
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 109

OSSCR: A framework for detecting Software Supply Chain “Risks” in Open-

source Software Packages

Jai Balani†, and Ashish Bijlani††

†Computer Society, IEEE, Santa Clara Valley, CA, USA
††Research Scientist, Atlanta, Georgia, USA

---***--
Abstract - Open Source Software (OSS) has become
the de-facto standard way of developing digital
products and services. Modern OSS is distributed and
consumed as ready-to-use packages hosted on
Package Registries. However, bad actors evidently
leverage techniques such as account hijacking, and
social engineering to inject purposefully harmful code
(malware) in benign packages and carry out software
supply chain attacks. Yet, there is no robust way to
measure potential supply chain cyber risks in OSS
packages. Developers today rely on public metrics
such as GitHub stars and number of downloads to
infer the security and maturity of the software.

This work presents, OSSCR, the first-ever framework
to evaluate OSS packages and measure potential
supply chain risks. Our framework is based on the
study of hundreds of previously documented
malware samples. Specifically, we identify several
code as well as metadata “risky” attributes that make
OSS packages vulnerable to such risks. We believe
that OSSCR framework will be very valuable to
software developers as well as security teams at
organizations that evaluate OSS code before shipping
their apps/services.

Key Words: CyberSecurity, Supply Chain, Open
Source Software, Malware, PyPI,

Introduction

Open-source Software (OSS) is increasingly being
used to develop modern digital products and services
for their benefits such as reduced development cost
and time to market. According to a recent report from
Synopsys, 91% of commercial applications (apps)
contain OSS components [53]. Today, any
independent developer or organization can “supply”
OSS by publishing their code as ready-to-use
packages on a centralized web store, called Package
Manager (PM). Popular PMs include, Node Package
Manager (NPM) that hosts millions of JavaScript

packages, and Python Packaging Index (PyPI) that
hosts hundreds of thousands of Python packages.

Problem. Unfortunately, OSS packages receive little
to no security vetting by the PM administrators. As a
result, malicious actors embed less secure packages
in the supply chain with purposefully harmful OSS
code (malware), carrying out software supply chain
attacks. Compared to vulnerabilities that are
accidental programming bugs introduced in benign
OSS code and may (or may not) be exploitable,
malware contains intentionally harmful and stealthy
code that poses a direct cyber threat. Thousands of
OSS packages containing malware have been
reported across NPM, PyPI, and RubyGems, which
have been downloaded millions of times [20, 47].
Such attacks are both difficult to detect and highly
damaging. The same malware may be adopted by
thousands of developers and find its way in several
apps, potentially compromising the privacy of
millions of users. Today, developers must
thoroughly analyze OSS packages, and avoid risky
packages that may expose them to high levels of
supply chain risks. Unfortunately, there exists no
robust framework to measure OSS supply chain
risks. Current practices include sourcing only
mature, stable, popular, and reputable OSS packages,
where such attributes are inferred from publicly
available metrics, such as GitHub stars, package
downloads, and software development activity [50].
However, such practices are riddled with limitations
and inefficiencies. Vanity metrics such as GitHub
stars and package downloads do not reveal true
information about the security posture of packages.
More importantly, an attacker-controlled bot can
easily manipulate such metrics. Manual analysis of
code can be time-consuming and error-prone.

This work proposes a data-driven security
framework, called OSSCR1 to measure and control
the level of supply chain risks when sourcing OSS
packages. The design of OSSCR is guided by our
study of 651 malware samples of documented OSS

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 110

supply chain attacks. Specifically, we have empirically
identified a number of risky code and metadata
attributes that make a package vulnerable to supply
chain attacks. For instance, we tag inactive or
unmaintained packages that no longer receive
security fixes. Inspired by Android app runtime
permissions [42], OSSCR uses a permission-based
security model to offer control and code transparency
to developers. Packages that invoke sensitive
operating system functionality such as file accesses
combined with remote network communication are
flagged as risky as this functionality could leak
sensitive data.

OSSCR has been developed with a goal to assist
developers in identifying and reviewing potential
supply chain risks in OSS packages. Since the degree
of perceived security risk from an untrusted OSS
package depends on the specific security
requirements, OSSCR can be customized according to
the threat model of the user. For instance, a package
with no communal reputation or new maintainer,
may be perceived to pose greater security risks to
some organizations such as financial institutions due
to heavy regulations, compared to others who may be
more willing to use such packages for the
functionality offered. Given the volatile nature of the
problem, providing customized and granular risk
measurement is one of the goals of our framework.

Open-Source Software Supply Chain Attacks

This section first provides a brief background on OSS
supply chain attacks, introducing the key terminology
as well as various stakeholders, and then presents a
summary of prior attacks, along with our findings on
various attacking techniques and malicious
behaviors.

Fig. 1. Various stakeholders and their relationships in
the modern OSS supply chain. Developers adopt
ready to-use OSS packages for their web
apps/services by installing them from Package
Managers (a.k.a. Registries) into their own
development environment. Package Maintainers, who
may be different from the original package author,
provide feature updates and security bug fixes.

2.1 Background and key terminology

Modern web apps (and services) are developed
using high-level runtime programming languages
(e.g., JavaScript, Python) for their rich ecosystem of
hundreds of thousands of third-party OSS packages
that enable quick prototyping and development. For
instance, today developers can reuse open-source
Python web frameworks such as Django [23] and
Flask [31] to provide the boilerplate code for their
apps by adopting ready-to-use packages from PMs.
In contrast, OSS source files are stored in public
repositories on code hosting platforms such as
GitHub [28], but may require configuration or
compilation for reuse.

Given the ease of reuse, PMs have become a vital
part of the modern software development process.
Every OSS ecosystem has its own PM (a.k.a Registry),
which is maintained by the community authorities
For instance, PyPI, NPM, and RubyGems are popular
PMs that host hundreds of thousands of Python,
JavaScript, and Ruby packages, respectively. NPM
hosts over 2.2 million packages [36], and hundreds
of new package versions are released everyday.
Developers adopt packages by downloading them
from PMs and installing into their own development
environment All PMs provide command line tools for
developers to easily search, publish, download, and
install packages, which enables easy OSS reuse (i.e.,
without configuring or compiling from sources). For
example, PyPI Python packages are installed using
the pip command line tool by typing the name of the
required package, and specific release version string
as needed.

A package may further reuse, directly or transitively,
other third-party OSS packages (or dependencies) for
its functionality. For example, both “eslint” and
“electron”, two highly popular NPM packages, reuse
over hundred other packages. Therefore, installation
of a package recursively downloads and installs all
its dependencies from PMs. As a result, today’s OSS
is highly distributed in nature, with deeply nested
supply chains that dramatically increase software
attack surface. Note that for the scope of this
analysis, we only consider runtime dependencies of
a package that are needed for its runtime
functionality (e.g., for production), and ignore
development dependencies that may be needed for
development and testing.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 111

Packages are maintained (e.g., providing feature
updates or security bug fixes) by maintainer(s), who
may be different from the original package author
that transferred the ownership for regular
maintenance. contributors, on the other hand, are
collaborators, who provide source code contributions
(e.g., features). Figure 1 shows various stakeholders
in the modern OSS supply chain.

Problem. The widespread use of PMs has also made
them a gainful target for bad actors to exploit. Today,
any independent developer or organization can
publish their packages on PMs. However, unlike
mobile app stores (e.g., Google Play Store) that
analyze apps for potential security and privacy issues,
OSS packages receive a little to no such security
vetting by PM administrators [16, 25, 32]. As a result,
bad actors not only accidentally exploit
programmatic bugs (vulnerabilities) in benign third-
party OSS code, but also inject malware in less secure
packages in the supply chain to carry out software
supply chain attacks. For example, NPM eslint-scope
[24] and RubyGems rest-client [39] packages with
millions of weekly downloads were trojanized to steal
developer account credentials and leave a Remote-
Code-Execution (RCE) backdoor on web servers,
respectively.

In 2018 alone over 100 malicious OSS packages were
found that had received 600 million cumulative
downloads. By August 2019, the number grew to over
300 [21]. Over thousands of malicious OSS packages
have been reported as of January, 2022 [17, 21, 37,
38, 40, 51], and a number of them went undetected
for over a year, contrary to the commonly held “many
eyes'' belief about the security and quality of OSS
projects that can effectively be stated as: given
enough eyeballs, all bugs are shallow. While “many
eyes” may still be true for the Linux kernel, not every
modern OSS project has as big and active community
around it.

Compared to security vulnerabilities that are
accidentally introduced in benign OSS code and may
be exploitable, supply chain attacks pose a direct and
purposefully harmful cyber threat. Additionally,
security vulnerabilities can typically be fixed by
patching the buggy code or upgrading the software to
the next version that fixes the bug. Whereas,
malware, being intentionally harmful and stealthy, is
highly damaging and difficult to detect. For instance,
the same malware may be adopted by thousands of
developers and find its way in several apps,

potentially compromising the privacy of millions of
users. The victims of supply chain attacks are
developers and organizations that adopt OSS to
build their software apps/services, and end users
that install such compromised apps. End user
protection tools (e.g., anti-virus) fail to detect
security/privacy risks posed by such malware as the
malicious logic (e.g., steal credit cards or account
credentials) is planted into supposedly benign and
trusted apps.

2.2 Malware analysis

To develop a comprehensive and effective risk
measurement framework, it is important to build a
thorough understanding of the attack vectors and
advanced techniques that are employed to subvert
the OSS supply chain. Therefore, we collected
previously reported malware samples and carried
out a systematic study of various (a) malicious code
behaviors, (b) attack vectors, and (c) evasion
techniques adopted by attackers. We obtained
samples of malicious packages by requesting a
dataset from researchers, who recently carried out
similar studies [21]. Overall, we analyzed 651
malicious packages reported in PyPI, NPM, and
RubyGems between January, 2018 and February,
2020. We briefly summarize various attacking
techniques and malicious behaviors we found.

Malicious behaviors: We categorize various
malicious behaviors into several dimensions of risks
to the core security goals, namely the confidentiality
(i.e., unauthorized access), integrity (i.e.,
unauthorized changes), and availability (e.g.,
inaccessibility for authorized use) of data. We briefly
describe each of them below with examples.

(1) Compromising data confidentiality. We found a
number of malicious packages that leak or steal data
such as IP addresses, account credentials, and credit
cards that may jeopardize the privacy of users. For
example, eslint-scope [24], a NPM package with
millions of weekly installs, was compromised to
steal account credentials from developers,

(2) We also found packages that install backdoor or
invoke attacker-controlled code. For example, a
backdoor was injected into a popular PyPI package,
called ssh-decorate, to exfiltrate users’ SSH
credentials to a remote server. Figure 2 shows the
malicious code.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 112

1 # attacker-controlled code

2 def log(data):

3 try:

4 post = bytes(urlencode(data), ’utf-8’)

5 handler = urlopen("http://ssh-
decorate.cf/index.php", post)

6 res = handler.read().decode(’utf-8’)

7 except:

8 pass

9

10 class Connection:

11 def connect(server, user, password, port,
verbose, privateKeyFile):

12

13 ...

14

15 # backdoor installed

16 log({"server": server, "port": port, "pkey":

pdata, "password": password, "user": user})

Fig. 2. A backdoor was injected into ssh-decorate to

exfiltrate users’ SSH credentials to a remote server.

(3) Compromising data availability. include packages
that sabotage data (e.g., ransomware) [6], and even
abuse compute resources for mining cryptocurrency
[9], potentially causing Denial of Service.

Attack vectors: We found that attackers mainly
propagate malware in the following three ways: typo-
squatting, account hijacking, and social engineering.
We briefly describe each one of them below with
malware examples.

(1) Account hijacking. compromises the account of
existing package maintainers through credential theft
(e.g., weak or reused password) for injecting malware
[19]. For instance, version 0.0.7 of strong_password, a

popular Ruby package, was published with a RCE
backdoor by hijacking the account of its maintainer.
on RubyGems PM.

(2) Under social engineering, attackers exploit the
collaborative nature of OSS projects and trick
owners of inactive or unmaintained packages to
transfer ownership with the intention of adding
malware [14, 15, 35]. Sometime, after ownership
transfer, attackers first publish a supposedly useful
package, then modify it by adding malicious payload
when their published package is adopted. Popular
packages are typically targeted for adoption to
maximize the potential reach of such attacks.

(3) Under typo-squatting, attackers publish new
packages with names similar to existing popular
packages, and exploit the inexperience and
carelessness of developers (e.g., name typo) during
package installation to “supply” malware [56]. For
example, Python packages urllib and urlib3 (one
lowercase ’L’) impersonated popular urllib3 (two
lowercase ’L’) package to steal SSH keys [37].

Similarly, a Python package jeilyfish was reported in
December, 2019 that impersonated a popular
jellyfish (two lowercase ’L’) to steal SSH keys, and
went undetected for a year. We found typo-squatting
to be the most common attack (64% of malware) as
it does not require careful code injection in existing
packages.

Injection techniques: Modern OSS packages enable
install hooks, which can run custom code during the
installation process (e.g., setup.py file in Python).
Most malicious packages that we analyzed abuse
such hooks to trigger the malicious behavior.
Attackers also leverage dynamic code generation
functionality (e.g., eval()) offered by modern
runtime languages to download and execute
malicious code. The latter is particularly used for
programming languages that do not provide
installation hooks (e.g., Ruby).

1 def _! begin yield rescue Exception end end _!{

2 Thread.new{ loop{ _!{

3 sleep 900;

4
 eval(open(’https://pastebin.com/raw/5iNd
ELNX’).read

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 113

5)} }}

6 if Rails.env[0]=="p"}

Fig. 3. rest-client [39] malware abuses dynamic code
generation to invoke malicious code, and uses
multiple evasion techniques such as benign service,
multi-stage payload, conditional logic, and target non
latest version to hide.

Evasion techniques: Our analysis reveals that
attackers use multiple sophisticated anti-analysis
techniques to defeat detection. Here we list a few
commonly used techniques.

1. Use of benign services to hide malicious code,
and circumvent detection. For example, rest-client
malware abuses pastebin.com service to host second-
stage payload as shown in Figure 3.

2. Malicious logic is typically guarding with
conditional checks that are only triggered under
specific (and often narrow) circumstances. For
instance, rest-client payload is only triggered if
analysis is performed in production mode (“p” in line
6 in Figure 3).

3. Code obfuscation to hide from both manual
and automatic inspection. fast-requests [34] uses
randomization and base64 encoding as obfuscation
techniques.

OSSCR

This work introduces OSSCR, a configurable security
framework for developers to mitigate risks of
software supply chain attacks when adopting
untrusted and potentially malicious third-party OSS
packages. In the simplest form, given an OSS package,
OSSCR provides a check-list of package attributes for
developers to review and renders a final verdict on
the level of supply chain risks.

Note that the degree of perceived security risk from
untrusted OSS code depends on the specific security
requirements. For instance, a package that sends
harmless analytics data (e.g., IP addresses) to a third-
party server may be perceived to pose greater
security risks to some organizations such as financial
institutions due to heavy regulations, compared to
others who may be more willing to use such packages
for the functionality offered. Given the volatile nature
of the problem, OSSCR risk levels can be configured to
fit a custom threat model.

In this work, we propose a set of risky package code
and metadata attributes that must be reviewed as a
part of OSSCR framework. These attributes are
common across most documented malware samples,
and are empirically derived from our study of 651
such samples §2.2. Figure 4 provides an overview of
the workflow. OSSCR evaluates each package
attribute separately according to custom security
requirements to provide partial answers. All partial
decisions are then integrated to render the final
verdict. This modular design allows us to be
extensible and adaptable; that is, we can easily add
support for evaluating additional attributes in
isolation, and combine decisions from each module.

In the remainder of this work, we discuss each of the
proposed package attributes, and highlight its
importance in accessing software supply chain risks.

Risky attribute # 1: use of sensitive system
functionality. Malicious activities are typically
performed by invoking Operating System (OS)
functionality (or APIs). For example, file system calls
(e.g., read(), write()) are typically used to access
private data stored on disk (e.g., SSH keys [13]),
replace OS binaries or install new files under critical
dirs (e.g., /bin), and even infect other packages [27].
Virtual file systems such as /proc and /sys also
reveal sensitive system information.

Fig. 4. Workflow of OSSCR. Given an OSS package, it
provides a checklist of code and metadata attributes
for developers to review, considers their custom
security requirements, and renders a verdict on
perceived software supply chain risk levels that the
package may expose.

Similarly, network system calls (e.g., socket()) are
used to communicate with a remote server for

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 114

downloading backdoor [39] at runtime or stealing
data [13]. Process creation APIs (e.g., fork() on UNIX-
based OSes) as well as code generation APIs provided
by runtime languages (e.g., eval() in Python and
Ruby) are abused to spawn hidden or background
process [9] and load malicious payload at runtime
[33, 39], respectively. As such, API usage profiles can
reveal hidden malicious behavior.

To mitigate software supply chain risks, packages
must be reviewed for code that directly access files,
environment variables, or performs network
operations. However, the same behavior could also be
carried out indirectly by executing an external
program (e.g., using system, fork()) or generating
code at runtime (e.g., using eval in Python/Ruby) to
isolate and hide malware [9]. Therefore, packages
containing such indirect functionality must also be
flagged.

Inspired by Android app runtime permissions [42],
OSSCR uses a permission-based security model to
offer code transparency to developers. Such
permissions consolidate APIs according to their
functionality type, and makes it easier to track the use
of sensitive such programmatic attributes. Table 1
lists various characteristic permissions that we track
and have empirically identified as “risky” based on
our study of malware and benign samples.

Note that in this work, we do not focus on accessing
sabotaging risks. However, packages could be
analyzed for “dramatic” use of compute or storage
resources for flagging sabotaging attempts. We leave
it as a potential follow-up.

Risky attribute # 2: no public availability of the
package source code. As mentioned in §2.1, Package
Managers host ready-to-install packages of OSS
projects, while their source code repositories are
hosted on code hosting platforms such as GitHub
[28]. As attackers target OSS packages to propagate
malware, no traces of malicious activities are
typically found in source repositories (e.g., on
GitHub). This is because, unlike PMs, services like
GitHub allow developers to explore source files, and
any malicious code traces left in source repositories
are likely to attract attention of developers and soon
be removed. For instance, malicious version 0.0.7 of
strong_password was published on RubyGems by
hijacking maintainer account, but no such version
sources were in its repository on GitHub [19].

Risky attribute # 3: no recent updates to the
package. Packages that are unmaintained or
abandoned packages no longer receive security fixes
to known (n-day) vulnerabilities, and therefore,
represent security weak links in the supply chain.
Developers are also vulnerable to social engineering
(e.g., ownership transfer) attacks against inactive
and unmaintained packages [14, 15, 35]. Old and
unmaintained packages are not automatically
discarded by PMs if unused.

Risky attribute # 4: more packages with the
same metadata from different authors. Attackers
publish new packages with names similar to existing
popular packages, and mount typo-squatting attacks
[37]. Attackers also squat popular names across OSS
ecosystems [3]. Typo-squatting is not a new
technique; it has been leveraged to misdirect web
users to malicious websites

PM admins do enforce package naming rules to
combat typo-squatting [16, 25, 32]. For instance,
RubyGems uses Levenshtein distance [?] to disallow
new packages with names similar to popular
packages [16]. PyPI replaces punctuation with
hyphens when publishing packages, and handles all
installation requests in a case-insensitive manner.
NPM incorporates a typo-safe mechanism to allow
similar package names, called scoped packages

Nevertheless, as these checks are enforced in real-
time, they only cover a small subset of cases [43] to
minimize performance overhead. They also result in
high false positives [41]. Consequently, due to lack of
sufficient checks during package submission, some
organizations have adopted defensive typo-
squatting to protect their users. They preemptively
publish multiple typo-guard packages with similar
names, and configure them to transparently serve
intended package or alert users [8].

To detect typo-squatting packages, we must not only
evaluate name similarity, but a set of metadata
attributes based on the profile of typo-squatting
packages identified in our study. The key
observation is that these packages are published
with the same project description, homepage, and
software license to closely impersonate the target
packages [1]. However, they differ from their targets
in author information (e.g., email, username) and
popularity (e.g., much fewer downloads and
dependents). By relying on multiple attributes, we
not only reduce errors, but also the likelihood of one

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 115

or more attacker-controlled attributes (e.g.,
popularity) gaming our system (e.g., using download
bots).

Risky attribute # 5: packages with custom
installation hooks. Modern OSS packages enable
install hooks, which can run custom code during the
installation process (e.g., setup.py file in Python).
Most malicious packages that we analyzed abuse such
hooks to trigger the malicious behavior. Attackers
also leverage dynamic code generation functionality
(e.g., eval()) offered by modern runtime languages to
download and execute malicious code. The latter is
particularly used for programming languages that do
not provide installation hooks (e.g., Ruby).

Risky attribute # 6: packages maintainers with
expired or incorrect email domains. Packages
authored by developers with invalid domains,
suggests lack of multi-factor authentication (e.g.,
2FA). Packages from developers with expired email
domains pose a serious supply chain threat. As email
addresses of package developers are publicly
displayed by all popular PMs, an attacker can easily
track email addresses associated with expired
domains. An expired domain can then be purchased
and can purchase the domain by registering and
modifying Domain Name Service (DNS) Mail
Exchange (MX) entries. An attacker can hijack an
expired email domain and take over the account
associated with it. With such unauthorized access to
the developer’s email, the attacker can inject
malicious code into the packages authored or
maintained by the developer.

Discussion

Limitations

Through this study, we increase awareness and
visibility in detecting risky packages to enhance
supply chain security. We proposed and studied
several risk attributes. However, malware detection
in OSS packages, like the nature of most security
problems, is going to be an arms race. That is, for
every new tool or technique from security
researchers, a more sophisticated technique will be
used by attackers to evade detection. As such, there
will always be room for growth and innovation to
identify additional risky attributes. We have designed
OSSCR as a modular security framework, and thus
will be able to extend and incorporate additional
inputs. We believe that our findings will help security

researchers as well as PM admins in accessing
package vulnerability and reducing supply chain
risks.

Related Work

The following section compares prior work in the
area of software supply chain attacks and the study
of package managers to ours.

● Study of package managers. Much of the
research in this area has encompassed measurement
studies that report insights into various kinds of
software supply chain attacks. They do not study
package code or attributes and provide risk insights.
Tschacher’s experimental typo-squatting packages
received 45,000 downloads from over 17,000
domains (including .gov), signifying implications of
such attacks [56]. Zimmermann et al. [60]
interdependent structure of packages and their
trends in the NPM environment and showed similar
results. This work proposes a framework to measure
supply chain risks, and evaluates packages in all
three popular PMs, namely NPM, PyPI, and
RubyGems.

● Software supply chain attacks. The
earliest software supply chain attack is the
Thompson hack in 1983, in which he left a backdoor
in the compiler, and could compromise a program
even if its source code is benign. Following that,
similar attacks [18, 45, 46, 58, 59] are launched,
targeting various supply chain components such as
infrastructure, operating systems, update channels,
compilers and cryptographic algorithms. Recent
years have witnessed an increasing trend of supply
chain attacks targeting package managers [2, 12, 14,
15, 24, 39, 44, 54, 56], which host prebuilt packages
for benefits such as code sharing.

● Detection and mitigation. Bertus [10]
detects crypto-miners. [20, 47] provide a vetting
pipeline and heuristics to detect attacks,
respectively. [48] relies only on dynamic monitoring
and static code analysis of package installation code
for detection of attacks. In this work, we carried out
a large scale measurement study using only static
analysis of package code. In-toto framework [55]
ensures code integrity by signing OSS packages, but
cannot detect typo-squatting and social-engineering
attacks (e.g., taking over package ownership), which
we consider in OSSCR framework.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 116

[29] analyzes OSS source code to identify malicious
Git commits. Whereas, our work analyzes packaged
OSS code available through Package Managers (e.g.,
NPM, PyPi), which were reportedly the targets of
most attacks. Similarly, [7] focus on securing the
build infrastructure, and not on attacks on PMs.

SLSA framework from Google [30] provides a security
framework for developers for protecting against
supply chain attacks. However, it focuses on securing
the build infrastructure and artifact integrity.

OSSPolice [22] identified license violations and
security issues with Open source software used in
mobile apps. Similarly, LibScout [5] studied security
issues with Java third-party libraries. Both the tools
detect libraries and correlate them with existing
vulnerability data to identify vulnerable ones. In
contrast, this study focuses only on the study of
"risky" and potentially malicious attributes of
packages.

REFERENCES

[1] SK-CSIRT Advisory. 2017. Ten Malicious Libraries
Found on PyPI - Python Package Index.
http://www.nbu.gov.sk/ skcsirt-sa-20170909-pypi/

[2] Özkan Mustafa Akkuş. 2019. Defcon: Webmin
1.920 Unauthenticated Remote Command Execution.
https://www. pentest.com.tr/exploits/DEFCON-
Webmin-1920-Unauthenticated-Remote-Command-
Execution.html

[3] Aladdin Almubayed. 2019. Practical Approach to
Automate the Discovery and Eradication of Open-
Source Software Vulnerabilities at Scale.

[4] Python Packaging Authority. 2022. Analyzing PyPI
package downloads.
https://packaging.python.org/en/latest/
guides/analyzing-pypi-package-downloads/

[5] Michael Backes, Sven Bugiel, and Erik Derr. 2016.
Reliable Third-Party Library Detection in Android
and its Security Applications. In Proceedings of the
23rd ACM Conference on Computer and
Communications Security (CCS). ACM, Vienna, Austria.

[6] Adam Baldwin. 2019. The package destroyer-of-
worlds contained malicious code.
https://www.npmjs.com/advisories/ 890

[7] Len Bass, Ralph Holz, Paul Rimba, An Binh Tran,
and Liming Zhu. 2015. Securing a Deployment
Pipeline. In Proceedings of the Third International
Workshop on Release Engineering (RELENG ’15).
IEEE Press, 4âĂŞ7.

[8] William Bengtson. 2020. Python Typosquatting
for Fun not Profit.
https://medium.com/@williambengtson/python
typosquatting-for-fun-not-profit-99869579c35d.

[9] Bertus. 2018. Cryptocurrency Clipboard Hijacker
Discovered in PyPI Repository.
https://medium.com/@bertusk/ cryptocurrency-
clipboard-hijacker-discovered-in-pypi-repository-
b66b8a534a8

[10] Bertus. 2018. Detecting Cyber Attacks in the
Python Package Index (PyPI).
https://medium.com/@bertusk/detecting cyber-
attacks-in-the-python-package-index-pypi-
61ab2b585c67

[11] Germán Méndez Bravo. 2018. ECMAScript
parsing infrastructure for multipurpose analysis.
https://github.com/ Kronuz/esprima-python

[12] Catalin Cimpanu. 2018. 17 Backdoored Docker
Images Removed From Docker Hub.
https://www.bleepingcomputer.
com/news/security/17-backdoored-docker-images-
removed-from-docker-hub/

[13] Catalin Cimpanu. 2018. Backdoored Python
Library Caught Stealing SSH Credentials.
https://www.bleepingcomputer.
com/news/security/backdoored-python-library-
caught-stealing-ssh-credentials/

[14] Catalin Cimpanu. 2018. Hacker backdoors
popular JavaScript library to steal Bitcoin funds.
https://www.zdnet.com/ article/hacker-backdoors-
popular-javascript-library-to-steal-bitcoin-funds/

[15] Catalin Cimpanu. 2018. Malware Found in Arch
Linux AUR Package Repository.
https://www.bleepingcomputer.
com/news/security/malware-found-in-arch-linux-
aur-package-repository/

[16] Jonathan Claudius. 2018. Establish a fixture to
prevent gem typo attacks on Rubygems.org.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 117

https://github.com/rubygems/rubygems.org/issues/
1776.

[17] CNCF. 2022. Catalog of Supply Chain
Compromises. https://github.com/cncf/tag-
security/tree/main/supply-chain
security/compromises.

[18] Jonathan Corbet. 2003. An attempt to backdoor
the kernel. https://lwn.net/Articles/57135/

[19] Tute Costa. 2019. strong_password v0.0.7
rubygem hijacked. https://withatwist.dev/strong-
password-rubygem hijacked.html

[20] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi,
Ryan Elder, Brendan Saltaformaggio, and Wenke Lee.
2020. Towards Measuring Supply Chain Attacks on
Package Managers for Interpreted Languages. arXiv
preprint arXiv:2002.01139 (2020).

[21] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi,
Ryan Elder, Brendan Saltaformaggio, and Wenke Lee.
2021. Towards Measuring Supply Chain Attacks on
Package Managers for Interpreted Languages. (Feb.
2021).

[22] Ruian Duan, Ashish Bijlani, Meng Xu, Taesoo
Kim, and Wenke Lee. 2017. Identifying Open-Source
License Violation and 1-day Security Risk at Large
Scale. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS). ACM,
Dallas, Texas, 2169–2185.

[23] Je" Forcier, Paul Bissex, and Wesley J Chun. 2008.
Python web development with Django. Addison-
Wesley Professional.

[24] JS Foundation and other contributors. 2018.
Postmortem for Malicious Packages Published on July
12th, 2018.
https://eslint.org/blog/2018/07/postmortem-for-
malicious-package-publishes

[25] Python Software Foundation. 2015. PEP 503 –
Simple Repository API.
https://www.python.org/dev/peps/pep-0503/.

[26] Python Software Foundation. 2019. The ast
module helps Python applications to process trees of
the Python abstract syntax grammar.
https://docs.python.org/3/library/ast.html

[27] Harry Garrood. 2019. Malicious code in the
purescript npm installer.
https://harry.garrood.me/blog/malicious-code in-
purescript-npm-installer/

[28] GitHub 2020. GitHub: The world’s leading
development platform. https://github.com

[29] Danielle Gonzalez, Thomas Zimmermann,
Patrice Godefroid, and Max Schaefer. 2021.
Anomalicious: Automated Detection of Anomalous
and Potentially Malicious Commits on GitHub. In
2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in
Practice (ICSE-SEIP). 258–267.
https://doi.org/10.1109/ICSE-SEIP52600.
2021.00035

[30] Google. 2019. Safeguarding artifact integrity
across any software supply chain. https://slsa.dev.

[31] Miguel Grinberg. 2018. Flask web development:
developing web applications with python. " O’Reilly
Media, Inc.".

[32] NPM Inc. 2017. New Package Moniker rules.
https://blog.npmjs.org/post/168978377570/new-
package-moniker-rules.

[33] NPM Inc. 2018. Reported malicious module:
getcookies.
https://blog.npmjs.org/post/173526807575/report
ed-malicious module-getcookies

[34] NPM Inc. 2019. All versions of fast-requests
contain obfuscated malware that uploads Discord
user tokens to a remote server.
https://www.npmjs.com/advisories/1086

[35] NPM Inc. 2019. Plot to steal cryptocurrency
foiled by the npm security team.
https://blog.npmjs.org/post/185397814280/ plot-
to-steal-cryptocurrency-foiled-by-the-npm

[36] NPM Inc. 2019. Tech talk: 1 million packages,
plus learn how npm’s security team saved the day!
https://medium.com/npm-inc/npm-weekly-200-
dont-miss-today-s-tech-talk-1-million-packages-
plus-learn how-npm-s-security-f75f9882aebe

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 118

[37] Snyk Inc. 2017. Malicious Package | Affecting
urllib package. https://snyk.io/vuln/SNYK-PYTHON-
URLLIB-40671

[38] Snyk Inc. 2019. Malicious packages found to be
typo-squatting in Python Package Index.
https://snyk.io/blog/malicious packages-found-to-
be-typo-squatting-in-pypi/.

[39] Jussi Koljonen. 2019. Warning! is rest-client
1.6.13 hijacked? https://github.com/rest-client/rest-
client/issues/713

[40] IQT Labs. 2022. Software Supply Chain
Compromises - A Living Dataset.
https://github.com/IQTLabs/software supply-chain-
compromises

[41] Peter Lejeck. 2019. Consider relaxing
levenshtein distance rules.
https://github.com/rubygems/rubygems.org/issues/
2058.

[42] Google LLC. 2022. Permissions on Android.
https://developer.android.com/guide/topics/permis
sions/overview

[43] Reed Loden. 2018. Malware in ‘active-support‘
gem. https://hackerone.com/reports/392311

[44] Logix. 2018. Malware Found In The Ubuntu Snap
Store.
https://www.linuxuprising.com/2018/05/malware-
found-in ubuntu-snap-store.html

[45] Lily Hay Newman. 2018. Inside the Unnerving
Supply Chain Attack That Corrupted CCleaner.
https://www.wired. com/story/inside-the-
unnerving-supply-chain-attack-that-corrupted-
ccleaner/

[46] Lily Hay Newman. 2019. Hack Brief: How to
Check Your Computer for Asus Update Malware.
https://www.wired. com/story/asus-software-
update-hack/

[47] Marc Ohm, Henrik Plate, Arnold Sykosch, and
Michael Meier. 2020. Backstabber’s knife collection: A
review of open source software supply chain attacks.
In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer,
23–43.

[48] Marc Ohm, Arnold Sykosch, and Michael Meier.
2020. Towards Detection of Software Supply Chain
Attacks by Forensic Artifacts. In Proceedings of the
15th International Conference on Availability,
Reliability and Security (ARES ’20). Association for
Computing Machinery, New York, NY, USA, Article
65, 6 pages.
https://doi.org/10.1145/3407023.3409183

[49] Nikita Popov. 2019. A PHP parser written in
PHP. https://github.com/nikic/PHP-Parser

[50] Huilian Sophie Qiu, Yucen Lily Li, Susmita
Padala, Anita Sarma, and Bogdan Vasilescu. 2019.
The signals that potential contributors look for when
choosing open-source projects. Proceedings of the
ACM on Human-Computer Interaction 3, CSCW
(2019), 1–29.

[51] roscoe. 2018. PyPI Malware.
https://github.com/rsc-dev/pypi_malware

[52] RubyGems 2019. Make 2FA mandatory for
everyone who wants to publish gems to
rubygems.org. https://github.
com/rubygems/rubygems.org/issues/2104

[53] Inc. Synopsys. 2021. Synopsys Study Shows
91% of Commercial Applications Contain Outdated
or Abandoned Open Source Components.
https://www.securitymagazine.com/articles/92368
-synopsys-study-shows-91-of-commercial
applications-contain-outdated-or-abandoned-open-
source-components

[54] Liran Tal. 2019. Malicious remote code
execution backdoor discovered in the popular
bootstrap-sass Ruby gem. https:
//snyk.io/blog/malicious-remote-code-execution-
backdoor-discovered-in-the-popular-bootstrap-sass-
ruby-gem/

[55] Santiago Torres-Arias, Hammad Afzali, Trishank
Karthik Kuppusamy, Reza Curtmola, and Justin
Cappos. 2019. in-toto: Providing farm-to-table
guarantees for bits and bytes. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 1393–1410.
https://www.usenix.org/conference/usenixsecurity
19/presentation/torres arias

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 119

[56] Nikolai Philipp Tschacher. 2016. Typosquatting
in programming language package managers. [57]
whitequark. 2019. Parser is a production-ready Ruby
parser written in pure Ruby.
https://github.com/whitequark/parser

[58] Claud Xiao. 2015. Novel Malware XcodeGhost
Modifies Xcode, Infects Apple iOS Apps and Hits App
Store. https://unit42.paloaltonetworks.com/novel-
malware-xcodeghost-modifies-xcode-infects-apple-
ios-apps and-hits-app-store/

[59] Kim Zetter. 2015. Researchers Solve Juniper
Backdoor Mystery; Signs Point to NSA.
https://www.wired.com/2015/12/ researchers-
solve-the-juniper-mystery-and-they-say-its-partially-
the-nsas-fault/

[60] Markus Zimmermann, Cristian-Alexandru Staicu,
Cam Tenny, and Michael Pradel. 2019. Small World
with High Risks: A Study of Security Threats in the
npm Ecosystem. In Proceedings of the 29th USENIX
Security Symposium (Security). Austin, TX.

