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Abstract - In this paper, a simplified alternative approach 
to determining the value of parameter F in Mountain Gazelle 
Optimizer (MGO) is proposed to enhance the algorithm’s 
global performance on high-dimensional problems. The 
proposed improved MGO called Improved F-parameter 
Mountain Gazelle Optimizer (IFMGO), was tested on 13 
standard high-dimensional benchmark functions while 
varying the problem dimensions. Further simulation test was 
run on other 10 fixed-dimensional benchmark functions. The 
MATLAB simulation results were compared to those of the 
original MGO and Particle Swarm Optimization (PSO) 
algorithms reported in the literature. The proposed IFMGO 
performed exceptionally better than the original MGO and PSO 
in solving high-dimensional optimization benchmark 
functions, as well as maintained excellent performance on 
fixed-dimensional optimization benchmark functions. The 
IFMGO also exhibited robustness, good convergence 
characteristics, and stability relative to the other algorithms. 
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1. INTRODUCTION 
 
In recent years, nature-inspired optimization algorithms 
have gained significant attention for their ability to tackle 
complex optimization problems [1][2][3]. One such 
algorithm is the Mountain Gazelle Optimizer (MGO), inspired 
by the intelligence behind the wildlife of mountain gazelle 
species in their natural habitat [4]. While MGO has shown 
promising results in various optimization tasks, its 
performance in solving high-dimensional problems can be 
further enhanced to address the challenges presented by 
real-world problems characterized by a large number of 
variables [5]. 

In this paper, a new modification to the MGO is proposed by 
improving the F-parameter calculation to improve the 
algorithm’s performance in handling high-dimensional 
optimization problems. The F-parameter plays a crucial role 
in controlling the exploration and exploitation trade-off 
during the search process, influencing the convergence 
speed and stability to escape local optima [5]. By modifying 
the F-parameter to the specific requirements of high-

dimensional problems, the algorithm’s ability to efficiently 
explore the search space and locate global optimal solutions 
is enhanced.  

The primary objective of this research is to investigate the 
impact of the proposed F-parameter modification on the 
performance of the MGO algorithm when applied to a set of 
widely recognized high-dimensional benchmark functions. 
These benchmark functions have been extensively used in 
the literature to evaluate and compare the performance of 
various optimization algorithms [4][6][7]. By conducting a 
comprehensive experimental study, the aim is to assess the 
effectiveness of the proposed modification and provide 
empirical evidence of its benefits. 

The remainder of this paper is organized as follows: Section 
2 presents a detailed description of the MGO algorithm and 
its key components. Section 3 outlines the proposed 
modification to the F-parameter and explains its rationale. 
Section 4 describes the experimental setup and 
implementation to evaluate the performance. Section 5 
presents the test results and discussions drawn from the test 
simulation. Finally, Section 6 concludes and outlines possible 
directions for future research. 
 

2. ORIGINAL MGO ALGORITHM 
2.1 Background 
 
The mountain gazelle is a species of gazelle that naturally 
live in the Arabian Peninsula and the surrounding regions 
[4]. Despite having a wide distribution, the gazelle 
population density is relatively low. This species is closely 
linked to the habitat of the Robinia tree species. Mountain 
gazelles exhibit strong territorial behavior, establishing their 
territories at significant distances from each other. They 
form three distinct types of groups, which include herds 
consisting of mothers and offspring, herds of young males, 
and solitary males within their territories. Male gazelles 
engage in frequent battles, where the competition for 
resources is more intense than the competition for females. 
In these battles, immature males utilize their horns more 
frequently compared to adults or territorial males. Mountain 
gazelles undertake migrations of over 120km in search of 
food. They possess remarkable speed, being able to run 100 
meters at a speed of 80km/h on average [4][5]. 
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2.2 Mathematical Modelling  

The MGO optimization algorithm is a mathematical model 
that draws inspiration from the social behavior and habitats 
of mountain gazelles. It incorporates essential elements of 
the gazelles’ group dynamics, such as the behavior of 
bachelor male herds (BMH), maternity herds (MH), 
territorial and solitary males (TSM), and their migration 
pattern in search of food (MSF). These aspects are 
mathematically represented in the following manner. 

Territorial Solitary Male (TSM): 

The adult male gazelles’ mechanism of protecting their 
territories against intruders is mathematically modeled in 
equation (1). 

  1 2| |gazelle rTSM male ri BH ri X t F Cof            (1) 

Where; 

 ri1 and ri2: are random integers of either 1 or 2. 

 malegazelle : is the position vector of the best male 
gazelle so far. 

The values of HB, F, and Cofr are determined using equations 
(2), (3), and (4). 

 1 2 3
, .....N

ra prBH X r M r ra N      (2) 

The value of Xra is a random solution (young male) in the 
range of ra, and that of Mpr is the average number of search 
agents. The value of N is the number of gazelles, and r1 and r2 
are random values from a range of (0, 1). 

    2
1 exp 2

MaxIter
F N D Iter      (3) 

N1 represents random values with the size of the problem 
dimension determined using a standard distribution. The 
Iter and MaxIter respectively represent the iteration count 
and the maximum iterations. 
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Where;  

 r3 and r4: represent random values within the range 
(0, 1). 

 N2, N3, and N4: are set of randomly generated values 
with the size of the problem function.  

The value of a is determined using equation (5) below at 
every iteration. 

1
1a Iter

MaxIter

 
    

 
  (5) 

Maternity Herd (MH): 

The intelligence behind the mother gazelle’s act of protecting 
its offspring is mathematically modeled in equation (6). 

   1, 3 4 1,r gazelle rand rMH BH Cof ri male ri X Cof           (6) 

Where; 

 Xrand: represents a vector position of a gazelle 
randomly selected from the population. 

 ri3 and ri4: are integers randomly chosen from (1, 2). 

Bachelor Male Herds (BMH): 

In part of the development process of the male gazelles, the 
young adult male ones create their territories and try 
winning female gazelles to join them. This behavior is 
modeled in equation (7). 

    5 6gazelle rBMH X t D ri male ri BH Cof           (7) 

Where; 

 X(t): is the position vector of the gazelle in the 
current iteration. 

 ri5, and ri6: are integers randomly from (1, 2). 

 r6: is a randomly selected value from range (0 1). 

 The value of D is determined using equation (8) 
below. 

   6| ( ) | | | 2 1gazelleD X t male r      (8) 

Migration in Search of Food (MSF): 

The foraging mechanism of mountain gazelles involves 
roaming to search the green pasture of their choice. This 
random movement is modeled in equation (9). 

  7MSF ub lb r lb      (9) 
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lb and ub represent the lower search boundary and the 
upper search boundary respectively. The value of r7 is 
randomly chosen from (0, 1). 

Pseudocode of MGO Algorithm 
Inputs: iteration counter (Iter), maximum iteration 

(MaxIter), population size (N). 

Output: gazelle’s position, and its fitness value  

Initialize random gazelle populations, Xi(i=1, 2, …N) 

Evaluate the fitness values of the population. 

While (Iter < MaxIter), do 

for (every gazelle, Xi) do 

Calculate TSM using equation (1) 

Calculate MH using equation (6) 

Calculate BMH using equation (7) 

Calculate MSF using equation (9) 

Evaluate the fitness values of TSM, MH, BMH, 

and MSF. 

End for 

Output best gazelle, Xbest, and its fitness value. 

End while 

  
3. Proposed Modification in F-parameter 

The territorial solitary males (TSM) phase is one of the major 
population update operators in the MGO algorithm, and it is 
mathematically presented in equation (1). The parameter F 
in the equation greatly influences the convergence behavior 
of the MGO algorithm. To enhance the algorithm’s 
performance in producing better global solutions for high-
dimensional problems, an alternative mathematical 
expression is proposed for the calculation of the parameter F 
in equation (1). The initial mathematical determination of 
the value parameter F, expressed in equation (3), has been 
replaced with a proposed expression presented in equation 
(10) below. 

 (1, ) expF randn d Iter     (10) 

Where; Iter is the iteration counter, d represents the 
problem dimension, and randn(1,d) generates normally 
distributed pseudorandom numbers. 

The proposed mathematical expression for determining the 
value of parameter F, represented in equation (10), 
efficiently balanced the exploration and exploitation process 
of the MGO algorithm during the search process. The 
algorithm’s ability to efficiently explore the search space and 
locate global optimal solutions is enhanced. 

Flow Chart of IFMGO Algorithm 

Start Algorithm

Initialize gazelle population

Evaluate fitness of population

Compute value of F 
using proposed 

equa (10)

Update population 
with TSM

Update population 
with MH

Update population 
with BMH

Update population 
with MSF

Evaluate fitness of population

Is Iter >= MaxIter ?No

Return the best gazelle and its fitness 
value

End

Yes

 

Figure 1: Flow Chart of IFMGO Algorithm 

4. Testing Proposed IFMGO Algorithm 

Twenty-three (23) standard benchmark test functions used 
in the original MGO algorithm are considered in this work to 
establish the effective performance of the proposed IFMGO 
algorithm [4][8]. The first thirteen (13) benchmark functions 
(F1-F13), representing high-dimensional optimization 
problems, are considered for various test cases based on 
varying problem dimensions. Case 1 considered the 
functions with the default problem dimension of 30, case 2 
considered the same functions with an increased in 
dimension to 100, case 3 considered a 500-dimension size, 
and Case 4 considered the same problem functions with a 
dimension size of 1000. The remaining ten benchmark 
functions (F14-F23), representing standard fixed-
dimensional optimization problems, are considered for case 
5 [9]. The IFMGO algorithm is implemented in a MATLAB 
environment using a hp pavilion laptop computer. The 
simulation parameters settings are presented in Table 1. 
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Table - 1: Simulation Parameters 
 

Item Value 

Population Size 30 

Maximum Iteration 500 

Number of Runs 30 

 
The default information of the standard benchmark 
functions used to test the IFMGO algorithm            is given in 
Table 2, while the function equations are presented in Table 
3 [10]. 

Table - 2: Detail Information of Benchmark Functions 

No Function Search Range Global 

Optimu

m 

Dim 

1 F1 [-100, 100] 0 30 

2 F2 [-10, 10] 0 30 

3 F3 [-100, 100] 0 30 

4 F4 [-100, 100] 0 30 

5 F5 [-30, 30] 0 30 

6 F6 [-100, 100] 0 30 

7 F7 [-1.28, 1.28] 0 30 

8 F8 [-500, 500] -12,569 30 

9 F9 [-5.12, 5.12] 0 30 

10 F10 [-32, 32] 0 30 

11 F11 [-600, 600] 0 30 

12 F12 [-50, 50] 0 30 

13 F13 [-50, 50] 0 30 

14 F14 [-65.53, 65.53] 0.998 2 

15 F15 [-5, 5] 0.00030 4 

16 F16 [-5, 5] -1.0316 2 

17 F17 [-5, 0] [10, 15] 0.398 2 

18 F18 [-5, 5] 3 2 

19 F19 [0, 1] -3.86 3 

20 F20 [0, 1] -3.32 6 

21 F21 [0, 10] -10.1532 4 

22 F22 [0, 10] -10.4028 4 

23 F23 [0, 10] -10.5363 4 

 
5. Results and Discussion 

The IFMGO algorithm was simulated on each of the test 
functions 30 times and the following statistical information; 
best, mean, worst, and standard deviation (Std) were 
extracted. The simulation test was repeated for all five (5) 
case scenarios. The results were compared to those reported 
in the base MGO algorithm under the same cases to illustrate 
the effectiveness of the performance of the proposed IFMGO 
algorithm in handling complex high-dimensional problems 
as well as fixed-dimensional problems [4]. The results 
comparison is presented under each case scenario. 

Case 1: Results Comparison for F1-to-F13 (dimension = 30) 

Table 4 contains the simulation results of the IFMGO 
algorithm on the high-dimensional benchmark functions 
with the default dimensions of 30, compared to those of the 
MGO algorithm and PSO algorithm reported in literature 
with the same dimension [5]. 

Table - 3: Results of Case 1 (d=30) 

Func Para IFMGO MGO PSO 
  
F1  

Best 
Worst 
Mean 
STD 

5.5672E-273 
4.2677E-236 
1.4291E-237 
0.0000E+00 

2.4152E-81 
4.9485E-71 
4.7455E-72 
1.3401E-71 

7.1071E-09 
7.3614E-05 
4.4590E-06 
1.4568E-05 

  
F2 

Best 
Worst 
Mean 
STD 

2.3796E-154 
1.6278E-136 
5.4260E-138 
2.9719E-137 

1.6760E-46 
6.0784E-41 
3.9067E-42 
1.1893E-41 

5.6941E-06 
2.0504E-02 
3.3272E-03 
5.4084E-03 

  
F3 

Best 
Worst 
Mean 
STD 

3.9933E-67 
2.0790E-37 
6.9580E-39 
3.7953E-38 

3.5309E-14 
1.6370E-07 
6.8224E-09 
2.9791E-08 

1.8171E+01 
3.4851E+03 
5.8934E+02 
9.9009E+02  

  
F4 

Best 
Worst 
Mean 
STD 

2.2873E-117 
5.1373E-93 
1.7224E-94 
9.3776E-94 

5.2537E-30 
4.1424E-22 
1.5909E-23 
7.5435E-23 

2.6406E-01 
2.1015E+00 
5.3311E-01 
3.8014E-01 

  
F5 

Best 
Worst 
Mean 
STD 

0.0000E+00 
3.2121E-29 
2.7175E-30 
7.5412E-30 

0.0000E+00 
2.5559E-22 
1.1953E-23 
4.9592E-23 

1.9874E+01 
1.0846E+02 
4.6616E+01 
3.0547E+01 

 
F6 

Best 
Worst 
Mean 
STD 

1.2433e-13 
3.1703E-10 
2.1348E-11 
6.9217E-09 

4.8095E-12 
3.5099E-08 
4.5398E-09 
7.6544E-09 

6.7447E-09 
4.1088E-05 
2.9114E-06 
7.6033E-06 

 
F7 

Best 
Worst 
Mean 
STD 

3.2389E-05 
9.9062E-04 
2.3789E-04 
2.1642E-04 

3.2450E-05 
1.5342E-03 
5.5958E-04 
3.8895E-04 

4.0726E-02 
1.5602E-01 
9.5056E-02 
2.9977E-02 

 
F8 

Best 
Worst 
Mean 
STD 

-1.2569E+04 
-1.2569E+04 
-1.2569E+04 
 1.7527E-08 

-1.2569E+04 
-1.2569E+04 
-1.2569E+04 
 3.9992E-08 

-3.315E+03 
-1.949E+03 
-2.590E+03 
 2.810E+02 

 
F9 

Best 
Worst 
Mean 
STD 

0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 

0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 

1.9899E+01 
7.2632E+01 
3.8671E+01 
1.3480E+01 

 
F10 

Best 
Worst 
Mean 
STD 

8.8818E-16 
4.4409E-15 
1.0066E-15 
6.4863E-16 

8.8818E-16 
4.4409E-15 
1.7171E-15 
1.5283E-15 

3.7741E-06 
2.4083E+00 
3.1302E-01 
7.3029E-01 

 
F11 

Best 
Worst 
Mean 
STD 

0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 

0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 

6.3190E+01 
1.0377E+02 
8.3190E+01 
1.0729E+01 

 
F12 

Best 
Worst 
Mean 
STD 

1.5705E-32 
1.6916E-32 
1.6313E-32 
4.4173E-34 

1.5705E-32 
2.1956E-25 
1.6966E-26 
4.5383E-26 

9.3714E-11 
1.5674E+00 
2.4928E-01 
3.7051E-01 

 
F13 

Best 
Worst 
Mean 
STD 

1.3498E-32 
3.5685E-32 
1.5618E-32 
5.3197E-33 

1.3498E-32 
6.4034E-32 
1.8141E-32 
9.9543E-33 

2.9246E-11 
1.1006E-02 
2.5662E-03 
4.7275E-03 
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The IFMGO algorithm performed exceptionally better than 
the base MGO algorithm and the PSO algorithm in all the 
benchmark functions, except in benchmark functions F9 and 
F11 where it produced the exact global optimal solution as 
the base MGO. With the default dimension for all 13 
benchmark functions, the IFGMO algorithm is superior to the 
other two algorithms. In the remaining three test cases, the 
dimension is gradually increased to see the performance 
response to these changes in dimensions. The dimension is 
successively increased in the order of 100, 500, and 1000 
respectively [4]. 

Case 2: Results Comparison for F1-F13 (dimension = 
100) 
Presented in Table 4 are the results of the proposed IFMGO 
algorithm, the base MGO algorithm, and the PSO algorithm 
with a problem dimension of hundred (100). 

Table - 4: Results of Case 2 (d=100) 

Func Para IFMGO MGO PSO 
  
F1  

Best 
Worst 
Mean 
STD 

5.8064E-262 
2.7701E-220 
9.2335E-222 
0.0000E+00 

5.8529E-72 
5.0778E-59 
2.8822E-60  
1.0124E-59  

5.0972E-01 
4.6534E+00 
1.4251E+00 
9.7808E-01 

  
F2 

Best 
Worst 
Mean 
STD 

9.3785E-152 
4.6887E-131 
2.8979E-132 
9.7798E-132 

1.8226E-39 
1.1415E-34 
1.0590E-35 
2.3627E-35  

1.4002E+00 
6.9190E+00 
3.3344E+00 
1.4074E+00 

  
F3 

Best 
Worst 
Mean 
STD 

9.5118E-58 
9.4411E-17 
3.3543E-18 
1.7234E-17 

1.3729E-09  
1.6621E+00 
1.0307E-01 
3.8330E-01  

7.1514E+03 
5.9518E+04 
2.0883E+04 
1.3515E+04 

  
F4 

Best 
Worst 
Mean 
STD 

1.7822E-113 
4.4171E-90 
1.6099E-91 
8.0658E-91 

4.1801E-28 
5.5156E-20  
3.3318E-21 
1.1114E-20  

5.4860E+00 
8.1293E+00 
6.7348E+00 
6.9549E-01 

  
F5 

Best 
Worst 
Mean 
STD 

0.0000E+00 
1.1618E-28 
2.1951E-29 
3.9372E-29 

1.9281E-28 
2.4356E-24 
1.2127E-25 
4.4925E-25  

2.1878E+02 
8.4957E+02 
4.3733E+02 
1.2317E+02 

 
F6 

Best 
Worst 
Mean 
STD 

8.3708E-10 
1.1378E-03 
1.4312E-04 
1.0238E-04 

7.9256E-08 
1.3496E-03  
1.9521E-04 
3.1368E-04  

3.7238E-01 
3.1286E+00 
1.2662E+00 
6.9627E-01 

 
F7 

Best 
Worst 
Mean 
STD 

9.2093E-06 
1.5500E-03 
2.5734E-04 
3.3519E-04 

1.0821E-04  
1.7247E-03 
6.5441E-04 
4.2507E-04  

2.7694E+00 
1.8461E+01 
5.8645E+00 
3.5868E+00 

 
F8 

Best 
Worst 
Mean 
STD 

-4.1898E+04 
-4.1898E+04 
-4.1898E+04 
 1.9854E-02 

-4.189E+04 
-4.189E+04  
-4.189E+04 
5.4299E-04  

-6.084E+03 
-3.999E+03 
-4.847E+03 
5.5520E+02 

 
F9 

Best 
Worst 
Mean 
STD 

0.0000E+00 
0.0000E+00  
0.0000E+00  
0.0000E+00   

0.0000E+00 
0.0000E+00  
0.0000E+00  
0.0000E+00   

1.1118E+02 
2.3001E+02 
1.5880E+02 
2.4475E+01 

 
F10 

Best 
Worst 
Mean 
STD 

8.8818E-16  
8.8818E-16  
8.8818E-16  
0.0000E+00 

8.8818E-16  
4.4409E-15  
1.9540E-15  
1.6559E-15 

2.2839E+00 
5.1474E+00 
3.4326E+00  
7.7478E-01 

 
F11 

Best 
Worst 
Mean 
STD 

0.0000E+00 
0.0000E+00  
0.0000E+00  
0.0000E+00   

0.0000E+00  
0.0000E+00  
0.0000E+00  
0.0000E+00  

2.9293E+02  
3.7786E+02  
3.3580E+02  
2.2170E+01  

 
F12 

Best 
Worst 
Mean 
STD 

4.7116E-32 
4.8326E-32 
4.7552E-32 
4.5567E-34 

4.5392E-28  
1.8790E-22  
1.4673E-23  
3.7348E-23  

7.2916E-02  
2.8015E+00  
1.0396E+00  
6.8852E-01  

 
F13 

Best 
Worst 
Mean 
STD 

1.3498E-32 
1.7196E-32 
1.3621E-32 
6.7512E-34 

7.1430E-32  
1.5033E-27  
9.3420E-29  
2.8261E-28 

1.0559E+01  
8.8300E+01  
4.4825E+01  
2.0855E+01 

 
Case 3: Results Comparison for F1-F13 (dimension = 
500) 

Table 5 contains simulation results of the IFMGO algorithm, 
MGO algorithm, and PSO algorithm with a problem 
dimension of 500. 

Table - 5: Results of Case 3 (d=500) 

Func Para IFMGO MGO PSO 
  
F1  

Best 
Worst 
Mean 
STD 

2.8209E-247 
3.9502E-218 
1.3172E-219 
0.0000E+00 

6.3261E-65  
7.8225E-57  
8.3894E-58  
1.9479E-57 

2.2908E+02  
6.6223E+02  
4.0788E+02  
9.3153E+01 

  
F2 

Best 
Worst 
Mean 
STD 

6.4132E-147 
4.3948E-126 
1.4727E-127 
8.0223E-127 

4.0752E-37  
6.6739E-31  
3.7635E-32  
1.3419E-31 

1.3061E+02  
2.0196E+02  
1.6522E+02  
1.7363E+01 

  
F3 

Best 
Worst 
Mean 
STD 

8.1929E-37 
1.4819E+00 
4.9624E-02 
2.7051E-01 

1.0212E-03  
1.2988E+03  
9.5107E+01  
3.0161E+02 

2.2182E+05  
1.4161E+06  
5.6552E+05  
2.7686E+05 

  
F4 

Best 
Worst 
Mean 
STD 

5.3363E-110 
1.0371E-90 
3.9329E-92 
1.8911E-91 

2.5475E-24  
3.3913E-20  
4.6534E-21  
8.4085E-21 

1.0858E+01  
1.4880E+01  
1.3217E+01  
9.9456E-01 

  
F5 

Best 
Worst 
Mean 
STD 

0.0000E+00 
4.8431E-28 
6.1804E-29 
1.2812E-28 

1.1116E-26  
4.4281E-22  
3.2347E-23  
8.4085E-23 

2.1847E+04  
4.6978E+04  
3.4912E+04  
6.9396E+03 

 
F6 

Best 
Worst 
Mean 
STD 

6.4686E-08 
9.5367E-02 
4.5669E-03 
1.7451E-02 

2.2284E-05  
9.6604E-02  
1.3185E-02  
2.5846E-02 

2.6194E+02  
9.1820E+02  
4.1107E+02  
1.5448E+02 

 
F7 

Best 
Worst 
Mean 
STD 

2.1416e-06 
2.0328E-03 
3.5801E-04 
4.6525E-04 

7.5304E-05  
1.8466E-03  
6.9155E-04  
4.7589E-04 

1.9533E+03  
2.9580E+03  
2.3677E+03  
2.8259E+02 

 
F8 

Best 
Worst 
Mean 
STD 

-2.0949E+05  
-2.0949E+05  
-2.0949E+05  
1.3908E-02 

-2.0949E+05  
-2.0949E+05  
-2.0949E+05  
2.7521E-02 

-1.3732E+04  
-7.7850E+03  
-1.0804E+04  
1.7772E+03 

 
F9 

Best 
Worst 
Mean 
STD 

0.0000E+00  
0.0000E+00  
0.0000E+00  
0.0000E+00 

0.0000E+00  
0.0000E+00  
0.0000E+00  
0.0000E+00 

2.1294E+03  
2.8336E+03  
2.4039E+03  
1.7236E+02 

 
F10 

Best 
Worst 
Mean 

8.8818E-16  
8.8818E-16  
8.8818E-16  

8.8818E-16  
4.4409E-15  
1.3619E-15  

6.8260E+00  
8.4758E+00  
7.7063E+00  
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STD 0.0000E+00 1.2283E-15 4.3292E-01 
 
F11 

Best 
Worst 
Mean 
STD 

0.0000E+00  
0.0000E+00  
0.0000E+00  
0.0000E+00 

0.0000E+00  
0.0000E+00  
0.0000E+00  
0.0000E+00 

1.6763E+03  
1.8663E+03  
1.7885E+03  
4.9130E+01 

 
F12 

Best 
Worst 
Mean 
STD 

9.4233E-34 
3.1399E-33 
1.4575E-33 
5.5763E-34 

4.2975E-27  
2.6890E-21  
1.0060E-22  
4.8930E-22 

2.8703E+00  
4.6435E+00  
3.8666E+00  
4.6638E-01 

 
F13 

Best 
Worst 
Mean 
STD 

1.3498E-32 
5.8419E-31 
2.1905E-31 
1.2343E-31 

4.8797E-30  
4.3930E-25  
1.8353E-26  
7.9783E-26 

6.0221E+02  
9.0046E+02  
7.4543E+02  
8.5221E+01 

 
Case 4: Results Comparison for F1-F13 (dimension = 
1000) 

In Table 6 are the results of the IFMGO algorithm, MGO 
algorithm, and PSO algorithm with a problem dimension of 
1000. 

Table - 6: Results of Case 4 (d=1000) 

Func Para IFMGO MGO PSO 
  
F1  

Best 
Worst 
Mean 
STD 

4.6815E-246 
2.6767E-215 
9.5208E-217 
0.0000E+00 

2.0680E-65  
3.3469E-54  
2.0920E-55  
7.1240E-55 

2.4923E+03  
5.9108E+03  
3.5190E+03  
6.6606E+02 

  
F2 

Best 
Worst 
Mean 
STD 

2.4812E-148 
5.5287E-124 
1.8919E-125 
1.0088E-124 

4.3762E-36  
7.0749E-31  
3.1598E-32  
1.2894E-31 

8.0454E+02  
Inf  
Inf  
NaN 

  
F3 

Best 
Worst 
Mean 
STD 

7.0647E-17 
1.7013E+01 
5.6711E+00 
9.8227E+00 

8.2558E-03  
1.8423E+04  
2.0856E+03  
4.8253E+03 

7.4284E+05  
8.7022E+06  
2.6108E+06  
1.7905E+06 

  
F4 

Best 
Worst 
Mean 
STD 

1.3899E-114 
6.8124E-83 
2.2708E-84 
1.2438E-83 

7.6613E-26  
1.1359E-18  
5.2719E-20  
2.0792E-19 

1.4682E+01  
1.7249E+01  
1.5704E+01  
6.2236E-01 

  
F5 

Best 
Worst 
Mean 
STD 

0.0000E+00 
2.2480E-28 
2.1532E-29 
5.2756E-29 

6.9113E-26  
6.6826E-22  
7.6341E-23  
1.5242E-22 

2.4047E+05  
4.3051E+05  
3.3618E+05  
4.4091E+04 

 
F6 

Best 
Worst 
Mean 
STD 

9.5648E-08 
1.6199E-01 
7.5226E-03 
3.5105E-02 

1.2772E-06  
1.7625E-01  
2.1746E-02  
4.4438E-02 

2.4440E+03  
4.7158E+03  
3.4883E+03  
5.0329E+02 

 
F7 

Best 
Worst 
Mean 
STD 

3.3092E-05 
1.5667E-03 
2.9676E-04 
3.7261E-04 

1.8704E-04  
2.8759E-03  
1.0528E-03  
6.8893E-04 

1.5771E+04  
2.8577E+04  
2.1410E+04  
3.0007E+03 

 
F8 

Best 
Worst 
Mean 
STD 

-4.1898E+05 
-4.1898E+05 
-4.1898E+05 
5.7911E-02 

-4.1898E+05  
-4.1898E+05  
-4.1898E+05  
4.0104E-01 

-1.9784E+04  
-1.1276E+04  
-1.4824E+04  
2.0745E+03 

 
F9 

Best 
Worst 
Mean 
STD 

0.0000E+00  
0.0000E+00  
0.0000E+00  
0.0000E+00 

0.0000E+00  
0.0000E+00  
0.0000E+00  
0.0000E+00 

5.8035E+03  
7.0748E+03  
6.4039E+03  
2.5631E+02 

 
F10 

Best 
Worst 

8.8818E-16  
8.8818E-16  

8.8818E-16  
4.4409E-15  

7.7746E+00  
9.3308E+00  

Mean 
STD 

8.8818E-16  
0.0000E+00 

1.3619E-15  
1.2283E-15 

8.5188E+00  
3.2110E-01 

 
F11 

Best 
Worst 
Mean 
STD 

0.0000E+00  
0.0000E+00  
0.0000E+00  
0.0000E+00 

0.0000E+00  
0.0000E+00  
0.0000E+00  
0.0000E+00 

3.4845E+03  
3.7033E+03  
3.5917E+03  
6.0923E+01 

 
F12 

Best 
Worst 
Mean 
STD 

4.7116E-34 
1.6716E-33 
7.9361E-34 
4.0264E-34 

7.0959E-28  
3.5238E-22  
2.2783E-23  
6.6733E-23 

4.2959E+00  
9.0145E+00  
6.3190E+00  
1.0388E+00 

 
F13 

Best 
Worst 
Mean 
STD 

1.3498E-32 
7.0868E-31 
4.1762E-31 
2.0839E-31 

1.5909E-29  
5.0494E-25  
5.3591E-26  
1.1590E-25 

1.6508E+03  
3.1058E+03  
2.2124E+03  
3.8699E+02 

 
From Table 3 to Table 6, the proposed IFMGO algorithm 
showed consistently exceptional performance on the high-
dimensional benchmark functions compared to the MGO 
algorithm and PSO algorithm. Comparing the performance of 
the IFMGO algorithm in all four case scenarios, it maintained 
very good performance on almost all the benchmark 
functions, given an indication that the changes in problem 
dimension do not affect the performance of the proposed 
modified version of the MGO algorithm. For the base MGO 
algorithm and the PSO algorithm, the performances declined 
as the problem dimension increased from 30 gradually up to 
1000. 

Case 5: Results Comparison for F14-F23 (fixed-
dimensions) 

The performance of the four algorithms on fixed-
dimensional benchmark functions is presented in Table 7. 
This illustrates the influence of the proposed modification on 
the performance of the algorithm on fixed-dimensional 
problems. 

Table - 7: Results of Case 5 (Fixed-dimension) 

Func Para IFMGO MGO PSO 
 
F14 

Best 
Worst 
Mean 
STD 

9.9800E-01 
9.9800E-01 
9.9800E-01 
5.9168E-17 

9.9800E-01 
9.9800E-01 
9.9800E-01 
1.8440E-16 

9.9800E-01 
1.9926E+00 
1.3294E+00 
4.7662E-01 

 
F15 

Best 
Worst 
Mean 
STD 

3.0605E-04 
1.2343E-03 
3.0779E-04 
1.9014E-04 

3.0749E-04 
1.2232E-03 
3.7059E-04 
2.3182E-04 

3.0749E-04 
2.0363E-02 
1.2877E-03 
3.6337E-03 

 
F16 

Best 
Worst 
Mean 
STD 

-1.0316E+00 
-1.0316E+00 
-1.0316E+00 
 6.9914E-17 

-1.0316E+00 
-1.0316E+00 
-1.0316E+00 
 4.7908E-16 

-1.0316E+00 
-1.0316E+00 
-1.0316E+00 
 6.3877E-16 

 
F17 

Best 
Worst 
Mean 
STD 

3.9789E-01 
3.9789E-01 
3.9789E-01 
0.0000E+00 

3.9789E-01 
3.9789E-01 
3.9789E-01 
0.0000E+00 

3.9789E-01 
3.9789E-01 
3.9789E-01 
0.0000E+00 

 
F18 

Best 
Worst 
Mean 
STD 

3.0000E+00 
3.0000E+00 
3.0000E+00 
1.1019E-15 

3.0000E+00 
3.0000E+00 
3.0000E+00 
1.4092E-15 

3.0000E+00 
3.0000E+00 
3.0000E+00 
2.0550E-15 

 Best -3.8628E+00 -3.8628E+00 -3.8628E+00 
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F19 Worst 
Mean 
STD 

-3.8628E+00 
-3.8628E+00 
1.8436E-15 

-3.8628E+00 
-3.8628E+00 
 2.2584E-15 

-3.8549E+00 
-3.8620E+00 
2.4049E-03 

 
F20 

Best 
Worst 
Mean 
STD 

-3.3220E+00 
-3.3220E+00 
-3.3220E+00 
 0.0000E+00 

-3.3220E+00 
-3.3220E+00 
-3.3220E+00 
 6.0328E-02 

-3.3220E+00 
-2.9564E+00 
-3.2389E+00 
 1.0146E-01 

 
F21 

Best 
Worst 
Mean 
STD 

-1.01532E+1 
-1.01532E+1 
-1.01532E+1 
 0.0000E+00 

-1.01532E+1 
-1.01532E+1 
-1.01532E+1 
 0.0000E+00 

-1.01532E+1 
-2.6305E+00 
-6.7321E+00 
 3.5630E+00 

 
F22 

Best 
Worst 
Mean 
STD 

-1.04029E+1 
-1.04029E+1 
-1.04029E+1 
 0.0000E+00 

-1.04029E+1 
-1.04029E+1 
-1.04029E+1 
 0.0000E+00 

-1.04029E+1 
-2.7519E+00 
-6.7370E+00 
3.5639 E+00 

 
F23 

Best 
Worst 
Mean 
STD 

-1.05364E+1 
-1.05364E+1 
-1.05364E+1 
 0.0000E+00 

-1.05364E+1 
-1.05364E+1 
-1.05364E+1 
  0.0000E+00 

-1.05364E+1 
-2.4217E+00 
-7.2984E+00 
 3.7994E+00 

 
The IFMGO algorithm showed excellent performance by 
producing global optimum solutions for functions F14 to 
F23. Though the MGO algorithm produced very competitive 
results, the IFMGO algorithm produced its results on all the 
functions with a high level of robustness and stability 
through better values in mean, worst, and standard 
deviation. Hence, the proposed IFMGO algorithm 
outperformed the MGO algorithm and PSO algorithm. 

Additionally, a comparison of the convergence curves for the 
three (3) algorithms, IFMGO, MGO, and PSO, on the high-
dimensional benchmark functions (F1 to F13) are presented 
below as figures F1 to F13. From the curves, it is obvious 
that the IFMGO algorithm has better convergence 
characteristics on all the test functions than the other 
algorithms. It exhibited fast convergence to the global 
solutions without getting trapped in local optimal solutions. 
This confirms the superiority of the proposed IFMGO 
algorithm in terms of convergence behavior relative to the 
other algorithms. 
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6. CONCLUSION AND RECOMMENDATION 
 
An improved version of the MGO algorithm called the 
Improved F-factor Mountain Gazelle Optimizer (IFMGO 
algorithm) is presented. A new calculation of the F-
parameter in the MGO is proposed to enhance the 

algorithm’s performance on high-dimensional problems 
without jeopardizing the performance on fixed-dimensional 
problems as well. The proposed IFMGO algorithm is tested 
on 13 standard high-dimensional benchmark functions and 
10 standard fixed-dimensional benchmark functions. 
Performance comparison of the proposed IFMGO algorithm, 
MGO algorithm, and PSO algorithm is carried out and the 
IFMGO algorithm outperformed the other two algorithms 
exceptionally across all the test functions considered. 
 
IFMGO is an algorithm with good qualities and is therefore 
recommended for application in real-life optimization 
problems in fields such as engineering, mathematics, health, 
and so on. 
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