
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 156

Comparative studies of Serverless architecture

 Munkhtsetseg Namsraidorj1, Batsoyombo Khishigbaatar2, Enkhtuul Bukhsuren3, Uunganbayar

Ganbold4, Byambasuren Ivanov5

1,2,3,4,5School of Information Technology and Electronics of National University, Mongolia
---***---

Abstract - In this article, we have studied how the
technology implementing the "Serverless" architecture is used
in modern software development by automating the tasks
required for server development technical operations, making
them independent of developers and how these technologies
can be used in possible situations, the advantages and
disadvantages of cloud technology.
It also shows how this architectural solution supports the
creation of a complex software solution that replaces the
current physical and non-physical servers as well as
comparative study of pricing and scalability of our testing
system using AWS (Amazon Web Services), which provides
33% of the total use of "Serverless" architecture.

Key Words: Web-based software development, Serverless
architecture, lambda function, cloud technology, runtime
scalability

1.INTRODUCTION (Size 11 , cambria font)

Cloud technology refers to a technological solution based on
the cloud environment. A cloud is an abstract space on the
Internet where people can restore their digital resources
such as software and files [1]. Cloud technology enables the
resources in the cloud to be used with the help of network.
Nowadays, majority of the people confuse the cloud with the
internet, when in fact, the cloud is a part of the internet. In
line with the development of technology, most of the
software on the market uses cloud technology to some
extent to suit their needs. As not everyone has the
opportunity to create a physical server and network
environment, choosing services based on cloud technology
on the Internet is becoming a popular choice. On the other
hand, even if it is possible to host an application on a
physical server, it is currently not an optimal solution
because maintaining the integrity of that server requires a
lot of effort and money [2].

Cloud technology brings many benefits to every business
applications in the market. It includes:

 • Cost reduction - Creating a physical server
environment and providing it 24 hours actively is costly. In
addition, buying the necessary equipment and hiring an IT
professional is expensive as well. By switching to cloud
technology, these costs can be saved and it will even become
possible to choose the service that best suits the needs and
pay accordingly.

 • Easy access - Most cloud-based services allow
users full access from anywhere and on any device.

 • Scalability of the working environment - Cloud
technology can increase and decrease resources according to
business requirements. In this way, the user may not worry
about multiple user access to their server under any
circumstances.

 • Data protection - All data located in the cloud is
fully secured by the system providing the service, at a high
level of security.

 • Unlimited storage - Multiple types of data can be
stored without any capacity limitations.

2. “SERVERLESS” ARCHITECTURE

Serverless architecture is widely used in the market due
to its advantages such as easy deployment, scalability, and
cost savings. The possibilities of using "Serverless"
architecture in software include:

- Software for web and smart devices - For example, the
New York Times uses AWS Lambda, a "serverless"
implementation of AWS, as the backend for their mobile app.

- IoT and Real-Time Data Processing - This architecture
can be used for IoT (Internet of Things) and real-time data
processing. For example, the Philips lighting system uses
AWS Lambda to process sensor data for smart light bulbs [3].
Since lighting data needs to be processed in real-time
environment, it is possible to use AWS Lambda without any
server architecture.

- Serverless microservices - Using this architecture, it is
possible to create the infrastructure of an extended working
environment by responding to the requests of many users at
the same time, so it is considered very suitable for executing a
large number of 'microservices'. For example, the Coca-Cola
Company processes its requests in real-time using the AWS
Lambda service [4]. This architecture has a request
management module based on the total number of requests
received from at the moment and automatically increases and
decreases the capacity of the operating environment.

2.1 Serverless architecture design

The most commonly used model for implementing
serverless architecture is Function as a Service - FaaS. It is
one version of the 3 main models mentioned in the previous
section and it is the main model that uses the "Serverless"

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 157

architecture. As shown in Fig 1, developers divide the
program code into specific independent functions and each of
these functions performs the assigned to it with the help of an
HTTP request or an event such as an email. After
development phases, such as development and testing, in the
deployment step features are deployed to the cloud platform
along with the events. When the system is run, the event
activates and the function, the cloud platform places it on an
available server that has the resources required for the
function, and if the server is not found, it creates a new server
to run the function[4].

Serverless architecture offers many opportunities to
users, but it also has several disadvantages. For example, the
cold start latency (when the server is turned on for the first
time), the infrastructure depends on others due to limited
resource availability, debug and control, limited working
environment and security issues need to be calculated in
advance for the development of "Serverless" software.
Developers should plan the software structure well and take
full advantage of "Serverless" architecture to reduce the
above problems as much as possible.

• Cold start latency - The time it takes until any
"Serverless" function is activated for the first time and starts
working is called cold start latency. This will give the user a
feeling that it is running slowly at first, and this affects the
overall performance of the software to some extent. One way
to prevent this is to keep the function "warm" by running it
for a certain period of time.

• Limited resource availability - Platforms that offer a
“serverless” architecture impose certain limits on the amount
of memory and capacity required to run each function. This
poses a problem for computationally intensive software.
Developers should improve the code they write to avoid
using more resources than allocated.

• Infrastructure dependence (Vendor lock-in) - When
choosing one of the companies that offer the implementation
of "Serverless" architecture, such as Amazon, Microsoft and
Google, the software can only work on that platform and
infrastructure, and therefore very complicated to move to
other platforms.

• Debug and control - During the development of
"Serverless" functions, it is quite difficult to debug or develop
step-by-step and to make certain controls. For example, using
traditional debug and monitoring tools is not appropriate.
Developers can only monitor and edit their usage in the cloud
using platform-specific tools.

• Limited Runtime Environments - Most infrastructure
platforms providing Serverless architectures offer a limited
number of running environments. This causes considerable
difficulty in software development because it makes it
impossible for developers to use recently released
programming languages or runtime environments.

3. AWS SERVERLESS INFRASTRUCTURE

To implement "Serverless", some platform or
infrastructure is required. "Serverless" architecture has been
in use for 15 years, but has been intensively used in recent
years. Several major infrastructure solutions implementing
this architecture are operating on the market[5].

"Serverless" requires a large infrastructure organization
and capacity to support its continuous operation, so there is a
lot of opportunity only for large cloud technology providers.
Currently, there are 3 most used main infrastructures in the
market: Amazon's AWS Lambda, Microsoft's Azure Functions
and Google's Cloud Functions. Among these infrastructures,
we chose AWS Lambda as the main technology for our
research work. AWS is the largest cloud technology provider
on the market and has implemented Serverless architecture
most effectively with its Lambda service. Although people
think that the AWS term "Serverless" is directly related to
AWS Lambda, it is actually a part of the "Serverless"
architecture[6]. Developing a complete software requires not
only Lambda, but also many other services needed for
databases and resources. AWS offers specific services for
specific software requirements and we selected and
implemented the technologies shown in Table 1.

Table -1: Components needed to implement “Serverless”
on AWS used for test

Dedicate
for

AWS
services

Explanation

Computing Lambda business logic and
calculations of software

Router API Gateway HTTP requests are
directed, along with their

associated data, to the
Lambda function for

processing.
Database DynamoDB NoSQL database
Storage S3 File storage

3.1 AWS Lambda function working principle

Lambda acts as the most important part of the framework
because it performs the logic and computations of the main
operations of AWS "Serverless". Lambda executes a code
function written by the developer as instructed by creating
the appropriate computing environment for the function
when an event occurs. It is fully capable of handling high
traffic and capacity management automatically.

When an event occurs, such as an HTTP request or a file
backup, the Lambda function is called along with the data
relevant to the event and information about how the result
should be returned. Lambda functions are code containing
specific instructions that can be written in several
programming languages supported on AWS. The following
programming languages are currently supported on Lambda:

Node.js, Python, Java, Go, Ruby, .NET

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 158

In Node.js, event data, context objects and callback functions
are taken as its parameters. A context object contains
information about the Lambda function and its
implementation, such as when it started running and how
long it has been active. As for the third parameter, the
callback function takes the result of the Lambda function as
its argument and if there is an error in that data, it returns the
error information to the source that called the event. Below is
a small piece of Lambda function written in Node.js that
returns a result of text type 'Hello from AWS Lambda'.

Fig -1: Lambda function written in Node.js

As mentioned in the previous section, the event passed to
the function contains the data passed from the "trigger" of
any other AWS service that called the function. For example,
Lambda functions can be called from many places, such as
HTTP requests from API Gateway services, file backups to S3,
or when data is added to a DynamoDB database. Some of the
most common services that invoke AWS Lambda functions
include:

• HTTP requests from API Gateway

• When adding or deleting files in S3

• Modify data in DynamoDB

• AWS SNS (Simple Notification Service) to send any
notification

• Voice command from Amazon Alexa

Lambda has some specific runtime and memory
limitations. For example, by default, the Lambda function's
runtime is set to a maximum of 3, so when the time expires,
the function will "timeout" and cannot continue to run. In
addition, memory is limited to 128MB, which indicates that it
is not intended for large-scale computing.

The biggest advantage of serverless architecture is payment
flexibility. Amazon rates its virtual server EC2 (Elastic
Computing Cloud) by the hour. In terms of time estimation,
Lambda is better than EC2, but Lambda does not charge at all
if the function is not called. Therefore, Lambda is more
beneficial than EC2. A total of 1 million Lambda function calls
cost a total of 20 cents, or 706 MNT, and $0.000016 is paid
per 1GB of memory used.

Table -2: Fees for running functions on x86 architecture
[8]

Feature Cost Number of requests
First 6 billion
requestн
GB/sec

$0.00001666
67

1 GB/per sec

$0.20 per million
request

Next 9 billion
requestн
GB/sec

$0.000015
1 GB/per sec

$0.20 per million
request

Up to 15
billion request

GB/sec

$0.00001333
34

1 GB/per sec

$0.20 per million
request

Table -3: Fees for running functions on ARM architecture

[8]

Feature Cost
Number of
requests

First 6 billion
request
GB/sec

$0.0000133334
1 GB/per sec

$0.20 per million
request

Next 9 billion
request
GB/sec

$0.0000120001
1 GB/per sec

$0.20 per million
request

Up to 15
billion request

GB/sec

$0.0000106667
1 GB/per sec

$0.20 per million
request

It also offers 1 million functions per month and 400,000

GB of storage space for free in a free trial [6]. More detailed
payment information can be found in tables 2 and 3.

3.2 API Gateway

Amazon's API Gateway offers a comprehensive set of
services for developers to easily create and manage the API
they need. APIs act as the bridge between backend software
services and the core business logic and operations needed to
perform them. By using API Gateway, you can create
Websocket APIs, that can create 2-way real-time
communication, and RESTful APIs. Also, the service fully
supports "containerized" and "serverless" architecture.

API Gateway handles all the work, including receiving and
processing hundreds of thousands of API requests
simultaneously. For example, it will be possible to distribute
and manage simultaneous requests, CORS (Cross Origin
Resource Sharing) settings, throttling, and control all at once.

Fees vary depending on the number of API calls and how
much data is transferred.
More detailed payment information can be found in tables 4
and 5.

Table -4:Payment information of HTTP API on Gateway
[8]

Number of requestо by
month

Payment (million)

First 300 million $1.00
+300 million $0.90

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 159

Table- 5: Payment information of REST API on Gateway
Number of request by month Payment (by million)

first 333 million $1.00
next 667 million $0.90
next 19 billion $2.38
Up to 20 billion $1.51

3.3 DynamoDB - NoSQL Database

Using DynamoDB, users can create database tables to
store and retrieve any amount of data, and can handle large
volumes of access. It is completely possible to adjust the
capacity of the "tables" you have created without losing any
time. With the help of AWS Management Console
(console.aws.amazon.com), it is possible to monitor the use
and capacity of databases, to make backups of tables at any
time, and to restore the history of operations performed on
table data for a period of 35 days. . DynamoDB offers built-in
security protection, batch process or periodic data backup,
automatic multi-region storage, in-memory caching and data
I/O.

4.IMPLEMENTATION

In this section, we will show how to develops a small-scale
or low-performance machine evaluation web software is and
implement it in a completely "Serverless" environment and
the performance and cost of it are compared. This system
processes 2 main requests: processing machine data and
calculating machine evaluation.

Fig-2: Sequence diaugram for maintaining car information

Fig-3: Sequence diagram for calculating car information

When a user sends a request, the API Gateway receives
the request and calls the Lambda function associated with
that API. A Lambda function can access a database or file and
perform the necessary operations. The data is then processed

and sent back to the API Gateway, which returns the
processed data to the user. We show the technologies of the
car cost calculation system in Fig 4.

Fig-4: Technology options for the car cost computing system

The following steps were taken to make this system. It
includes:

1. Designing software
2. Organize the DynamoDB database
4. Create S3 file storage, create IAM

IAM, or Identity Access Management, defines access rights
for all services on AWS. For example, an IAM user has certain
rights and with the help of those rights, it is possible to access
services other than services like Lambda.

5. Create API Gateway and Lambda functions

When creating a function, the location of the function is
very important. For example, in the case of accessing a
function from the geographic location of Mongolia, the speed
of access can be increased if the location of the function is as
close as possible. The function will be placed in the location of
Hong Kong (ap-east-1), because Hong Kong is considered to
have the fastest network in Mongolia's Internet gateway.
Lambda functions can be created using AWS' own web
console (https://ap-east1.console.aws.amazon.com/lambda/
home). The function will be created by filling in information
such as the name of the function, which programming
language the code will be developed in, and which server
architecture it will work on. This feature will be used for the
latest 'stable' version of Node.JS and for running on x86_64 or
Intel CPUs.

As for the machine evaluation API, the main purpose of
the function is to calculate using a machine learning model,
and it is necessary to install large-scale Python libraries such
as sckit-learn and numpy to perform large-scale calculations,
so for the Lambda function, it is specified that the maximum
size of the function can be 10MB, which means it cannot be
uploaded directly with these libraries. Therefore, the Lambda
function is created and deployed in a Docker container using
the 'container image' option. In order to connect the 'docker
container' to Lambda, it is necessary to upload it to AWS's
ECR (Elastic Container Registry), a service that stores
containerized images[7]. The following steps were taken.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 160

Step 1: Set ECR
Step 2: Create a Docker container
Step 3: Deploy the Docker container
Step 4: Connect the container image created in ECR to the

Lambda function

Returning to the Lambda creation section and selecting
the container image in the new function section, the
container placed on the ECR can be chosen. With this, the 2
main APIs to be used are ready. These APIs can be used by
sending requests using any 'frontend' technology. The code
snippet below shows how this function is called for a website
developed in Next JS.

Fig-5: Call APIs created using Lambda and API Gateway

4.1 System cost comparison

This section compares how serverless architectures cost
developers to develop using their own physical and non-
physical servers. As of March 2023, the API Gateway received
a total of 3,092 requests and 3,092 Lambda function calls
were made, with a total of 263,472 seconds of activity. As for
the DynamoDB database, a total of 15,090 readings were
performed. Let's look at this in a table for the total amount of
charges related to the access made in 1 month:

Services Usage Cost

Lambda
Active count 3.092 $5.12
Active time: 263.472
секунд

DynamoD
B

Total reading number:
15.090

$0.00

Total storage: 0.01GB
API
Gateway

Request number: 3.092 $0.01

S3
Total number of file
reads:569

$0.00

Table-6: Billing data for “Serverless” implementations on
AWS

Services Usage Cost

These prices are included in the 'free tier' set by AWS
because the price is considered to be 0.0$ if it does not exceed
a certain usage base, so it is quite possible to pay for medium
and small software.

If always active and working server is needed to be
developed, it can be hosted using the EC2 virtual server
service on AWS. The method accepts any number of accesses
and the monthly payment is always fixed. For example,
receiving 1 request per second and receiving 1000 requests
will be charged exactly the same. However, since the server
will have limited resources, it will be necessary to calculate
the capacity resources when receiving 1000 requests. The
server receives less traffic at night most of the time, but has
the disadvantage of paying a certain amount for it.

EC2
сервер

CPU RAM
Cost a
hour

Cost per
month

t3.micro 2 1GB $0.0104 $8.35

t3.small 2 2GB $0.0208 $14.976

t3.medium 2 4GB $0.0416 $29.952

t3.large 2 8GB $0.0832 $59.904

t3.xlarge 4 16GB $0.1664 $119.808

t3.2xlarge 8 32GB $0.3328 $239.6.16

Table-7: Common server types on EC2 [8]

As shown in Table 7, if a serverless implementation is
implemented on a server, it will be necessary to organize
retrieving of the main access and main database servers. In
creating a virtual server using EC2 service, the cheapest
option is a machine with 1 CPU and 1GB of RAM, but it is
impossible to make many accesses at the same time to RAM
and CPU for calculations on the machine learning model. It is
because considering that 1 calculation takes about 10
seconds, 1 CPU itself is a heavy load, so processing accesses at
the same time will not be possible. Therefore, it is necessary
to have at least 2 CPUs with 2GB of RAM. There is a server
called t3.small that meets this requirement and the total
payment will be $14.976 per month or $0.0201 per hour. In
addition to the server, if we assume that the database server
will also be included, it will be necessary to pay a regular
monthly fee of $29,952. Payment details can be found in the
table above.

4.2 Comparation of scalability

The most important and major advantage of serverless
software is the ability to automatically scale up to handle
large amounts of traffic without developer control. For
example, the function can be run any number of times
depending on how many requests there are. Then, starting
from 1 user request, 1000 and 10000 user requests will be

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 161

processed in the same way. So when implementing these on
AWS Lambda, Lambda is typically conFigd to receive a total of
1000 concurrent requests. This means that the function will
run simultaneously in 1000 separate 'execution
environments'. If you want to increase the limit, you can
make an additional request to AWS. AWS Lambda runs the
function in an independent standalone environment. Before
starting to run the function, it is necessary to load the
function into the operating environment and then the
function is called and executed. As shown in the diagram
below, one row represents the runtime environment itself,
while the green square represents the loading time of the
function and the orange represents the execution time when
it was called.

Fig-5: Call the Lambda function

After a function is executed in a runtime environment, the
same function that is called by another request in that
runtime environment can be called directly and used without
reloading.

Fig-6: Lambda function re-calling

Fig 5 shows that Lambda does not need to reload a
function that is called after a function is loaded in a single
runtime. Currently we are only considering lambda working
with one environment. In a real environment Lambda can run
1000 environments at the same time as its typical settings as
mentioned in the previous section[9]. So, when there is more
than 1 environment, Lambda follows 2 basic rules for
handling multiple requests. It includes:

 1. If there is an environment with already loaded in
function, call the function in that environment to run it

 2. If such an environment does not exist, create a new
working environment

 Fig-7: Lambda function invocation in a multi-threaded
environment

As you can see in Fig 7, each row represents an
environment and the table shows how the environment
handles a total of 8 requests.

Req
no.

Procedure of
lambda

Reason

1
Create A
working

envirionment

Initiating a new
environment with the first
request due to the absence

of a pre-existing one

2
Create B
working

envirionment

Establishing a new
environment due to the
current unavailability of

environment A.

3
Create C
working

envirionment

Establishing a new
environment due to the
current unavailability of

environment A and B.

4
Create D
working

envirionment

Establishing a new
environment due to the
current unavailability of
environment A,B and C.

5
Environment A

is currently
used

Environment A is being
reused because function 1

that was running in
environment A has ended

6
Environment B

is currently
used

Environment B is being
reused because function 2

that was running in
environment B has ended

7
Environment C

is currently
used

Environment C is being
reused because function 3

that was running in
environment C has ended

8
Environment D

is currently
used

Environment D is being
reused because function 4

that was running in
environment D has ended

Table-8: Diagram of activity of functions

However, in the case of development using physical
servers and virtual machines, the developer needs to
organize multi-level configuration and proper use of
resources to ensure continuous availability. For example, one
software server will be divided into many parts, all will
receive a request through one main input and run it in turn
with the help of an algorithm to find a more specific order for
the servers that have divided the request into several parts.

5. CONCLUSIONS

 In this article, we carried out a theoretical study of
"Serverless" architecture and then developing "Serverless" in
a practical environment using the AWS cloud platform
according to the research, studying the AWS environment,
getting to know the application services and performing
practical implementations, experimenting in real life
conditions and learning the use, advantages and
disadvantages of "Serverless" architecture. watched. From
this it shows that Serverless architecture fully enables
developers to develop scalable software as a working
environment in a short period of time with fewer human

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 12 | Dec 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 162

resources and lower costs. According to the results of the
study, the significant cost of implementing Serverless can
also be reduced by the development of major software
available in the current market. Not only that, it allows
developers to focus only on the quality of their own code and
leave the infrastructure and operating environment issues to
the platform, creating a more productive and high-quality
product. It is concluded that the use of "Serverless"
architecture in software production will greatly contribute
to the speed and quality of development, as infrastructure
problems will be solved by third parties.

REFERENCES

[1] What is Cloud Technology, and How Does It Work?,

https://dynamixsolutions.com/what-is-cloud-
technology-and-how-does-it-work/

[2] 7 Most Popular Applications of Cloud Computing : All
You Need to Know,
https://www.simplilearn.com/applications-of-cloud-
computing-article

[3] On the use of IoT and Big Data Technologies for Real-
time Monitoring and Data Processing, Y. Nait Maleka,b,
A. Kharbouchb,c, H. El Khoukhib,c, M. Bakhouyaa,*, V. De
Floriod,c, D.

[4] Vaishnavi Kulkarni, 2022, A Research Paper on
Serverless Computing, international journal of
engineering research & technology (ijert) Volume 11,
Issue 09 (September 2022),

[5] Jiang, Lizheng & Pei, Yunman & Zhao, Jiantao. (2020).
Overview Of Serverless Architecture Research. Journal
of Physics: Conference Series. 1453. 012119.
10.1088/1742-6596/1453/1/012119.

[6] Ortiz, Ariel. (2019). Architecting Serverless
Microservices on the Cloud with AWS. SIGCSE '19:
Proceedings of the 50th ACM Technical Symposium on
Computer Science Education. 1240-1240.
10.1145/3287324.3287533.

[7] Slobodan Stojanovic Aleksandar Simovic (2019)
Serverless Application with Node.JS

[8] AWS Lambda Pricing
https://aws.amazon.com/lambda/pricing/

[9] Api Gateway Guide
https://docs.aws.amazon.com/apigateway/latest/devel
operguide/welcome.html

https://www.simplilearn.com/applications-of-cloud-computing-article
https://www.simplilearn.com/applications-of-cloud-computing-article
https://aws.amazon.com/lambda/pricing/

