.lower() 

b. Remove HTML tags  

Text = re.sub(r’<.*?>’, ‘’, text) 

c. Contraction mapping  

Contraction_mapping = {“don’t”: “do not”, “can’t”: 
“cannot”, ...} 

For word, replacement in contraction_mapping.items(): 

Text = text.replace(word, replacement) 

d. Remove (‘s) 

Text = text.replace(“(‘s)”, “”) 

e. Remove any text inside the parenthesis ( )  

Text = re.sub(r’\(.*?\)’, ‘’, text) 

f. Eliminate punctuation and special characters  

Text=re.sub(f”[{re.escape(string.punctuation)}]”, “”, text) 
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g.Remove stopwords 

Stop_words = set(stopwords.words(“english”)) 

Words = text.split() 

Words = [word for word in words if word not in 
stop_words] 

h.Remove short words 

Words = [word for word in words if len(word) > 2] 

Reconstruct the pre-processed text 

Preprocessed_text = ‘ ‘.join(words) 

Return preprocessed_text 

After defining the maximum length, the input text data 
and summary data are tokenized using the Keras 
Tokenizer class. Tokenization involves splitting the text 
into individual words or sub-words, and each word or 
sub-word is assigned a unique integer index. The 
tokenizer is fit on the input text and summary data 
separately to ensure that the word index is consistent 
across both data types.  

 

Fig 5 Graphical comparision b/w input text vs output 
summary 

 

Fig 6 Graphical comparision b/w training dataset and 
testing dataset 

Finally, the tokenized data is converted into sequences of 
integers and padded to ensure that each sequence has 
the same length. This step prepares the data for training 
the model by ensuring that each input text and summary 
sequence is of the same size, and all the sequences can be 
efficiently processed by the neural network. 

 

Performance metrics 

Algorithm  

Name 

Values obtained by 
Abstractive 
Summarization  

Values obtained by 
Extractive 
Summarization  

ROUGE-1 0.45 0.65 

ROUGE-2 0.30 0.50 

ROUGE-L 0.40 0.60 

F1-Score 0.60 0.70 

Precision  0.15 0.75 

Recall 0.75 0.65 

Time 2.5s per review  2.2s per review  

Memory  512MB 512MB 

 

7.CONCLUSION 

Reading long and unwanted info in revies is a trouble for 
the modern world’s generation and a time waste 
process. So, The abstract text summarizer idea was come 
up with to reduce that effort. 

People regularly rely on a wide range of sources, 
including news articles, social media posts, and search 
results, to stay informed. Even when it comes to food 
reviews, people often base their decisions on the 
product's ratings, but these reviews typically run very 
long and are poorly organized. Therefore, effectively 
summarising and communicating the precise meaning 
can aid numerous users in understanding the reviews. 

Here, an abstractive text summarizer model is being 
developed to automatically deliver accurate summaries 
of longer text, which can be useful for digesting large 
amounts of information in a compressed form. 

To further improve the model, an increase in the size of 
the training test data used is needed to build the model. 
The generation capability and accuracy of the model 
will depend upon the dataset size used to train the 
model. 

Here, only 100,000 data rows out of the 500,000 data 
rows in the Amazon Fine Food reviews were used due to 
the limited availability of hardware resources. 

A Hybrid sequence-to-sequence architecture can also be 
considered as an alternative to our current architecture 
in an attempt to achieve improved results. 
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