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ABSTRACT 

With so much going on in the field of Deep Learning, categorization of brain tumours remains a source of worry. Brain 
tumour segmentation and classification using MRI images has piqued the interest of many researchers in the field of 
medical imaging. The focus remains on the development of automated computer-aided systems for early prediction and 
diagnosis. MRI of brain tumours not only changes in form but also provides less contrasting features at times. We 
introduce a FastAI-based Transfer Learning tumour classification method in which a pre-trained model with segmented 
characteristics identifies tumour based on its learning. The proposed Deep Learning model extracts characteristics from 
MRI brain images using ResNet152 as the basic model. Certain adjustments in the last three layers of ResNet152 result in 
97% accuracy in Dataset-253, and 96% accuracy in Dataset-205. Resnet50, VGG16, ResNet34, and Basic CNN models are 
also tested. The model enhanced from ResNet152 produced better results. The observations imply that when the Dataset 
is restricted, Transfer Learning is successful. The produced model is useful and may be used in computer-aided brain MR 
imaging. Classification of tumours 

INTRODUCTION 

1.1 DETECTION AND CLASSIFICATION OF BRAIN AND 
TUMOR 

It has been demonstrated that combining image 
detection and classification based on statistical 
classification with a geometric prior considerably 
improves robustness and repeatability. The use of a 
probabilistic geometric model of the desired structures 
and image registration allows to initialise probability 
density functions as well as define spatial limits. A large 
spatial prior, on the other hand, prevents the 
identification and categorization of structures that are 
not included in the model. In practise, we see either the 
appearance of new objects that cannot be represented 
with a spatial prior or regional intensity changes of 
existing structures that are not explained by the model. 
The identification and categorization of brain tissue and 
tumours using three-dimensional magnetic resonance 
imaging is our primary application (MRI). Our objective 
is to detect and classify healthy tissue with high 
accuracy, as well as to precisely delineate tumour 
borders. We offer an extension to an existing expectation 
maximisation (EM) detection and classification system 
that updates a probabilistic brain atlas with information 
on tumour location derived from post- and pre-contrast 
MRI subtraction for each individual patient. The 
innovative approach treats several sorts of disease, 
including space-occupying mass tumours and in-trade 
modifications such as enema. Preliminary findings from 
five examples showing tumour types with highly 
different event characteristics suggest the potential of 
the novel approach for clinical regular usage in 
neurosurgery, radiation oncology, and radiology for 
planning and monitoring. A geometric prior may be 

employed by atlas-based detection and classification, 
which considers detection and classification to be a 
registration issue in which a fully labelled template MR 
volume is registered to an unknown dataset. High-
dimensional warping produces one-to-one 
correspondence between the template and subject 
pictures, resulting in a novel, automated detection and 
classification method. These approaches need elastic 
image registration to account for geometrical distortions 
caused by pathogenic processes. Such registration 
remains difficult and has not yet been addressed in the 
general situation. The registration of elastic atlases with 
statistical categorization. A brain atlas' elastic 
registration assisted in masking the brain from 
surrounding structures. A further phase employs 
"distance from brain border" as an extra feature to 
improve cluster separation in multidimensional feature 
space. The supervised selection of training zones is still 
required for the initialization of probability density 
functions. The basic idea of the novel technique given in 
this research is to complement statistical classification 
with spatial information to account for the overlap of 
distributions in intensity feature space. 

Automatic identification and categorization of normal 
brain MR images utilising statistical classification, using 
an atlas prior for initialization and geometric 
restrictions. A new expansion detects brain lesions as 
outliers and has been used successfully to detect 
multiple sclerosis lesions. However, because of 
overlapping intensities with normal tissue and/or large 
size, brain tumours cannot be simply modelled as 
intensity outliers. We offer a fully automated technique 
for segmenting MR images with tumour and edoema, 
both of which are mass-effect infiltrating entities. Tumor 
and enema classifications have also been included to the 
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detection and categorization. The geographic atlas 
utilised as a prior in the classification is changed to 
incorporate tumour and edoema prior probability. To 
make the problem tractable, we focus on a subset of 
tumours, as previous researchers have done. Our 
technique differentiates brain tissue into white matter, 
grey matter, tumour, and edoema. Because the approach 
is totally automated, its dependability is excellent. We 
used our tumour detection and classification system to 
five distinct datasets, each of which had a diverse variety 
of tumour kinds and sizes. Figure 5 depicts the outcomes 
for two datasets. Because tumours have a high spatial 
prior, numerous tiny structures, primarily blood arteries, 
are diagnosed as tumours because they increase with 
contrast. To obtain a final detection and classification for 
the tumour, post processing employing level set 
evolution is required [shows the final spatial priors used 
for classification of the dataset with the extra tumour 
and edoema channels. We created a model-based 
detection and classification approach for segmenting 
tumours infiltrating edoema in head MR imaging 
datasets. This is accomplished by supplementing the 
spatial prior of a statistical normal human brain atlas 
with individual data from the patient's dataset. Thus, for 
both geometry of newly emerging objects and 
probability density functions for healthy tissue and 
disease, we mix the statistical geometric prior with 
image-specific information. Applications to five cancer 
patients with varying tumour appearance indicated that 
the process can manage a wide range of tumour size, 
internal texture, and location. The procedure produces 
high-quality images of healthy tissue architecture and 
pathology, which is required for surgical planning or 
image-guided surgery. As a result, it goes beyond earlier 
work that focuses just on tumour identification and 
categorization. We are now verifying the detection and 
classification system's validity in a validation research 
that compares the generated tumour shapes to repeated 
manual expert detection and classifications, both within 
and across many experts. A early machine versus human 
ratter evaluation revealed an average overlap ratio of 
more than 90% and an average MAD (mean average 
surface distance) of 0:8mm, both of which are less than 
the initial voxel resolution. In the future, we will 
investigate the issue of normal anatomy distortion in the 
presence of space-occupying tumours. The statistical 
atlas' soft bounds might accommodate spatial 
displacement throughout the range of tumours 
investigated thus far. However, in order to enhance the 
match between atlas and patient photos, we will create a 
technique for high-dimensional warping of multichannel 
probability data. 

 

 

1,2 TUMOUR CLASS  

We add a new class for tumour tissue to the three tissue 
classes assumed in EMS detection and classification 
(white matter, grey matter, and csf). Whereas the atlas 
defines the (spatial) prior probability for normal tissue 
classes, the spatial tumour prior is generated using the 
T1 pre- and post-contrast difference picture. We assume 
that the bias field (multiplicative) is the same in both the 
pre- and post-contrast photos. Because the bias fields 
(now additive) in the two pictures cancel out, using the 
log transform of the T1 pre- and post-contrast image 
intensities yields a bias-free difference image. Image 
Histogram of Difference: The difference image histogram 
reveals a peak around zero, due to noise and mild 
misregistration, and a positive response, corresponding 
to contrast enhancement. We want to find a weighting 
function, or soft threshold, that correlates to our 
judgement that a voxel is contrast enhanced. We fit a 
mixed model on the histogram. The normal difference 
image noise is modelled using two Gaussian 
distributions, while the enhanced tissue is modelled 
using a gamma distribution. The means of the Gaussian 
distributions and the gamma distribution's location 
parameter are bound to be identical. Priority Tumour 
Class Spatial: The gamma distribution's posterior 
probability representing contrast enhancements was 
utilised to translate the difference image to a spatial 
prior probability image for tumour. This option of spatial 
prior for tumour includes tissue that increases with 
contrast in the tumour class, preventing enhancing tissue 
from cluttering the normal tissue classes. We also keep 
the tumour class's base probability low over the whole 
brain area. In several of the cases we've looked at, the 
tumour voxel intensities in the T1 pre contrast and T2 
channels are quite effectively separated from normal 
tissue. Even though the contrast agent only provides 
partial enhancement in the post-contrast picture, the 
tumour voxels in the other two images frequently have 
identical intensity values (see Fig. 2 left). By including a 
low base probability for the tumour class, non-enhancing 
tour can still be categorised as tumour as long as it is 
similar to enhancing tumour in the T1 and T2 channels. 
The normal tissue priors are correctly scaled to account 
for the additional tumour prior, such that the 
probabilities still add up to 1. B. Classification of Edema 
We also create a new class for edoema. There is no 
spatial precondition for edoema, unlike tumour 
formations. As a result, the probability density function 
for edoema cannot be automatically initialised. This is 
how we address the problem: To begin, we discovered 
that edoema, when present, is most visible in white 
matter. In addition, supervised classification 
experiments revealed that the edoema probability 
density seems to be around between and white matter in 
the T1/T2 intensity space. We develop an edoema class 
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prior that is a subset of the white matter spatial prior. 
The other atlas priors, like the tumour prior, are scaled 
to account for the edoema prior. The edoema and white 
matter classes occupy the same geographical area, but 
are represented by a bimodal probability density 
consisting of white matter and edoema. Using the 
updated atlas prior, we derive the estimates for grey 
matter, white matter, tumour, and edoema in a subject 
image during class parameter initialization. As a result, 
white matter and edoema would have identical 
probability density functions. Using existing knowledge 
about edoema qualities, the bimodal distribution is then 
started by altering the mean value for edoema to be 
between white matter and. 

1.4 GREY LEVEL CO-OCCURRENCE MATRIX 

A co-occurrence occurrence matrix, often known as a co, 
is defined over an image to represent the distribution of 
co-occurring values at a particular offset. Or Distance 
and angular spatial representation Represents the 
distance and angular spatial connection over an image 
sub-area of a given region of a specific size. 

The GLCM is made up of grayscale images. A grayscale 
picture is used to produce the GLCM. The GLCM 
determines how frequently a pixel appears. The GLCM 
determines how frequently a pixel with gray-level 
(grayscale intensity or Tone) value I occurs either 
horizontally, vertically, or diagonally to neighbouring 
pixels with the value j. 

1.4 ANALYTIC MODELING 

Graphical modeming is a strong paradigm for 
multivariate probability distribution modelling and 
inference. It has been shown to be beneficial in a variety 
of stochastic modeming applications, including coding 
theory, computer vision, knowledge representation, 
Bayesian statistics, and natural-language processing. 
This factorization turns out to be closely related to 
certain conditional independence connections among 
variables, both of which may be simply described by a 
graph. Indeed, the relationship between factorization, 
conditional independence, and graph structure accounts 
for much of the graphical modeming framework's power: 
the conditional independence viewpoint is most useful 
for designing models, while the factorization viewpoint 
is most useful for designing inference algorithms. The 
rest of this part introduces graphical models from both 
the factorization and conditional independence 
perspectives, with a focus on models built on undirected 
graphs. 

All of the approaches presented in this study presume 
that the model's structure has been determined in 
advance. It is natural to wonder if we can also learn the 

model's structure. This is a challenging challenge in 
graphical models in general. Indeed, Bradley and 
Guestrin highlight an intriguing difficulty that is unique 
to conditional models. Maximum likelihood structure 
learning for a generative model p(x) may be achieved 
effectively using the well-known Chow-Liu method if the 
model is confined to being tree-structured. When 
estimating the structure of p(y|x) in the conditional 
scenario, the similar approach is more challenging since 
it entails calculating marginal distributions of the type 
p(yu,yv|x), that is, we must estimate the effects of the 
complete input vector on each pair of output variables. 
Estimating these distributions is challenging without 
first knowing the structure of the model. Classification 
methods are well-established and effective approaches 
for predicting discrete events. However, in the 
applications considered in this study, we would want to 
predict more complicated objects, such as natural 
language phrase parse trees, alignments between 
sentences in various languages, and route planning in 
mobile robotics. Each of these complicated objects has 
internal structure, such as a parse's tree structure, and 
we should be able to exploit this structure to more 
efficiently describe our predictor. This is referred to as 
structured prediction. The topic of structured prediction 
generalises the classification issue to the challenge of 
predicting structured objects in the same way as the 
GREY LEVEL CO-OCCURRENCE MATRIX (GLCM) 
likelihood generalises logistic regression to predict 
arbitrary structures. Structured prediction approaches 
are basically a hybrid of classification and graphical 
modelling, combining the capacity to describe 
multivariate data compactly with the ability to predict 
using huge amounts of input characteristics. GREY 
LEVEL CO-OCCURRENCE MATRIXES (GLCMs) are one 
approach for doing this, as they generalise logistic 
regression, but other traditional classification methods 
can also be adapted to the structured prediction 
scenario. A recent collection of research articles provide 
detailed information on structured prediction 
algorithms. This section provides an overview and links 
to some of these approaches. 

1.5 TIMES FASTER AI 

You can use fatsia without installing it if you use Google 
Colab. In fact, every page of this manual is also accessible 
as an interactive notebook; simply click "Open in colab" 
at the top of any page to access it (be careful to set the 
Colab runtime to "GPU" to make it run quickly!) For 
further details, see the fast.ai guide on Using Colab. As 
long as you're running Linux or Windows, you may 
install fastai on your own PCs using conda (which is 
strongly recommended) (NB: Mac is not supported). 
Important notes for Windows can be found under 
"Running on Windows." fastai is a deep learning library 
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that gives practitioners with high-level components that 
can provide state-of-the-art results in conventional deep 
learning domains quickly and easily, as well as 
academics with low-level components that can be 
combined and matched to construct novel techniques. It 
seeks to accomplish both without sacrificing usability, 
flexibility, or performance. This is made feasible by a 
deliberately built design that describes several deep 
learning and data processing techniques' shared 
underlying patterns in terms of disconnected 
abstractions. By using the dynamic of the underlying 
Python language and the flexibility of the Porch library, 
these abstractions may be articulated elegantly and 
unambiguously. Fastai is based around two key design 
goals: being approachable and productive quickly, as 
well as being extensively hackable and flexible. It is built 
on a foundation of lower-level APIs that provide reusable 
building components. As a result, a user who wants to 
rewrite a portion of the high-level API or add specific 
behaviour to meet their needs does not need to learn 
how to utilise the lowest level. It is very simple to 
transition from plain Porch, Ignite, or any other Porch-
based library, or to use fastai in conjunction with other 
libraries. In general, you will be able to use all of your 
existing data processing code, but you will be able to 
reduce the amount of code required for training and take 
advantage of modern best practises more easily. Python 
multiprocessing problems on Jupiter and Windows. 

LITERATURE SURVEY 

A system for estimation of brain tumor volume via mr 
imaging and fuzzy connectedness. The proposal was 
made by Liu J, Udupa JK, Odhner D, Hackney D, and 
Moonis G. This work describes a method for the exact, 
accurate, and efficient measurement of brain tumours 
(glioblastomas) using MRI that may be employed in the 
clinic on a regular basis. Tumor volume is thought to be 
beneficial in monitoring disease progression and 
response to therapy, as well as determining the need for 
treatment plan adjustments. To acquire information on 
the tumour and its surroundings, we employ a variety of 
MRI protocols, including FLAIR, T1, and T1 with Gd 
enhancement. Enhancing tissue, no enhancing tumour, 
edoema, and combinations of edoema and tumour are 
examples of these. In this study, we adopted the fuzzy 
connectedness framework for tumour identification and 
classification, and the system required minimal user 
intervention in everyday clinical use. Using 10 patient 
studies, the system was assessed for precision, accuracy, 
and efficiency. Most MRI techniques produce images 
with a bimodal histogram, with the first mode 
representing the background and the second 
representing the foreground item that we are interested 
in—in our case, the patient's head.[1] 

A nonparametric method for automatic intensity non-
uniformity correction in mri data Evans AC, Sled JG, and 
Zijdenbos AP have suggested A unique method for 
compensating for intensity non-uniformity in magnetic 
resonance (MR) data that achieves good performance 
without having a model of the tissue classes present is 
provided. The approach has the benefit of being able to 
be used early in an automated data analysis, before a 
tissue model is ready. Poor radio frequency (RF) coil 
uniformity, gradient-driven eddy currents, and patient 
anatomy both inside and outside the field of view are 
commonly blamed for this intensity non-uniformity. 
Although these 10%-20% intensity differences have 
minimal effect on visual diagnosis, automated detection 
and classification approaches that presume intensity 
homogeneity within each class might suffer dramatically. 
For such automatic processing systems to be accurate in 
labelling each voxel with a tissue type, a robust, 
automatic, and low-cost mechanism of compensating for 
this artefact is required. Furthermore, adjusting for non-
uniform illumination may help quantitative measures 
utilised in tissue metabolite research.[2] 

Existing methods and their validation in mri intensity 
non-uniformity correction et al[3]Belaroussi B, Milles J, 
Carme S, Zhu YM, Benoit-Cattin H suggested in this study 
We present an overview of available approaches in this 
work. We begin by categorising them based on where 
they are in the acquisition/processing cycle. Sorting is 
then improved depending on the assumptions upon 
which those approaches are founded. Following that, we 
discuss the validation methods that were utilised to 
evaluate these various correction systems both 
qualitatively and quantitatively. Finally, the accessibility 
and utility of the approaches offered are explored. 
Magnetic resonance imaging (MRI) is a powerful non-
invasive imaging method used to research the 
architecture and characteristics of soft tissues. It is 
distinguished by the high overall quality of the datasets 
obtained. Such information is often in the form of a 
collection of two-dimensional (2-D) MR pictures or a 
whole three-dimensional (3-D) isotropic volume. 
Although MR data may be used for efficient qualitative or 
user-driven quantitative analysis, the current demand is 
for non-supervised, automated quantitative analysis 
tools. In this study, we looked at intensity non-
uniformity correction as a worldwide challenge 
comprising numerous communities with varying goals. 
We offered an overview of all known approaches, as well 
as an innovative typology to group them based on how 
correction is accomplished and the assumptions made. 

The impact of intensity standardization on 
inhomogeneity correction processing of inmarriage et in 
this work .al[4] Madabhushi A, Udupa JK suggested In 
terms of inhomogeneity correction, there is no 
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statistically significant difference in picture quality 
between the results of standardisation followed by 
correction and those of correction followed by 
standardisation. The corrective process is shown to skew 
the standardising effect. We illustrate this bias both 
qualitatively and statistically by employing two 
alternative inhomogeneity correcting approaches. We 
further demonstrate that this bias in standardisation is 
unaffected by the specific inhomogeneity correction 
approach adopted. The effect of this bias owing to 
correction was also apparent in magnetization transfer 
ratio (MTR) pictures, which have the standardless 
quality by nature. Standardization, on the other hand, 
appears to have little effect on the rectification 
operation. It has also been discovered that a lengthier 
series of repeated correction and standardisation 
procedures does not enhance image quality much. These 
findings were confirmed for clinical and phantom data 
sets, different MRI procedures, different degrees of 
artificial nonstandardless, different models, and varied 
levels of artificial in homogeneity.[4] 

Prastawa M, Bullitt E, Ho S, Gerig G suggested in this 
paper et al[5]. The identification of edoema occurs 
concurrently with the detection and categorization of 
tumours, as information of the degree of edoema is 
critical for diagnosis, planning, and therapy. Many 
previous tumour identification and classification 
approaches rely on the intensity enhancement caused by 
the gadolinium contrast agent in the T1-weighted image, 
however the method provided here does not. The T2 MR 
image channel is the sole needed input for the detection 
and classification technique, although it can employ any 
additional non-enhanced image channels for improved 
tissue detection and classification. There are three steps 
to the detection and classification framework. First, we 
use a registered brain atlas as a model for healthy brains 
to discover abnormal areas. The robust estimations of 
the position and dispersion of the normal brain tissue 
intensity clusters are then used to identify the intensity 
attributes of the various tissue types. The second stage 
involves determining if edoema arises with tumour in 
the aberrant locations based on the T2 imaging intensity. 
Finally, we apply geometric and geographical limitations 
to the tumour and edoema sites that have been 
identified. The detection and classification approach was 
tested on three real-world datasets with varying tumour 
forms, locations, sizes, picture intensities, and 
enhancement. 

EXISTING SYSTEM 

The thorough assessment of existing tumour 
enhancement, detection, and classification approaches in 
the present system. Each method is categorised, 
analysed, and contrasted with others. The sensitivity and 

specificity of the methodologies are described and 
compared when applicable to test the accuracy of the 
tumour enhancement, detection, and classification 
strategies. Finally, this study gives a taxonomy for the 
existing methodologies and emphasises the best 
improvement, detection, and classification methods. It 
only divided tumour detection and classification 
approaches into two categories: mass detection with a 
single view and mass detection with multiple views. 
Model-based approaches, region-based methods, 
contour-based methods, and clustering methods are the 
four types of mass detection employing single view 
detection and classification. 

PROPOSED SYSTEM 

The notion of transfer learning is used in the proposed 
work by employing a pre-trained CNN with Resnet152. 
Furthermore, the Resnet152 is being improved for 
tumour classification. On Dataset-253, the suggested 
approach is verified for classifying tumorous and non-
tumorous data. Similarly, Dataset-205 validates the 
categorization of High-Grade Glioma (HGG) and Low-
Grade Glioma (LGG). 

PREPROCESSING FOR MRI: 

Typically, pre-processing photos include eliminating low 
frequency, background noise, adjusting the intensity of 
individual practical images, removing reflections, and 
masking portions of images. Prior to computer 
processing, image processing is the practise of improving 
data images. The appropriate fractal and intensity 
characteristics are retrieved after conventional pre-
processing processes for brain MRI. Following that, 
several feature set combinations are used for tumour 
detection, classification, and classification. The feature 
values are then immediately input into the AdaBoost 
classifier for tumour and non-tumor classification. For 
supervised classifier training, tumour areas are manually 
labelled. The learned classifiers are then utilised to 
detect tumour or nontumor segments in previously 
unseen brain MRI. The Kaggle data collection Dataset-
253[28] contains 98 non-tumorous photos and 155 
tumorous data. Dataset-205, obtained from[11], 
comprises 172 High Grade Glioma (HGG) pictures and 56 
Low Grade Glioma (LGG) images (LGG). Data 
Augmentation is used to increase the amount of data. 15 
o Angle of rotation for each horizontal and vertical flip. 
The figure 4 and Figure Dataset-253 and Dataset-205 
enhanced photos are shown in Figure 5. 

CREATION OF A FASTAI MODEL 

The ResNet152 [13, 24] architecture is used as the 
foundation model for classifying tumour and non-tumor 
brain pictures. ResNet152 architecture is a pre-trained 
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model on ImageNet that comes with the FastAI package. 
A callback fns method is used to assess model 
improvement using graphs. Accuracy is used as an 
output measure in function Metrics. Binary-cross 
entropy is used to train and verify the model. This is 
done for binary categorization of two classes. The layout 
model overview of ResNet152 following model training 
of the basic Convolutional architecture is shown in Fig. 6. 
The model represents the entire learned parameters 
using Adam Optimizer. 

DETERMINING THE BEST LEARNING RATE 

With the model's basic training, the best learning rate is 
discovered using the built-in learner object capabilities. 
It aids in determining learning rate ranges. This is done 
to train models. Fitting the model for a few epochs yields 

the best learning rate. When the loss begins to degrade, 
the learning rate is saved. The function learner.lr find() is 
used to find the learning rates, and the function 
learner.recorder.plot() is used to create the learning rate 
curve. The learning rate with the sharpest slope and the 
smallest loss curve is selected. Figure 7 depicts learning 
rate curves for brain MRI datasets 253 and 205, 
respectively. In our scenario, the starting learning rate is 
set at e-02. The learning rate gradually increases as the 
validation loss decreases. Model training is completed 
for a few epochs within one cycle. In our situation, we 
performed this for ten epochs. Following training, the 
learning rate is modified once again for the following 
learning cycle. 

 

 

 

 

 

 

 

 

 

 

 

 
Training and Validation Loss for each epoch before unfreeze for the Brain Datasets.

FINE-TUNE AND UNFREEZING FOR MODEL 
ENHANCEMENT 

Finally, the model is re-trained in this stage. After 
unfreezing with the learner.unfreeze () function, the 
learner curve is shown. This assists in determining the 
new optimum learning rate. The figure below shows 
Dataset-253 and Dataset-205 of brain pictures being re-
trained with new optimum learning rates. For both 
datasets, the learning rates are set to 1e-04 and 1e-05, 
respectively. The datasets are verified to 97% and 96% 
after re-training the model accuracy for both brain MR 
scans. The model does not cause over-fitting since the 
validation loss is less than the training loss at each epoch 
cycle. The validation accuracy and losses plot graph for 
Dataset-253 and Dataset-205 are depicted in Fig. 10. In 
addition, if the model is under-fitting, it may be 

improved by increasing the epoch count when training 
the model. 

The Confusion Matrix establishes: True-Positive (TP) as: 
brain MR scan is tumorous and projected to be 
tumorous. True-Negative (TN) as: anticipated image is 
non-tumorous and identical. False-Positive (FP) is 
defined as the picture being tumorous but being 
expected to be non-tumorous. 

False-Negative (FN) means that the picture is not 
tumorous but is projected to be tumorous. The total 
number of errors is used to calculate accuracy. 

 

 

epoch train loss Valid loss Accuracy Time 

0 0.572963 0.518684 0.730196 00:15 

1 0.675802 054281 0.706348 00:15 

2 0.541887 0.830186 0.658721 00:16 

3 0.52735 0.518714 0.768942 00:16 

4 0.540524 0.469857 0.809521 00:17 

5 0.454532 0.433384 0.912689 00:18 

6 0.457034 0.228426 0.968524 00:18 

7 0.405162 0.163970 0.960371 00:18 

8 0.335286 0.193147 0.961025 00:19 

9 0.300564 0.153146 0.961025 00:20 
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Validation Accuracy and Losses Plot Table for dataset 

Performance evaluation of ResNet152 for both 
Datasets 

CONCLUSION 

The ResNet152 architecture, which is a pre-trained FastAI 
CNN model, is employed in this study. The ResNet152 
architecture is used as a starting point and then enhanced 
by changing the last three layers. New layers improve the 
dense layer, followed by the SoftMax layer and the binary 
cross-entropy layers. The upgraded ResNet152 deep 
learning model was then trained on two separate brain 
datasets from Kaggle and BRATS2015. Model fine-tuning is 
carried out. When tested on Dataset-253 and Dataset-205, 
the improved model's accuracy percentage is 97% and 
96%, respectively. When compared to other deep learning 
models, the upgraded model produces the best results with 
two separate brain MRI datasets. The accuracy % 
comparison is shown in Fig. 15. Data augmentation was 
used to increase the number of MR images in a brain 

dataset. The better model produced may be useful in 
detecting various brain disorders such as stroke, 
haemorrhage, Alzheimer's, and so on. Other pre-trained 
designs can also be enhanced by altering the network 
layers. 
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epoch train loss Valid loss Accuracy Time 

0 0.223470 0.173160 0.9678245 00:20 

1 0.237084 0.171897 0.9523487 00:21 

2 0.385604 0.157545 0.976190 00:20 

3 0.384724 0.118425 0.985126 00:20 

4 0.286101 0.108415 0.954238 00:21 

5 0.216819 0.153427 0.947619 00:21 

6 0.254501 0.109394 0.967825 00:20 

7 0.273091 0.110689 0.983125 00:21 

8 0.245608 0.117646 0.984137 00:20 

9 0.256968 0.114028 0.976280 00:20 

Dataset-253   Dataset-205   

Confusion 
Matrix 

46 0 Confusion 
Matrix 

47 2 

 3 77  2 75 

Accuracy 97.
61 

 Accuracy 96.
82 

 

Precision 10
0 

 Precision 97.
4 

 

Sensitivity 96.
25 

 Sensitivity 97.
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