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Abstract - The current study focuses on building a model of 
a laboratory scale bioreactor using a grey wolf optimizer 
trained ANN approach, then optimizing it for profit 
maximization. The glucose to gluconic acid bioprocess was 
employed as a case study. The fermenter is a multiphase 
enzymatic bioreactor and developing a viable first principle-
based model is difficult due to its complexity; on the other 
hand, data-driven models lack explanability. As a result, in this 
study, a general methodology was developed in which a data-
driven technique such as the grey wolf optimizer trained ANN 
technique was used as a modelling tool, and the model was 
then post-processed to increase the model's explainability. The 
model was chosen for its ability to accurately describe the 
underlying physics of the system. It was subjected to 
optimization after the establishment of an acceptable model. 
The goal of this study was to maximize gluconic acid yield, 
which has a substantial impact on the process' profitability. 
Using an evolutionary algorithm on the created model, an 
ideal solution was determined. 
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1.INTRODUCTION  

The business environment has altered drastically in the 
previous decade as a result of severe worldwide 
competition. Because of globalisation, chemical process 
industries are seeing their profit margins erode as a result of 
more harsh competition in a volatile market. The only way to 
properly mitigate these challenges is to improve process 
efficiency through yield maximisation through technological 
innovation. Chemical companies all around the world are 
seeking for new and innovative ways to save costs and boost 
revenues. The application of artificial intelligence-based 
techniques to extract value from huge amounts of 
experimental data through data mining and knowledge 
discovery is one of the most intriguing creative tactics to 
investigate. 

Chemical bioreactors are catching the interest of scientists 
who are looking for new methods to make money. The 
reactor is the only major piece of machinery that adds real 
value to raw materials by turning them into finished goods. 
In this aspect, reactor optimization has a tremendous 
potential impact on overall profitability [1]. As a first step in 

optimizing the bioreactor, modelling complex systems of 
chemical processes is critical. In biochemical reactions, 
complex reaction kinetics and thermodynamics were 
involved. Building a credible phenomenological model for 
bioreactors is a time-consuming and difficult task that 
requires a detailed grasp of heterogeneous catalytic 
behaviour such as mass diffusion and catalyst deactivation, 
among other things. Furthermore, in laboratories, various 
parameters such as agitation speed, temperature, negative 
influence of toxins contained in incoming gas, diffusional 
coefficients, and others affect reaction rate, yield, and 
selectivity, the processes of which are unknown. As a result, 
the reactor's optimization is hampered by a lack of 
understanding of chemical reaction dynamics. For safety and 
dependability concerns, most chemical bioreactors remain a 
black box, and scientists do not tamper with them. This 
causes bioreactors to operate inefficiently, which has a 
considerable influence on the profitability. As a result, in the 
chemical sector, reactors are viewed as an unknown 
territory. A minor increase in catalyst selectivity and 
reaction yield, on the other hand, has a major impact on raw 
material consumption and overall profitability in large-scale 
operations. [1]. 

To derive the kinetic equation of a given biochemical 
reaction, laboratory scale kinetic analysis is typically 
performed in a very ideal and controlled context. The 
applicability of such an approach for kinetic modelling of 
bioreactors is questionable due to the presence of poisons 
and inert in input gases, and the varying heat and mass 
transfer environment. Furthermore, chemical engineers are 
unwilling to commit adequate time and effort to a full 
examination of these complex reaction mechanisms due to 
the restricted market window for chemical goods. As a 
result, an alternative straightforward method is to develop 
approximated reactor models for these complicated reaction 
systems using a data-driven effective computational 
strategy, which can then be used to optimize the reactor and 
increase profit. 

The key challenge is figuring out how to leverage this 
plethora of data to produce more money, because most 
chemical laboratories collect and store vast volumes of 
reactor input and output operational data. Data is the new 
oil, and data-driven modelling tools such as artificial neural 
networks (ANN) and support vector machines (SVM) are the 
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new IC engines of our day. In the last decade, ANN and SVR 
have become very popular black box modelling 
methodologies, with a number of applications developed for 
biochemical reactors. Engineers, on the other hand, reject 
ANN and SVM models because they are difficult to 
understand and provide a black box model. The ANN model 
offers no insight into the underlying physics of chemical 
reactors. 

Despite its high prediction capacity, the model suffers from 
explainability limits because it produces a black box type 
equation consisting of a complex sigmoidal function with 
several tuning elements known as weights and biases. To 
acquire better understanding and profit, process engineers 
prefer intelligible equations in differential/ algebraic form 
that relate output variables to input features. A closed form 
equation that can describe the effect of key process 
parameters on the output variable is preferred in the created 
model. SVM and ANN both have the difficulty of providing 
closed form explainable equations that are portable and 
simple to implement in a DCS system. Gaining insights and 
obtaining a closed form explainable model equation is 
crucial for engineers to accept the model's use in real life 

Despite the ANN's outstanding prediction skills, there are 
few uses of this technology in chemical reaction engineering 
work in biochemical reactors. An attempt was made in this 
work to use ANN modelling on a gluconic acid bioreactor. 
One of the main objectives of this study is to convert the ANN 
model into an explainable closed form equation, which will 
give crucial information about the reactor's phenomenology. 

The second purpose of this project is to train the ANN model 
using freshly found nature-inspired grey wolf optimization 
methodologies. Learning is a vital part of every neural 
network, and it has piqued the interest of many researchers. 
In most applications, the traditional [7] or upgraded [8–10] 
Back-Propagation (BP) algorithm is employed to train 
feedforward neural networks (FNNs). The BP method is a 
gradient-based algorithm with some flaws, including delayed 
convergence [11] and a proclivity to stay stuck in local 
minima [12]. During the learning process of FNNs, the goal is 
to identify the best combination of connection weights and 
biases to achieve the least amount of error. FNNs, on the 
other hand, frequently converge on points that are the best 
answer locally but not worldwide. In other words, rather 
than the global minimum, learning methods lead FNNs to 
local minima. According to [13], the BP algorithm's 
convergence is strongly dependent on the weights, biases, 
and parameters' initial values. Learning rate and momentum 
are two of these characteristics. A popular approach in the 
literature is to enhance the problems of BP-based learning 
algorithms by using unique heuristic optimization methods 
or evolutionary algorithms. 

Some of the heuristic optimization approaches used to train 
FNNs include Simulated Annealing (SA) [13,14], Genetic 
Algorithms (GAs) [15], Particle Swarm Optimization (PSO) 

algorithms [16–20], Magnetic Optimization Algorithm (MOA) 
[21], and Differential Evolution (DE) [22]. Some algorithms, 
such as SA and GA, can reduce the chance of local minima 
trapping, but they still have poor convergence rates, 
according to [11]. 

Despite the widespread usage of meta-heuristics in ANN 
learning, none of them has done well in all applications. 
Existing metaheuristics also have a number of flaws [23-27], 
such as slow convergence speed, trapping in local minima, 
long computational time, tuning many parameters, and a 
difficult encoding scheme. As a result, it appears that 
boosting the efficiency of ANN learning in various domains 
requires either improving the performance of existing meta-
heuristics or proposing new ones. [18] presented GWO, a 
new stochastic and metaheuristic optimization technique. 
The efficacy of the GWO approach for training FNNs is 
studied in this work. 

Because of its financial importance in global markets, the 
current study chose to model a gluconic acid bioreactor. 
Gluconic acid is used as the metal supplement of calcium, 
iron, etc. in pharmaceuticals and as an acidulent in the food 
industry. It also finds applications as a biodegradable 
chelating agent, filler, metal cleaner, dye stabilizer, and in the 
textile industry for removing instructions. A reliable first 
principle-based model is rarely accessible in the literature 
due to a lack of understanding and complexity of multiphase 
enzymatic reactions occurring in gluconic acid bioreactors. 
Data driven modelling is a potential alternative strategy due 
to the vast amount of bioreactor operating parameter data 
available after multiple runs. The current project aims to 
make use of a huge amount of process data to create a 
framework for converting the data's information into profit. 

The study's next goal is to use the developed model to 
increase the gluconic acid factory's profit. This is performed 
by optimizing the input process parameters utilising a 
model-based, nature-inspired metaheuristic optimization 
method in order to enhance gluconic acid yield (i.e., reactor 
performance). The GA is used to improve the input space of 
the bioreactor’s ANN model in order to give pareto optimum 
solutions that achieve the objective in the most efficient 
manner possible. 

2.  Case study of gluconic acid bioreactor 

2.1. Background 

Because of the lack of understanding and complexity of 
multiphase catalytic processes in lab scale batch reactors, 
trustworthy first principle-based models are hard to come 
by. Data driven modelling is a feasible alternative strategy 
due to the vast amount of reactor operating parameter data 
available from bioreactors. The current project aims to make 
use of a huge amount of process data to create a framework 
for converting the data's information into profit. 
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2.2. Reactions: 

Commercially, gluconic acid is produced primarily using 
two biological methods, but more expensive chemical and 
electrochemical ways are also available. The most prevalent 
biochemical approaches are freecell fermentation and 
immobilised enzyme-based glucose bioconversion (glucose 
oxidase, GOD, of Aspergillus niger and Gluconobacter). The 
GOD converts glucose to glucono-d-lactone, which is then 
hydrolyzed by lactonase to gluconic acid. Producing gluconic 
acid with immobilised enzymes is a costly and time-
consuming technique due to obstacles in the immobilisation 
and separation phases; extra difficulties develop as a result 
of denaturization of the enzymes. During free-cell 
fermentation, mycelia are exposed to a variety of mass and 
heat-transfer stresses. Mechanical agitation aids in the 
removal of these restrictions, but it creates a turbulent flow 
that can result in cell disintegration, cell fracture or surface 
erosion, and pellet breaking. As a result, there may be a 
sudden or gradual decline in cellular activity. On the other 
hand, fermentation of gluconic acid by cells immobilised on a 
support matrix under submerged conditions is a cost-
effective and efficient method. 

Gluconic Acid Yield= (Moles of gluconic 
acid produced)/(Moles of glucose consumed) (1) 

2.3. Process flow diagram 

A new batch fermentation procedure for producing 
gluconic acid from glucose has recently been devised, with A. 
niger immobilised on a cellulosic fabric support matrix 
generating higher yields. The enhanced overall productivity 
of this technique is mostly due to the increased interaction 
between dissolved oxygen and the fungal mycelia. To 
optimise the aforementioned reaction, a continuous substrate 
dripping mechanism (see Figure 1) is used instead of the 
mechanical agitation used in free-cell fermentation. As a 
result, the bioreactor's yield determines the total profitability. 

 FIGURE 1 Experimental setup of the bioprocess taken from 
[33] 

2.4. Production Objectives 

The purpose of this research is to develop a mathematical 
model of the new glucose to gluconic acid batch 
fermentation process and to discover the best process 
conditions for higher gluconic acid yield. The fermenter 
model was built using experimental data that took into 
account the impacts of substrate (glucose), biomass, and 
dissolved oxygen levels. Figure 1 depicts the complex 
reaction and mass transfer pathways involved in the glucose 
to gluconic acid bioconversion using A. niger immobilised on 
cellulose microfibrils. Because the physicochemical events 
that drive bioconversion, as well as the kinetic and transport 
mechanisms that follow them, are poorly understood. 

3. Background materials 

This part discusses the fundamental background materials 
required for a complete understanding of the proposed 
method. The Multi-layer perceptron (MLP) as a Feed-
forward neural network (FNN) is introduced first, followed 
by GWO approaches, which are then compared to the 
suggested technique for MLP learning in bioreactors 
modelling. MLP network is followed by a brief discussion of 
the hybrid ANN and GWO training method. 

The feed-forward neural network (FFNN) is one of the most 
common ANNs and receives a lot of academic attention 
because of its ability to map any function to an unlimited 
degree of precision. The multi-layer perceptron has been 
employed in a variety of sectors, including finance, medicine, 
engineering, geology, physics, and biology. Nonlinear process 
modelling, fault diagnostics, and process control are all 
common applications in the field of chemical engineering. 

As shown in Figure 2, MLP contains one input layer that 
receives external inputs, one or more hidden layers, and one 
output layer that displays the results. All levels, with the 
exception of the input layer, are made up of processing 
nodes and activation functions. The input layer provides 
data, and the network nodes perform calculations in 
successive layers until each output node receives an output 
value. 

3.1. Training of ANN by GWO 

There are three techniques to train FNNs with a heuristic 
algorithm in general. The ideal mix of weights and biases for 
a FNN with the least amount of error is first discovered using 
heuristic techniques. Second, in order to find the appropriate 
structure for a FNN in a specific situation, heuristic 
approaches are applied. Finally, an evolutionary algorithm 
can be used to tune the parameters of a gradient-based 
learning system, such as the learning rate and momentum. 
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In the first scenario, the structure is fixed before training 
FNNs. The goal of a training method is to find a good value 
for all connection weights and biases in order to lower the 
FNNs' total error. In the second instance, the FNN structures 
are different. A training technique is applied to a FNN to 
determine the right structure for a given problem. Change 
the structure of the FNN by manipulating the connections 
between neurons, the number of hidden layers, and the 
number of hidden nodes in each layer. 

The first technique in this study is used to apply GWO to a 
FNN; these operations are referred to as hybrid FNN-GWO. 
The FNN's structure is fixed, and the GWO method chooses a 
set of weights and biases that gives the FNN the least amount 
of error. In order to design FNN-GWO, the following 
fundamental features must be defined. In FNN-GWO, build a 
fitness function based on the FNN's mistake before 
evaluating agents' fitness. Second, an encoding strategy for 
the FNN-GWO agents should be devised to encode the FNN's 
weights and biases. These elements are described in further 
depth below. 

3.1.1. Fitness function 
The fitness function used in this article [10] has the following 
formula: 

In Figure 2, which has two layers, the number of input nodes 
is equal to n, the number of hidden nodes is equal to h, and 
the number of output nodes is equal to m. (one input, one 
hidden, and one output layer). At the end of each learning 
period, the output of each hidden node is calculated as 
follows: 
                    

 , j = 

1, 2, …, h        (2) 

In , n is the number of the input nodes, 

wij is the connection weight from the ith node in the input 
layer to the jth node in the hidden layer, Ɵj is the bias 
(threshold) of the jth hidden node, and xi is the ith input. 

After calculating outputs of the hidden nodes, the final 
output can be defined as follows: 

, k = 1,2, …, m,                                

(3)  

where wkj is the connection weight from the jth hidden node 
to the kth output node and Ɵk is the bias (threshold) of the 
kth output node. 

Finally, the learning error E (fitness function) is calculated as 
follows: 

                                        (4) 

                                                         (5) 

    

where q is the number of training samples,  is the desired 

output of the ith input unit when the kth training sample is 

used, and  is the actual output of the ith input unit when 

the kth training sample is used. Therefore, the fitness 
function of the ith training sample can be   defined as follows: 

Fitness (Xi) = E(Xi)                                                              (6)  

 

FIGURE 2: FNN with a 2-3-1 structure 

3.1.2 Encoding strategy 
Following the specification of the FNN-GWO fitness function, 
the next step is to select an encoding technique for each 
FNN-GWO agent to encode the FNN's weights and biases. 
There are three approaches to encode and express the 
weights and biases of FNNs for each agent in evolutionary 
algorithms, according to [10]. These are the methods of 
vector, matrix, and binary encoding. Each agent is encoded 
as a vector in vector encoding. During training, each agent 
reflects all of the FNN's weights and biases. Each agent is 
encoded as a matrix in matrix encoding. Because we're 
interested in training FNNs, we've employed the matrix 
encoding technique in this piece. An example of this 
encoding strategy for the FNN of Figure 2 is provided as 
follows: 

,                                                                                     

(7) 

, , ,

                                                      (8) 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 10 Issue: 03 | Mar 2023              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2023, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 469 
 

where W1 is the hidden layer weight matrix, B1 is the hidden 

layer bias matrix, W2 is the output layer weight matrix,  is 

the transpose of W2, and B2 is the hidden layer bias matrix. 

3.2. Grey Wolf Optimization (GWO): at a glance 
GWO, a new stochastic and metaheuristic optimization 
technique, was introduced by [28]. GWO's purpose is to 
mimic the cooperative hunting behaviour of grey wolves in 
the wild. The grey wolf pack's hierarchical organisation and 
predation behaviour are promoted by this bionic 
optimization approach, in which the wolves take prey by 
surrounding, haunting, and attacking it under the command 
of the top grey wolf [31]. The top three grey wolves were the 
target of this large-scale search methodology, but there was 
no way to eliminate them. The optimization technique differs 
from others in terms of modelling. As shown in Figure 3, it 
produces a strict hierarchical pyramid. 

 

FIGURE 3: Hierarchy of grey wolf (dominance decreases 
from top down) 

The typical size of a group is 5-12 persons. The layer, which 
consists of a male and female leader, is the most powerful 
and capable member of the team when it comes to making 
decisions on predation and other activities. The second and 
third layers of the hierarchy, respectively, are in charge of 
aiding group organisations in their behaviour. The bottom of 
the pyramid, often known as, is home to the majority of the 
world's population. They are largely responsible for 
satisfying the entire pack by maintaining the dominance 
hierarchy, regulating the population's internal connections, 
and caring for the young [28]. GWO mathematical modelling: 

The main key point of the GWO model is the social hierarchy, 
encircling, hunting, attacking and searching prey.  

A. Social hierarchy 
In the model of GWO, α is considered as fittest solution. β 
and δ are considered as second and third best solution, 
respectively. The rest of the solutions are assumed to be ω.  

B. Encircling  
At first, the location of the prey is determined and during the 
hunting process grey wolves encircled the prey. The 

following equations are proposed for mathematically 
modelling. 

     

     (9) 

     

     (10) 

Where  is the number of current iterations,  is the 

position vector of one grey wolf,  is the next 

position vector it arrives,  is the position vector of the 

prey,  and  are coefficient vectors which are evaluated as 

follows: 

      

                  (11) 

       

     (12) 

and  are random vectors in [0,1], a    is decreasing value 

during the iteration in [0,2], typically  (I    is 

the maximum number of iterations). 

In this concept, grey wolves move around the best solution 
in hyper-cubes within an n dimensional space and able to 
detect the position of the prey and encircle it.  

C. Hunting 
Grey wolves have the ability to hunt prey with the guidance 
of alpha after encircling the prey. The beta and delta also 
take part in the hunting procedure on occasion. The first 
three best solutions in the mathematical stimulation of 
hunting behaviour update the position of other search agents 
(including the omegas). In this approach, the following 
equations are proposed. 

     (13) 

    (14) 

     

  
     (15) 
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D. Attacking prey (exploitation) 
Grey wolves complete the hunting phase and ready to 
capture the prey. For the purpose of mathematically 

modelling, the value of  gradually decrease. Therefore, the 

fluctuation rate of  is also decreased by .   

where a is decremented from 2 to 0 over the course of 

iterations. When the random values of  , the next 

position of search agent can be in any position between its 
current position and the position of the prey. When 

, the grey wolves would diverge from the prey to 

achieve global search and when , the grey wolves 

would converge towards the prey and complete it. 

E. Searching prey (exploration)  
GWO algorithm uses an efficient exploration methodology by 
allowing its search agents to update their position on the 
basis of alpha, beta, delta and attacks towards the prey. This 
mechanism creates a good diversity in the problem search 
space. Grey wolves are stay away from each other for global 
search of prey and close to each other for attacking the prey. 

For  , values between 1 and -1 are taken.  vector is also 

favoured the exploration technique and random values  

are used. After generating the random population, alpha, 
beta and delta determined the position of the best prey. For 

selection of exploration and exploitation, the value of  is 

decreased from 2 to 0 respectively. 

The GWO algorithm terminates when the criterion is 
satisfied. This metaheuristic approach is applied in various 
real-world problems because of its efficient and simple 
performance ability by tuning the fewest operators [28-32]. 

3.3. Hybrid learning of GWO and FNN network   
In this section, GWO is used to learn FNN. A hybrid learning 
of GWO and FNN networks (GWO-FNN) is utilised to 
increase the network's accuracy. The algorithm will 
simultaneously determine the set of weights and their 
related accuracy by training the network. The FNN network's 
network weights and biases can be expressed as a D-
dimensional vector. The vector for FNN is defined by 
Equation 16. To optimize the FNN weights using GWO 
methods, each particle's dimension is regarded as a vector D. 

D = (Input × Hidden) + (Hidden × Output) +Hidden bias + 
Output bias,                        (16) 

where Input, Hidden and Output are referred the number of 
inputs, hidden and output neurons of FNN network 
respectively.  The number of biases in the hidden and output 
layers is also known as Hidden bias and Output bias. A 
dataset is collected, normalized, and read to begin the GWO-
FNN. Following that, the appropriate number of inputs, 
output, and hidden neurons are specified to establish the 
particle dimension as Equation (5). The population is 

initialized, and the training error is determined as a fitness 
function following FNN training. Every particle (wolf) 
modifies its velocity and position based on training error. 
The new places represent the FNN network's new weights, 
which are supposed to minimize the fitness function. The 
fitness function is computed based on test set error. These 
steps will go on until meeting stop conditions.                                                 

4. MATHEMATICAL MODELLING OF BIOPROCESS 

4.1. Selection of input and output variables for 
modelling 

Because reactor yield has such a large impact on overall 
profitability, it is kept as an output variable. All reactor 
operational factors that could affect yield are stored as a 
"wish list" of input variables. Initially, all bioreactor 
experimental data was acquired. Following that, all of the 
input factors that could affect the output variable were 
recorded after speaking with a technical specialist. After 
that, a cross-correlation analysis was carried out. This 
method was used to determine the correlation coefficients of 
each input variable with the output variable, as well as the 
inter input cross-correlation coefficients. 

The following criteria are used to shortlist the input 
variables. 

(i) For a particular input variable, there should be high 
cross-correlation coefficient with output 
variable. 
 

(ii) The values of cross-correlation coefficients of inter 
input variables should be low. 
 

(iii) The input set of variables were kept as minimum as 
possible to avoid complexity of the model. 

Based on the above criteria 3 input variables are finally 
shortlisted and tabulated in Table 1. 

TABLE 1 Input Output variables for model building and 
their range 

Variables used in modeling Data Range 

Input Variables  

Glucose concentration, g/L (x1) 100.0–180.0 

Biomass concentration, g/L (x2) 1.00–3.00 

Dissolved oxygen concentration, mg/L 
(x3) 

10.0–60.0 

Output Variables  

Gluconic Acid Yield, % (Y1) 5.9–94.58 
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4.2. Data collection, Data cleaning and removal of 
outliers 

The GWO-FNN based model for the glucose to gluconic acid 
bioprocess was created using experimental input-output 
data from the fermenter. In this study, the gluconic acid-
producing strain Aspergillus niger NCIM 545 was employed. 
The spore germination media, growth medium, and 
cellulosic fibre support have all been well reported 
previously. 

The quality of data used to build a data-driven model is 
widely accepted as determining the model's quality. Because 
noisy and erroneous data can have a major impact on model 
performance, data quality is an important consideration 
when employing data driven modelling. Due to the high 
number of process data, this research developed an 
automated data cleaning technique that eliminates the need 
for human intervention. In this work, the data was pre-
processed using multivariate Principal Component Analysis 
(PCA). An automated MATLAB-based system was built to 
build a multivariate statistical vector called t-squared from 
the operating dataset. The corresponding rows in the t-
squared vector with values over the 95th percentile was 
therefore considered outliers and were eliminated from the 
dataset. 

4.3. Modelling through FNN-GWO algorithm 

An ANN-based model was built using the cleansed data. The 
dataset, which included eight input variables and two output 
variables (Table 1), was divided into a training set (80% of 
the total data) and a test set (the remaining 20%). (20 
percent of the total data). The training data set was used to 
build the model by maximising the fitness value, and the test 
data set was used to cross-validate the result. Cross-main 
validation's purpose is to improve the model's 
generalizability. 

The FNN-GWO-based model was developed using MATLAB 
2019a code. The mean-squared error (MSE) between actual 
and projected outputs was employed as the fitness function 
in this study, and the programme was run in such a way that 
the MSE value was minimized. Due to the stochastic nature 
of the ANN, the software was run 100 times to create the 
model. 

4.4. Optimization through Genetic Algorithm 

The model is then utilized to optimize the bioreactor process 
parameters once a trustworthy and accurate bioreactor 
model has been built. The goal is to find the best process 
conditions for maximal bioreactor profitability. In other 
words, the optimization algorithm should aim for the highest 
possible reactor yield. 

A multi-objective genetic algorithm is utilised in this study to 
establish a balance between two opposing goals. The genetic 

algorithm (GA) has shown to be a powerful optimization tool 
that has been applied to a wide range of technical and 
medical applications. 

For implementation of GA algorithm, an objective function 
was developed which is as follows (Equation 17): 

F1(x) = 1/Y1(x)      
   (17) 

where Y1(x) is the function of the model corresponding to 
gluconic acid yield. Therefore, in GA F1(x) has to be 
minimized in order to maximize the yield of the bioprocess. 

5. Results and discussions 
 

5.1. Performance of FNN-GWO model 
 

The major purpose of this study is to create an accurate, 
simple, portable, and easy-to-understand closed model 
equation for a bioreactor. 

The values of ANN parameters required for modelling were 
determined using a trial-and-error approach and a literature 
review. In the current work, the number of nodes in the 
hidden layer fluctuates consistently from 5 to 25, and the 
FNN GWO approach is used to find the appropriate weights 
and bias that produce the lowest MSE between actual and 
anticipated output each time. 

Shortlisting the models: To choose a valid model from a 
pool of likely candidates or representative model equations 
with varying degrees of complexity and accuracy, the 
following criteria were used: 

(i) Simplicity: The model should be as straightforward 
as possible. Model complexity was determined 
by the number of nodes in the hidden layer. 

(ii) Prediction accuracy: The gap between expected and 
actual yield. 

(iii) The fundamental physics of the process should be 
captured in the model equation. To put it 
another way, model equations should include a 
physical understanding of the system under 
investigation rather than just a prediction 
relationship. This is an important consideration 
for building realistic reactor models. 
 

TABLE 2 Rules to select best model from experimental 
observations. 

Sl.	no		 Parameters	changed	keeping	all	other	parameters	constant	 What	 happen	 to	 gluconic	 acid	
yield?	

1	 If	glucose	concentration	increase	 Increases	

2	 If	biomass	concentration	increase	 Slightly	decreases	

3	 If	dissolved	oxygen	(DO)	concentration	increase	 Increases	
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FIGURE 4:  Actual vs. predicted plots of (a) gluconic acid 
yield with training data (b) gluconic acid yield with testing 

data  

The ANN-acquired equations were subjected to the 
aforementioned assessment to see if the produced equation 
agrees with the experimental data. The models that were 
created were thoroughly tested. Assume that a ten-test data 
set was created with all variables set to their 50th percentile 
value, except for oxygen inlet concentration, which was 
changed at 10-point intervals from its minimum to 
maximum value. After that, a graph of glucose concentration 
vs. gluconic acid yield was made. Using these charts, Table 2 
observation number 1 was confirmed. Only one model 
equation for gluconic acid yield was chosen from the 
shortlisted model equations because they are exceedingly 
precise, obey the Table 2 observations, and capture the 
internal physics of the reactor, such equation is considered 
the representative model equation for gluconic acid yield. 

The corresponding Coefficient of Determination (R2) and 
Average Percentage Error (APE) of the above model for 
training and test data have been mentioned in Table 3. 

 

With high R2 and low APE for the gluconic acid yield (Table 
3), it can be concluded that the predicted output values are 
comparable to the actual output values and that the models 
developed are reliable, fairly accurate, and capture the 
inherent physics of the bioreactor. The model's 
generalizability and accurate learning on nonlinear input 
and output relationships are further indicated by the strong 
R2 value on unseen test data and low APE. 

Figure 4 depicts the models' prediction performance on 
training and testing data. The fact that the real and forecast 
curves almost coincide implies that the model has strong 
prediction accuracy. 

From Table 3 and Figure 4 it is concluded that developed 
model is highly accurate and reliable as it also performs well 
with unseen test data. 

Generation of explainable model equations: Though ANN 
generates a closed form of equation which has very high 

predictive capability, the developed equation is large and 
complex and sometimes difficult to directly interpret. In 
present study, a methodology is developed to enhance the 
interpretability of the developed equations. Figure 5 
summarizes the developed methodology. Those figures are 
generated by changing one variable at a time from its 
minimum to maximum value (10 steps) while keeping all 
other 2 input variables at their 50-percentile value. Yield 
equations developed by ANN is used to predict the yield 
value in each case of these simulated test data. After plotting 
was done, a trendline was drawn through each data whose 
equation and R2 value is shown in figure. Based on visual 
inspection and R2 value trend line curve was selected (like 
straight line, or polynomial with degree 2 or 3 or more) so 
that generated trendline almost matches with the data. As 
seen from the figure 10, the developed trend lines are very 
decisive and monotonically increasing and decreasing. As 
mentioned earlier, they all match the actual observations 
and obey the Table 2. In short, developed models captures 
the nonlinear relationship between yield and reactor 
operating parameters. These trend lines can be used by 
scientists to get the insights on how a particular input 
parameter affects the gluconic acid yield. For example, from 
figure 5, it is quantitively clear that increasing glucose and 
DO concentration, actually enhance the yield whereas 
increasing biomass reduces the yield.  

The yield decreases linearly with biomass concentration 
with negative slope of 12.172, whereas the relation of yield 
with glucose and DO concentration are nonlinear and 
represented by second and third order polynomial, 
respectively. Now these trend line equations are used to 
develop the following explainable equation (Equation 18).  

 (18) 
       
where x1, x2, x3 are the actual value of the 3 input variables 
and x1, avg, x2, avg, x3, avg are the average (50 percentile) value of 
input variables, respectively. 

Each term in the equation 18 represents the change in yield 
if a particular parameter deviates from its average value. For 

example, the term,  represents the deviation 

of biomass concentration from its average value and when it 
multiplied by co-efficient -12.172, represents the yield 
penalty (or gain) due to biomass. In this way, all 3 
parameters contribution is calculated in equation 18 and it is 
added with 72.71% (average yield) to get the actual yield. 

Main advantage of this equation (equation 18) over ANN 
model is that this equation is interpretable and easily 

	

 

	 APE	 	 	

Gluconic	acid	yield	model	 0.99	 0.42	 0.99	 0.42	 	

2APE	 	 R2	

TABLE	3.	Performance	of	ANN	model		

	 Training	 	 Testing	 	 	

Model	 R
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explainable to engineers. Equation is simple and contains 
terms or parametric co-efficient which throw lights relative 
importance of each parameter on the overall yield if they 
deviate from this base value. Also, it indicates whether the 
effect of each parameter is linear or non-linear.  

Equation 18 is then used to predict yield of experimental 
data and predicted, and actual yield is compared. Prediction 
error is 0.42% and R2 is 0.99. This low value of prediction 
error and high value of R2 signifies that developed equation 
(equation 18) is highly accurate and reliable.  

a) b)

c)

 

FIGURE 5: Influence of each variable on gluconic acid 
yield 

5.2. Optimization 
 

5.2.1. Optimization through GA 
 

Once the reliable models were successfully developed, the 
models were subjected to optimization. Purpose of 
optimization is to find the optimum value of rector operating 
parameters to achieve maximum gluconic acid yield. One of 
the critical tasks for optimization of any process is fixing of 
search space at which the optimal process conditions are to 
be found out. Therefore, before running the optimization a 
lower bound and upper bound of the process variables were 
fixed in consultation with scientists. The lower bounds (LB) 
and upper bounds (UB) considered in this case have been 
depicted in Table 4. 

Table 4. Lower bounds and upper bounds for 
optimization 

	 x1	 x2	 x3	

LB	 100	 1	 10	

UB	 180	 3	 60	

 

 

With the help of GA tool in MATLAB, the optimum 
experimental conditions were found out which gives the 
gluconic acid yield of 99.59% (Table 5). The main advantage 
of such a study is that it gives the experimental engineers a 
strategy to run the reactor in optimum condition in real-

time. Due to unavailability of an explainable model, since 
scientists have no idea about optimal solution, 
experimentalists try to optimize the process heuristically 
based on their experience and knowledge. The only action 
scientist must do is to run the GA with proper bound in real-
time, and GA will provide a set of optimum operating 
conditions that the scientist needs to set in the experiment.  

Table 5. GA optimal solution 

x1	 x2	 x3	 Yield	

161.80	 1.00	 58.64	 99.59	

 

 
6. Conclusion 

 
From the existing operating data, this study uses Artificial 
Neural Networking to construct an accurate model of a 
gluconic acid bioreactor. An ANN creates a closed model 
equation that is portable and may be used in a control 
system. The true value of this research is that it has 
produced an explainable model equation that is very 
accurate and provides insights into the process. The 
produced model equations are based on the underlying 
physics of the process and are in line with the observations 
and experiences of the experimentalist. After that, the 
developed model equations are used to construct optimum 
solution that optimize gluconic acid yield and thus ensure 
profit maximization. 
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APPENDIX: 

Experimental Data Utilized for Building GP Based Model 
taken from [33] 

batch 

no 

glucose 

concn 

(x1) 

(g/L) 

biomass 

concn 

(x2) 

(g/L) 

DO 

(x3) 

(mg/L) 

gluconic 

acid yield 

(Y1) (%) 

1 100 1 10 5.9 

2 150 2 10 29.42 

3 120 2 15 20.76 

4 150 2.5 15 35.51 

5 150 3 15 35.16 

6 120 2 25 27.77 

7 120 2 30 34.48 

8 150 2 30 57.86 

9 150 3 25 49.32 

10 150 2 40 78.99 

11 150 2 45 89.48 

12 150 2 50 94.5 

13 180 2 50 89.63 

14 150 3 40 79.05 

15 150 2.5 50 94.58 

16 150 2.5 55 93.41 

17 150 2.5 60 91.26 

18 160 2.5 60 93.67 

19 175 3 55 92.69 

20 160 3 60 93.3 

21 180 3 60 88.13 

22 150 3 60 92.7 

23 100 3 60 20.04 

24 100 2 10 6.13 
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