

Numerically and CFD studies on shell and tube heat exchangers

Chandrashekhar Pawar¹, Purushottam Sahu², Ghanshyam Dhanera³

¹Reseach scholar, BM College of Technology, Indore ²Professor and HEAD BM College of Technology, Indore ³ Professors, BM College of Technology, Indore ***

Abstract - This study aims to investigate the effect of different baffle layouts on the STHX (rate of heat transmission and pressure loss) of the A tube heat exchanger. The addition of baffles to the tube and shell mechanism enhances the heat switch while also boosting pressure. Best one, doubled, helical, triple section, and flowery baffles are used in tube heat exchangers, and they are designed using SOLIDWORKS go with the flow simulation software (ver. 2015). A single segmental baffle exhibits the best mass price and heat transmission rate on the shell side, according to simulation results. There are almost no stagnation zones inside the helical baffle, which results in significantly less fouling and a longer operating lifetime due to less flow-induced vibration.

Key Words: Kern's theoretical approach, ASPEN Segmental baffles, Helical baffles, Flower baffles, Heat transfer coefficient, Pressure drop, SOLIDWORKS flow simulation.

1. INTRODUCTION

One of most strongly crucial components of a nation's economic and social development is the production of energy. Demand for natural resources and energy is rising daily as a result of population growth, industrialization, urbanisation, and expanding global trade and production opportunities. The usage of fossil fuels as a source of energy, dependency on foreign sources of fuel, high import costs, environmental issues, and the quick depletion of global fossil fuel reserves all raise the importance of renewable energy sources. Currently, renewable energy sources account for 20% of global energy consumption [1].

A power production system called the Organic Rankine Cycle (ORC) runs at low temperatures and substitutes hydrocarbonbased organic working fluids for water. Models of different complexity levels for shell-and-tube heat exchangers

The study and analysis of several heat exchanger models has been conducted. The general presumptions made by all of the models are outlined in the list below.

1. Radiation and heat transport rates in fluids are insignificant. Axial heat is also negligible in both fluids.

2. The heat capacity of the tube walls is zero in both the normal direction and the direction.

3. The thermal capacitance of the heat transmission shell is disregarded. that is only one dimensional and flow-oriented.

2 Methodologies: the use of heat exchangers

A separate, in-depth research will be needed to cover each area of the application of heat exchangers because it is such a vast topic. Their use is frequently found in home appliances, mechanical equipment, and the process sector. District systems can be heated using heat exchangers, which are increasingly being used nowadays. In order to condense or evaporate the fluid, heat exchangers are utilised in air conditioners and freezers. They also work in pasteurisation units in milk processing facilities. [3].

Heat Transfer Characteristics. The inlet/outlet temperature differential on the shell side, inlet/outlet pressure drop on the tube side, heat transfer area of the working fluid on the shell side, and heat transfer coefficient of the tube wall were all calculated using numerical analysis. First, the temperature difference on the shell side was calculated as the difference between the measured inlet and outlet temperatures. Likewise, the pressure drop was also calculated as the difference between the measured inlet and outlet pressures.

2. Methodology:

2.1 STHX's layout with the simulation tool ASPEN

A heat exchanger can be designed, rated, simulated, and priced using this software. Here, the heat exchanger created using Kern's theoretical approach is simulated using ASPEN. All the information pertaining to the heat exchanger's geometry and the

e-ISSN: 2395-0056 p-ISSN: 2395-0072

fluid's parameters must be entered into the software's simulation mode. The fluid streams' input temperatures and flow rates must also be specified. It provides a TEMA sheet that shows the heat transfer coefficients, pressure drop both on the shell and tube sides, and other data that are important in heat exchanger design. The input for ASPEN simulation software program in this case is as proven within the following desk 2,

I. ProblemDefinition				
A. ApplicationOptions				
1. General				
Calculation Mode Simulation				
Location of Hot fluid	Shell-Sic	le		
Select Geometry Based on	SI stand	ards		
Calculation Method	Advance	ed method		
2. Hot side				
Application	Liquid, r	no phase chang	ge	
Simulation Calculation	Output t	emperature		
3. Cold side				
Application	Liquid, r	no phase chang	ge	
Simulation Calculation	Output t	emperature		
B. ProcessData				
Fluid Name		Shell-Side hot water	Tube- Side cold water	
Mass flow rate (kg/s)		0.3	0.753	
InletTemperature(°C)		90	30	
Operating Pressure abs (bar)		1	1	
Fouling Resistance (m ² K/W)		0.0002	0.0002	
I. PropertyData				
Properties of fluids were imported form ASPEN database			l database	
I. ExchangerGeometry				
A. Shell/Heads				
Front Head Type		B-bonnet bolted or		
		integral tube-sheet		
Shell Type		E-one pass shell		
Rear Head Type		U – U-tube bundle		
Exchanger Position		Horizontal		
Shell Inner diameter (mm)		154.05		
B. Tube				
Number of Tubes		10		
Number of Tubes Plugg	ed	0		
Tube length (mm)		1038		
Tube Type		Plain		

Tube Outside Diameter (mm)	21.34		
Tube wall Thickness (mm)	1.65		
Tube Pitch (mm)	28.8		
Tube Pattern	45		
Tube Material	Copper		
C. Baffles			
Baffle Type	Single Segmental		
Baffle Cut (%)	29		
Baffle Orientation	Horizontal		
Baffle Thickness (mm)	3.2		
Baffle Spacing (mm)	50.8		
Number of Baffles	16		
D. Nozzles			
Outside diameter of shell side Inlet nozzle (mm)	26.645		
Inside diameter of shell side Inlet nozzle (mm)	26.645		
Outside diameter of tube side Inlet nozzle (mm)	26.645		
Inside diameter of tube side Inlet nozzle (mm)	26.645		
V. Construction Specification	ons		
A. Materials of Construction	1		
Shell	Carbon Steel		
Tube-Sheet	Carbon Steel		
Baffles	Carbon Steel		
Heads	Carbon Steel		
Nozzle	Carbon Steel		
Tube	Copper		
B. Design Specifications			

Table2 Input to ASPEN simulation Software

1. Codes and Standards			
Design Code	ASME Code Sec VIII		
	Div 1		
Service Class	Refinery Service		
TEMA Class	C-General Class		
Material Standard	ASME		
Dimensional Standard	ANSI - American		

	Heat Exchanger Specification Sheet						
1							
2							
3							
4							
5							
6	Size 152.4 - 1038	mm Ty	pe BEU Hor	Connected in	1 parallel	1 series	
7	Surf/unit(eff.) 0.7	m ² Shells/	'unit 1	Surf.	/shell (eff.)	0.7 m²	
8		PERFO	RMANCE OF ON	IE UNIT	_		
9	Fluid allocation		Shell	Side	Tube	Side	
10	Fluid name		hot w	ater	cold v	vater	
11	Fluid quantity, Total	kg/s	0.3	3	0.75	33	
12	Vapor (In/Out)	kg/s	0	0	0	0	
13	Liquid	kg/s	0.3	0.3	0.7533	0.7533	
14	Noncondensable	kg/s	0	0	0	0	
15							
16	Temperature (In/Out)	0 *	90	70.08	30	37.97	
17	Dew / Bubble point	3 *					
18	Density Vapor/Liquid	kg/m³	/ 971.8	/ 971.8	/ 984	/ 984	
19	Viscosity	mPa s	/ 0.354	/ 0.354	/ 0.725	/ 0.725	
20	Molecular wt, Vap						
21	Molecular wt, NC						
22	Specific heat	kJ/(kg K)	/ 4.196	/ 4.196	/ 4.178	/ 4.178	
23	Thermal conductivity	₩/(m K)	/ 0.67	/ 0.67	/ 0.623	/ 0.623	
24	Latent heat	kJ/kg					
25	Pressure (abs)	bar	1	0.98743	1	0.97673	
26	Velocity	m/s	0.1	17	0.7	5	
27	Pressure drop, allow./calc.	bar	0.11	0.01257	0.20684	0.02327	
28	Fouling resistance (min)	m² K/W	0.00	02	0.0002	0.00024 Ao based	
29	Heat exchanged 25.1	k₩		MTD	corrected	45.21 °C	
30	Transfer rate, Service 790.2	Dirty	790.2	Clean 1206.4		₩/(m² K)	

Table3.1 Heat Exchanger Specification sheet by ASPEN Simulation

31	n CONSTRUCTION OF ONE SHELL					Sketch
32			Shell Side		Tube Side	
33	Design/vac/test pre	essure:g <mark>bar</mark>	3.44738/ /	3.44738	V 1	
34	Design temperature	• • C	126.67		126.67	•̀ •̀
35	Number passes per	shell	1		2	
36	Corrosion allowance	e mm	3.18		0	_ <u>`</u> _ ₽ <u>```````</u> ₽ <u></u>
37	Connections	In mm	1 19.05/ -	1	25.4/ -	
38	Size/rating	Out	1 19.05/ -	1	25.4/ ·	
39	Nominal	Intermediate	1 .		1 .	
40	Tube No. 5	Us OD 21.3	4 Tks:Avg 1.65	mm	Length 1038	3 mm Pitch 28.8 mm
41	Tube type Plain		#/m Material Co	opper	-	Tube pattern 30
42	Shell Carbon Stee	I I	D 154.05 OD 168.12	mm	Shell cover	Carbon Steel
43	Channel or bonnet	Carbon Steel			Channel cover	
44	Tubesheet-stational	ry Carbon Steel			Tubesheet-floati	ing -
45	Floating head cover	r •			Impingement pro	otection None
46	Baffle-cross Ca	irbon Steel	Type Single segmental	C	ut(%d) 29.22	H Spacing: c/c 50.8 mm
47	Baffle-long -		Seal type			Inlet 0 mm
48	Supports-tube		U-bend 0		Туре	
49	Bypass seal		Tube-ti	ubesheet	ijoint Ex	p. 2 grv
50	Expansion joint		Туре	None		
51	RhoV2-Inlet nozzle	1190	Bundle entrance	15		Bundle exit 1 kg/(m s²)
52	Gaskets - Shell side	e Flat Me	tal Jacket Fibe Tube S	Side		Flat Metal Jacket Fibe
53	Floating h	nead ·				
54	Code requirements	ASME	Code Sec VIII Div 1			TEMA class R - refinerv service
55	Weight/Shell	122.9	Filled with water	141.2		Bundle 20.2 kg

TEMA Construction Details of Shell and Tube Heat Exchanger as provided by ASPEN Simulation (Table 3.2). The specification sheet shown in Fig. 3.1 and the TEMA specification sheet shown in Fig. 3.2 are the results of the APSEN Simulation programmed.

Figure 26 Shell Side Pressure Drop vs. Shell Side Flow Rate

Figure 27 Shell Side Pressure Drop vs. Shell Side Flow Rate

	Shell Side Fluid-Hot Water			
Property	Unit	Value		
THI		90		
ТНО		70		
Density	kg/m ³	971.8		
Specific Heat Capacity	kJ/kgK	4.1963		
Viscosity	mPas	0.354		
Conductivity	W/mK	0.67		
Fouling Factor	m²K/W	0.0002		

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Flow Rate	kg/s	0.3
	Tube Side Flu	id-Cold Water
тсі		30
тсо		38
Density	kg/m³	984
Specific Heat Capacity	kJ/kgK	4.178
Viscosity	mPas	0.725
Conductivity	W/mK	0.623
Fouling Factor	m²K/W	0.0002
Flow Rate	kg/s	0.7533

4. RESULTS ANDDISCUSSION

Table 4 assessment of normal heat switch Coefficient, Shell aspect outlet temperature and Shell side temperature difference predictions

Heat Exchanger Design Method	Outlet temperature 0C	Overall Heat Transfer Coefficient,W/m2C	Temperature Difference	
Kern's method	70	782	20	
ASPEN Simulation	70.08	790.2	19.92	
CFD Simulation	68.79	852.46	21.21	

4. RESULT AMD FUTURE SCOPE

With the same input parameters, a Shell and Tube Heat Exchanger was constructed using Kern's method, ASPEN simulation software, HTRI simulation software, and Solid Works Flow Simulation software. The overall heat transfer coefficient values were 782, 790.2, 781.9, and 852.6 W/m2K, respectively. In CFD modelling studies on shell and tube heat exchangers, single, double, triple, helical, flower type A 'type, and flower type B 'type baffle layouts have been employed. The following findings came from these simulation studies: Although single segmental baffles have a lower pressure drop and a higher total heat transfer coefficient, they require more pumping force.

1. Where a little agreement with the outlet temperature is attainable, double-segmented baffles may be used instead of single-segmented baffles since the pressure drop will be decreased by 25% to 30%, making energy savings equal.

2. Helical baffles are effective because they reduce pressure loss by 30% to 35% when compared to single segmented baffles. But there has been a 40% decrease in the overall heat switch coefficient. According to this, in order to cover the area needed to obtain the temperature differential, 40% larger tubes must be introduced. Retrofitting won't be possible in this scenario, but installing a new heat exchanger with helical baffles might be justified on the basis of economics. This setting disables triple segmented baffles.

3. Because flower baffles reduce pressure drop by 25% to 35% while simultaneously lowering the overall heat switch coefficient by 30% to 35% with single segmented buffers, they are the most effective baffles.

4. Flowers Because they lessen pressure, Flower B "baffles" are more effective than Flower B "baffles." A rash is comparable to Flower, except it has better thermal performance.

1. Kern's technique and ASPEN simulation results for a typical heat transfer coefficient are comparable, although reliable Works software values are higher by 9%. When using the software solid works, the shell side temperature drop is increased by 6%.

REFERENCES:

[1] S. S. Shinde, S. S. Joshi, and S. Pavithran, "Performance Improvement in Single phase Tubular Heat Exchanger using continuous Helical Baffles," *Int. J. Eng. Res. Appl.*, vol. 2, no. 1, pp. 1141–1149, 2012.

[2] A. El Maakoul, A. Laknizi, S. Saadeddine, M. El, A. Zaite, M. Meziane, and A. Ben, "Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole, helical and segmental baffles," *Appl. Therm. Eng.*, vol. 109, pp. 175–185, 2016.

[3] R. Thundil Karuppa Raj and S. Ganne, "Shell side numerical analysis of a shell and tube heat exchanger considering the effects of baffle inclination angle on fluid flow," *Therm. Sci.*, vol. 16, no. 4, pp. 1165–1174, 2012.

[4] F. Nemati Taher, S. ZeyninejadMovassag, K. Razmi, and R. TasoujiAzar, "Baffle space impact on the performance of helical baffle shell and tube heat exchangers," *Appl. Therm. Eng.*, vol. 44, pp. 143–149, 2012.

[5] A. Vyas and P. Sharma, "An Experimental Analysis Study to Improve Performance of Tubular Heat Exchangers," vol. 3, no. 6, pp. 1804–1809, 2013.

[6] S. Dogra, S. Kumar, G. Chaudhary, A. Kumar, and L. Chaitanya, "DESIGNING OF CONDENSERS USING DIFFERENT MATERIALS AND THEIR COMPARISION," vol. 2, no. 2, pp. 301–308, 2014.

[7] Y. G. Lei, Y. L. He, R. Li, and Y. F. Gao, "Effects of baffle inclination angle on flow and heat transfer of a heat exchanger with helical baffles,"

[8] H. Kotwal and D. S. Patel, "CFD Analysis of Shell and Tube Heat Exchanger- A Review," *Int. J. Eng. Sci. Innov.Technol.*, vol. 2, no. 2, pp.325–329, 2013.

[9] J. F. Zhang, S. L. Guo, Z. Z. Li, J. P. Wang, Y. L. He, and W. Q. Tao, "Experimental performance comparison of shell-and-tube oil coolers with overlapped helical baffles and segmental baffles," Appl. Therm. Eng., vol.58, no.1–2, pp.336–343, 2013.

[10] D. Bhatt and P. M. Javhar, "Shell and Tube Heat Exchanger Performance Analysis," vol. 3, no. 9, pp. 1872–1881, 2009.