

Classification and Prediction Based Data Mining Algorithm in Weka Tool

Renu¹, Kanika²

Abstract-Process of extract unseen and hidden information from large set of data is Data Mining. Different techniques and algorithm are used to get the meaningful information from the large set of data. Different classification algorithm are used just like J48, SMO, REP tree, Naïve Bayes, Multilayer perception to extract meaning information from large set of dataset. Predictive data mining that use historical data, statistical modeling, data mining technique and machine learning to make prediction about future outcomes. Predictive analytics used in different area to identify risks and opportunities. Weka tool are use to predict new data using classification and different classifier J48,SMO,REPTree,Naïve Baves. Multilayer Perception are classify with dataset and find accuracy of Multilayer perception is more efficient in accuracy.

Keywords: Data mining, Weka tool, J48 algorithm classification, Naïve Bayes

1. Introduction

Huge amount of data is collected daily in this information era. Analyzing huge amount of data and extract information from that data is necessity to achieve goals. In data mining data cleaning, incorporating earlier knowledge on data set and interpreting perfect solution from the pragmatic results. Data mining[1] tool weka use to predict new data using selling house dataset. Efficiency of different classifier is calculated using confusion matrix and finds multilayer perception classifier has higher accuracy.

2. Related Technique in data mining

Different data mining techniques [3] to extract insights in data but type of data mining technique used depends on their data and goals. To extract information from data a wide variety of data mining technique are employed.

- Descriptive Modeling
- Clustering
- Association
- Sequential Analysis.
 - Predictive Data mining Technique
- Classification
 - 1. Decision Tree

- 2. Neural network.
- 3. Rule Induction.
- Regression.
 - **Prescriptive Modeling** \geq

- \triangleright Pattern Mining.
- \triangleright Anomaly Detection.

3. Methodology

Weka contains a collection of classifier for data analysis with graphical user interface for easy access. Original non-Java version of weka was a Tel/TK front-end to modeling algorithms implemented in other programming languages plus data preprocessing utilities in C and a make file based system.Orignal version was design as a tool for analyzing data from agriculture domains. Weka3 java based version developed in 1997 is used in different application areas particularly for education purposes and research. Several standard data mining tasks data preprocessing, clustering, classification, regression, visualization and feature selection supported by weka.Input to weka is expected to be formatted according to the attributed relational file format.

Figure 1 Weka Data Mining Tool

4. **Collect Dataset and preprocessing**

Collection of related items of related data accessed individually is dataset. Process of preparing the raw data and making it suitable for a machine learning model just like apply filter and convert file into arff, handling missing data etc is data preprocessing. Used data in the paper is collected from kaggle.com.

@relation housing2

@attribute area real @attribute bedrooms real @attribute bathrooms real @attribute stories real @attribute mainroad {yes,no} @attribute guestroom {yes,no} @attribute basement {yes,no} @attribute hotwaterheating {yes,no} @attribute parking real @attribute prefarea {yes,no} @attribute price real @attribute furnishingstatus {furnished,semi-furnished,unfurnished}

@data

7420,4,2,3,yes,no,no,no,yes,2,yes,,13300000,furnished 8960,4,4,4,yes,no,no,no,yes,3,no,12250000,furnished 9960,3,2,2,yes,no,yes,no,no,2,yes,12250000,semi-furnished 7500,4,2,2,yes,no,yes,no,yes,3,yes,12215000,furnished 7420,4,1,2,yes,yes,yes,no,yes,2,no,11410000,furnished 7500,3,3,1,yes,no,yes,no,yes,2,yes,10850000,semi-furnished 8580,4,3,4,yes,no,no,no,yes,2,yes,10150000,semi-furnished 16200,5,3,2,yes,no,no,no,no,0,no,10150000,unfurnished 8100,4,1,2,yes,yes,yes,no,yes,2,yes,9870000,furnished

Figure 2 Dataset of house

5. Predict new data based on Dataset and Classifier

In prediction [4] use Dataset housing and classifier J48 by supplied

Training data as dataset and Supplied test data to predict unknown attribute.

Classifier output							
=== Run infor	mation ===						
Scheme:	weka.classifiers.functions.SMO -C 1.0 -						
Relation:	housing2						
Instances:	44						
Attributes:	13						
	area						
	bedrooms						
	bathrooms						
	stories						
	mainroad						
	guestroom						
	basement						
	hotwaterheating						
	airconditioning						
	parking						
	prefarea						
	price						
	furnishingstatus						
Test mode:	user supplied test set: size unknown						
=== Predictio	ons on test set ===						
inst#	actual predicted error prediction						
1	1:? 1:furnished 0.667						
2	1:? 1:furnished 0.667						
3	1:? 2:semi-furnished 0.667						
4	1:? 1:furnished 0.667						
5	1:? 1:furnished 0.667						
6	1:2 1:furnished 0.667						

6. Performance evaluation

Different machine and deep learning measurement can be applied on the various classifier models. The measurements are Accuracy, Recall and Precision is the important criterion used to assess a model performance. The value of the confusion matrix which is generated during the testing of the model is considered to calculate those measurements. A confusion matrix is N*N matrix used for evaluating the performance of classification model. After classification confusion matrix compares the actual target values with predicted by the machine learning model. Confusion matrices give a better idea of a model performance.

Accuracy=Total correctly classified/Actual

Precision=Corrected predicted/Total predicted

Recall=correctly classified/Actual

6.1. Classifier J48

Classifier output

Classifier output		
Time taken to build model: 0.02 seco	onds	
=== Evaluation on training set ===		
Time taken to test model on training	g data: O seconds	
=== Summary ===		
Correctly Classified Instances	34	77.2727 %
Incorrectly Classified Instances	10	22.7273 %
Kappa statistic	0.6376	
Mean absolute error	0.1848	
Root mean squared error	0.304	
Relative absolute error	43.5053 %	
Root relative squared error	66.0557 %	
Total Number of Instances	44	
=== Detailed Accuracy By Class ===		

	Precision	Recall	Class
	0.818	0.900	furnished
	0.714	0.667	semi-furnished
	0.750	0.667	unfurnished
Weighted Avg.	0.769	0.773	

=== Confusion Matrix ===

a b c <-- classified as
18 1 1 | a = furnished
4 10 1 | b = semi-furnished
0 3 6 | c = unfurnished</pre>

Figure 4 Classifier J48

Accuracy, precision, recall of Classifier J48 using confusion matrix

Figure 3 Predict new data j48 Classifier

Table 1 Confusion matrix J48

а	b	с	Total	
18	1	1	20	
4	10	1	15	
0	3	6	9	
22	14	8	44	

Accuracy=Total correctly classified/Actual

= ((18+10+6)/44)*100=77.27%

Precision=Corrected predicted/Total predicted

A=18/22=0.818

B=10/14=0.714

C=6/8=0.75

Recall=correctly classified/Actual

A=18/20=0.9

B=10/15=0.667

C=6/9=0.667

6.2. Classifier SMO

Classifier output					
Time taken to bu					
=== Evaluation of	n training	set ===			
Time taken to te					
=== Summary ===					
Correctly Classi	fied Instan	ces	25	56.8182 %	
Incorrectly Clas	sified Inst	ances	19	43.1818 %	
Kappa statistic			0.2516		
Mean absolute er	ror		0.3384		
Root mean square	d error		0.4342		
Relative absolut	e error		79.6409 %		
Root relative sq	uared error		94.348 %		
Total Number of	Instances		44		
=== Detailed Acc	uracy By Cl	ass ===			
	Precision	Recall	Class		
	0.545	0.900	furnished		
	0.600	0.400	semi-furnished		
	1.000	0.111	unfurnished		
Weighted Avg.	0.657	0.568			
=== Confusion Matrix ===					
abc <	classified	as			
18 2 0 a =	furnished				
960 b =	semi-furni	shed			
6 2 1 c =	unfurnishe	d			

Figure 5 Classifier SMO

Accuracy, precision, recall of Classifier SMO using confusion matrix

Table 2 Confusion Matrix SMO

а	b	С	Total
18	2	0	20
9	6	0	15
6	2	1	9
33	10	1	44

Accuracy=Total correctly classified/Actual = ((18+6+1)/44)*100=56.81%Precision=Corrected predicted/Total predicted A=18/33=0.545 B=6/10=0.6 C=1/1=1 Recall=correctly classified/Actual A=18/20=0.9 B=6/15=0.4 C=1/9=0.1

6.3. Classifier Naïve Bayes

Classifier output		
Time taken to build model: 0 seconds		
=== Evaluation on training set ===		
Time taken to test model on training	data: 0.01 seconds	
=== Summary ===		
Correctly Classified Instances	29	65.9091 %
Incorrectly Classified Instances	15	34.0909 %
Kappa statistic	0.4435	
Mean absolute error	0.3256	
Root mean squared error	0.4021	
Relative absolute error	76.6225 %	
Root relative squared error	87.3734 %	
Total Number of Instances	44	
=== Detailed Accuracy By Class ===		
Precision Recall	Class	
0.625 0.750	furnished	
0.733 0.733	semi-furnished	
0.600 0.333	unfurnished	
Weighted Avg. 0.657 0.659		
=== Confusion Matrix ===		
a b c < classified as		
15 3 2 a = furnished		
4 11 0 b = semi-furnished		
5 1 3 c = unfurnished		

Figure 6 Classifier Naive Bayes

Accuracy, precision, recall of Classifier Naïve Bayes using confusion matrix

Table 3 Confusion Matrix Naive Bayes

а	b	с	Total
15	3	2	20
4	11	0	15
5	1	3	9
24	15	5	44

Accuracy=Total correctly classified/Actual

= ((15+11+3)/44)*100 =65.90%

Precision=Corrected predicted/Total predicted

A=15/24 =0.625

B=11/15 =0.733

C=3/5 =0.6

Recall=correctly classified/Actual

A=15/20 =0.75

B=11/15 =0.733

C=3/9=0.33

6.4. Classifier REPTree

Classifier output					
classifier output					
Time taken to bu					
=== Evaluation o	n training	set ===			
Time taken to te	st model on	training	g data: 0 seconds		
=== Summary ===					
Correctly Classi	fied Instan	ces	20	45.4545	90
Incorrectly Clas	sified Inst	ances	24	54.5455	ş
Kappa statistic			0		
Mean absolute er	ror		0.4236		
Root mean square	d error		0.4602		
Relative absolut	e error		99.6862 %		
Root relative sq	uared error		99.99 %		
Total Number of	Instances		44		
=== Detailed Acc	uracy by CI	.835 ===			
	Precision	Recall	Class		
	0.455	1.000	furnished		
	?	0.000	semi-furnished		
	?	0.000	unfurnished		
Weighted Avg.	?	0.455			
=== Confusion Ma	trix ===				
abc <	classified	as			
20 0 0 a =	furnished				
15 0 0 b =	semi-furni	shed			
900 c=	unfurnishe	d			

Figure 7 classifier REPTree

Accuracy, precision, recall of Classifier REPTree using confusion matrix

Table 4	Confusion	Matrix	REPTree
Table 1	Comusion	Matin	KLI IICC

а	b	с	Total
20	0	0	20
15	0	0	15
9	0	0	9
44	0	0	44

Accuracy=Total correctly classified/Actual

= ((20+0+0)/44)*100=45.45%

Precision=Corrected predicted/Total predicted

A=20/44=0.455

B=0/0

C = 0/0

Recall=correctly classified/Actual

A=20/20 =1

B=0/15 =0

C=0/9=0

6.5. Classifier Multilayer perception

Classifier output					
Time taken to b	uild model:	0.22 sec	onds		
=== Evaluation	on training	set ===			
Time taken to t	est model on	trainin	g data: O seconds		
=== Summary ===					
Correctly Class	ified Instan	ices	42	95.4545	ł
Incorrectly Cla	ssified Inst	ances	2	4.5455	z
Kappa statistic			0.9285		
Mean absolute e	rror		0.0667		
Root mean squar	ed error		0.1248		
Relative absolu	te error		15.7059 %		
Root relative s	quared error	:	27.108 %		
Total Number of	Instances		44		
=== Detailed Ac	curacy By Cl	.ass ===			
	Precision	Recall	Class		
	0.950	0.950	furnished		
	1.000	1.000	semi-furnished		
	0.889	0.889	unfurnished		
Weighted Avg.	0.955	0.955			
=== Confusion M	atrix ===				
abc <	classified	as			
19 0 1 a	<pre>= furnished</pre>				
0150 b	= semi-furni	shed			
108 c	= unfurnishe	d			

Figure 8 Classifier Multilayer Perception

L

Accuracy, precision, recall of Classifier Multilayer perception using confusion matrix

Table 5 Confusion Matrix Multilayer Perception

а	b	с	Total
19	0	1	20
0	15	0	15
1	0	8	9
20	15	9	44

Accuracy=Total correctly classified/Actual

Precision=Corrected predicted/Total predicted

A=19/20=0.95

B=15/15 =1

C=8/9=0.88

Recall=correctly classified/Actual

A=19/2 =0.95

B=15/15 =1

C=8/9 =0.88

6.6. Different Classifier Analysis

Test output												
Tester: Analysing:	weka.experimen Percent_correc	nt.Pa ct	iredCorre	ect	tedTTester	-G	4,5,6 -	-D 1	-R 2 -	-S 0	.05	-r
Datasets: Resultsets:	1 5											
Confidence:	0.05 (two tai)	led)										
Sorted by: Date:	- 6/2/23, 2:13 1	PM										
Dataset		(1)	trees.J4	I	(2) trees	(3)	bayes	(4)	funct	(5)	fu	nct
housing2		(100)	33.85	I	43.05	2	8.90	5	1.55 v	2	9.2	5
			(v/ /*)	I	(0/1/0)	(0/1/0)	(1/0/0)	(0/1,	/0)

Figure 9 Different Classifiers Analysis

7. Accuracy of Different Classifier

The dataset is tested and analyze with classification algorithm [6] those are Multilayer perception, J48, Naïve Bayes, SMO, J48 and REPTree. Comparison of accuracy of all classifier is done it has been find that Multilayer Perception classifier perform best with accuracy. Accuracy is metric for evaluating classification models.

To increase the accuracy of model various method are used. Easiest way to improve the accuracy of model is to handle missing values. These some methods are to increase accuracy

- Acquire more data.
- Missing value treatment.
- Outlier treatment.
- Feature Engineering.
 - Applying different model.
- Cross validation.
- Ensembling methods.
- Hyperparameter tuning.

Table 6 Different classifier Accuracy

Classifier	Accuracy				
Multilayer Perception	95.45%				
J48	77.27%				
Naïve Bayes	65.90%				
SMO	56.81%				
Reptree	45.45%				

As above Figure10 show that accuracy of Multilayer Perception classifier is high that is 95.45% as compare to the other classifier.

Conclusion

In this paper classification technique J48 is used to predict the data using housing dataset and also analysis the various classifiers and find that multilayer perception perform best with high accuracy.Weka data mining tool is easy to understand and interfaced with various technique. Hence future of data mining is promising for further research and can be applied in different areas due to the availability of huge databases.

References

[1] https://en.wikipedia.org/wiki/Data_mining

[2] https://medium.com

[3] Jiawei Han Michelin Kamber,"Data Mining Concepts and Techniques", Morgan Kaufmann Publishers

[4] M.Ramaswami and R.Bhaskaran,"A CHAID Based performance prediction model in educational data mining,"Journal of computer science Issues

[5] Mansi Gera Shivani goel,"Data mining techniques methods and algorithms

[6] A Michal,"IPM developers works: IBM resource for developers and IT"