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Abstract - In this paper, many results of Fourier analysis 
which are known for convolutable Banach spaces of 
distributions (BCD-spaces) and Frechet spaces of distributions 
(FD-spaces) have been generalized to convolutable Frechet 
spaces of distributions (CFD-spaces). Also, we discuss the dual 
space of a CFD-space and obtain some useful results about 
homogeneous CFD-spaces.  
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1. INTRODUCTION  
 
In [7] some results of Fourier analysis, which are known for 

(1 ) ,
p

L p C  and M etc., were obtained for 

convolutable Banach spaces of distributions (BCD-spaces). 
But those results cannot be applied to some important 

spaces like 
C (the space of all infinitely differentiable 

functions).  Also, in [6] some results of Fourier analysis were 
obtained for Frechet spaces of distributions (FD-spaces). But 
those results cannot be applied to some important spaces 

like Hardy’s spaces (1 )
p

H p . To overcome these 

deficiencies, in this paper we define the convolutable Frechet 
spaces of distributions (CFD-spaces). 

In Section 2, we define CFD-spaces and state some 
preliminary results dealing with CFD-spaces.  In Section 3, we 
define homogeneous CFD-spaces and obtain some important 
results about homogeneous CFD-spaces. In Section 4, we 
discuss the dual space of a CFD-space and obtain some useful 
results. 

2. DEFINITIONS, NOTATIONS EXAMPLES AND 
PRELIMINARY RESULTS 
 
We refer to [1], [5] and [8] for all the standard definitions, 
notations and assumptions. In particular, all our 
distributions are assumed to be defined on the circle 
group G R / 2 Z , and the space of all distributions is 

denoted by D.  

2.1 Definition 
 
A Frechet space E is called a convolutable Frechet space of 
distributions, briefly a CFD-space, if it can be continuously 
embedded in (D, strong*), and if, regarded as a subset of D; it 
satisfies the following properties:  

(2.1)   EEM  ff  , , where M denotes the set 

of all (Radon) measures.  

(2.2)  C E  is a closed subspace of 


C . 

 
It is obvious that every BCD-space is a CFD-space (see the 

definition of BCD-space in [7]). But 
C  is a CFD-space which 

is not a BCD-space as it is not a Banach space. 

Throughout the paper, E, if not specified, will denote a 
CFD-space  and E* will denote its strong* dual (see [8], Ch. 10). 
 

2.2. We now give an example of a non-empty Frechet space 

E continuously embedded in D which satisfies the 

assumption (2.1) but not (2.2). 

Let E  be the set of all Cf  such that 
E

f  where 

                  
E

0

|| ||

( 1)

k

k

D f
f

k
 

Then E is the required space as every Banach space is a 

Frechet space (see [7]). 

 

2.3.   Now, we give an example of a non-empty Frechet space 
E continuously embedded in D, such that (2.2) is satisfied but 
not (2.1). 

Let (G)
d

M  denote the set of purely discontinuous measures 

on G i.e., the set of all those measures μ on G for which there 

exists a countable subset  A of G such that ( ) 0
C

A . Then 

(G)
d

M  is the required space (see [7]). 

The above examples show the independence of both the 
assumptions taken in the definition of a CFD-space. 

2.4. Theorem. Let E be a CFD-space. Then the 

transformation EEM :S  defined by 

ffS   ),(  for each M and Ef ,  

is continuous on EM  . Further, for each continuous 

seminorm p  on E , there exists a continuous seminorm q  on 

E such that )(||||)( 1 fqfp    for each M  and for 

each Ef . 
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Proof: Fixing μ in M, consider the mapping EE :T1
 

defined by ffT  1
 for all Ef . Now, E is 

continuously embedded in D and 1T is continuous on D. So, 

using the closed graph theorem, we can show that 1T  is a 

continuous linear operator on E. Similarly, if we define the 

mapping EM :T2  by fT  2  for all E , 

after fixing f in E, then 2T  turns out to be linear and 

continuous. Thus the transformation EEM :S , 

defined by ffS   ),(  is bilinear and separately 

continuous; and hence by ([5],p.52), S  is (jointly) continuous 

on EM  . 

Further, by ([2], Exercise1, p.363), for each continuous 

seminorm p  on E, there exists a continuous seminorm q on  

E such that 

)(||||)( 1 fqfp    for each M  and for each Ef . 

Taking  as the nth Fejer's kernel in the above theorem, we 

obtain the following. 

 

2.5. Corollary. If E is a CFD-space, then for each continuous 

seminorm p on E, there exists a continuous seminorm q on E 

such that 

        )())(( fqfp n   

where fFf nn  and
nF denotes the nth Fejer's kernel. 

 

Taking μ as the Dirac measure at the point x in the above 
theorem, we obtain the following. 

2.6. Corollary. If E is a CFD-space, then E is translation 
invariant and for each continuous seminorm p on E there 
exists a continuous seminorm q on E such that 

)()( fqfTp x    for each Gx  and for each Ef .  

where fTx  denotes the translation of  f  by x. 

Also, it shows that { : }GxT x  is an equicontinuous family 

of translation operators on E. 

 

Using the closed graph theorem, and the fact that C E   

is closed in


C , we can easily prove the following. 

2.7. Lemma. The inclusion map  :i C E E   is 

continuous, where C E has the relative topology of 
C . 

2.8. Theorem. A necessary and sufficient conditions for  

P E   to be dense in E is that C E  is dense in E, 

where P is the set of all trigonometric polynomials. 

Proof: One part is obvious as  CP . 

Conversely, suppose C E  is dense in E. Let d  be the 

metric on E induced by 











1 )(1

)(2

k k

k

k

E fp

fp
f  

where  
1kkp  is a countable family of seminorms on E 

which defines the locally convex topology of E. 

Given f  in E  and 0 , there exists u C E  such that 

2/),( ufd . 

Now, 

uuσ n  in


C as n and
n
u C E n Z . 

Since :i C E E  is continuous by above lemma, 

uuσ n   in C E  with relative topology of E. So 

corresponding to 0 , there exists 0N  such that 

2/),( uuσd n  for all Nn  . 

Hence, 

( , ) ( , ) ( , )n nd σ u f d f u d u u for all Nn  . 

Therefore EP   is dense in E. 
 
 

3. HOMOGENOUS CFD-SPACES 
 

Homogenous Banach subspaces of 
1

L  defined on the circle 

group G are discussed in [3] and many results of Fourier 

analysis on these spaces are generalized to homogeneous 

BCD-spaces in [7] and to homogeneous FD-spaces in [6]. We 

define homogeneous CFD-space as follows. 

3.1. Definition. A CFD-space E  is said to be homogenous if 

0xx   in G  implies fTfT xx 0
  in E  for each Ef .  

3.2. Theorem. Every homogeneous FD-space is a 

homogeneous CFD-space. 

 Proof: Let E be a homogeneous FD-space From the 

definition of a  FD-space and Theorem 5.5 (iii) of [6], 

 EEM  ff  ,  and C E = C is  closed 

in 


C  as C E .Thus  E  is a  CFD-space.  
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But converse of the above theorem is not true as shown in 

the following example 

 

3.3. CFD-spaces which are not FD-spaces  

For 1p , consider the Hardy space p
H  defined by 

ˆ{ : ( ) 0 for 0}
p p

H f L f n n . 

Clearly p
H is a homogeneous BCD-space for 1 p  

([7], 2.2) and we know that every BCD-space is a CFD-space, 

therefore p
H is a homogeneous CFD-space for 1 p . 

But p
H is not a  FD-space as  


C is not contained in p

H . 

 

 3.4. Example of a non-homogeneous CFD-spaces is M . 

 

The proof of the following lemma and theorem are just like 

the ones given in 5.2 and 5.3 of [6]. 

3.5. Lemma. Let E be a Frechet space,   a continuous E-

valued function on G and 

1}{ nnK  a summability kernel 

(approximate identity), then 

       )0()()(
2

1
lim 





dtttKn

n
 

where the integral is taken over G. 

 
3.6. Theorem. If E is a homogeneous CFD-space, then for 

each Ef , ffn    in E  as n , where fn  

denotes the n-th Cesaro sum of the Fourier series of  f . 

 

3.7. Theorem. A CFD-space E  is homogeneous if and only if 

EP   is dense in E. 

 

Proof: Let E be homogeneous. Then by the above theorem, 

for each Ef , ffn    in E  as n . Hence 

EP   is dense in E. 

Conversely, suppose EP   is dense in E. Let Ef  and 

0 . Since { : }GxT x  is an equicontinuous family of 

translation operators on E, by Corollary 2.6., there exists a 

0  such that  

(3.1)      .3/),(),(   gTfTdgfd xx  

Since C E is dense  in  E (see Theorem 2.8), we may fix 

a function g in C E  such that ),( gfd . 

Now gTgT xx 0
 in 

C as 0xx  and therefore by 

Lemma 2.7, gTgT xx 0
 in  E  as 0xx  . So 0 such 

that 

(3.2)       .3/),(
00   gTfTdxx xx  

Also,   
0

( , )x xd T f T f  

       
0 0 0

( , ) ( , ) ( , ).x x x x x xd T f T g d T g T g d T f T g  

Thus by (3.1) and (3.2), 

             ),(
0

fTfTd xx  for  0xx . 

Hence, fTfT xx 0
 in E as 0xx  , which shows that  E   is 

homogeneous. 
 

Using Theorem 2.8, Theorem 3.6 and the above theorem, we 
get the following. 

3.8. Corollary. Let E be a CFD-space. Then the following 
four results are equivalent: 

(i) E is homogeneous; 

(ii) EP   is dense in E; 

(iii) C E is dense in E; 

(iv) fff n  ,E in E as n . 

 

4. DUAL SPACES 

If E is a Frechet space, then E* need not be a Frechet space. 

So, if E is a CFD-space, we cannot say that E* is also a CFD-

space. However we can still embed E* in D and treat the 

elements of E* as distributions. For this we have to make a 

one to one correspondence between the elements of E* and 

the elements of D. The task would have been easier if 


C  

had been contained in E, but it is not. So, we define the 

following sets 

 

(4.1)  }:{ E neZnS , }||:{ NnSnSN  and  

 

The proof of the following four results is similar to the 

corresponding results in [7]. 

4.1. Lemma. Ene  if and only if 0)(ˆ nf  for some 

Ef . 

 

Using the definition of S and the above lemma we 

immediately get the following. 
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4.2. E fnfSn 0)(ˆ .  

From now onwards, by ka we shall mean 


1k

ka  and, by 


S

ka we shall mean 



NSk

k
N

alim .                              

4.3. Lemma. For 
  Ckekuu )(ˆ , define  

                     
S

kekuPu )(ˆ .  

Then P is a continuous projection of 


C  onto C E . 
 

Let us define j E D:
   by  

  j F u F Pu( )( ) ( ) for all u in
C and for all F in E*  

where P is the projection defined in the above lemma.  

Now, we can claim the following (See [7], Theorem 4.1) 

4.4. Theorem. Let E be a CFD-space. Then  E* can be 
continuously embedded   into D  through the mapping   j and 
as a subset of D, it satisfy the following properties: 

(4.2)   , f f      M E E   

(4.3)   * C E is a closed subspace of 
C . 

4.5. Theorem. Let E be a homogeneous CFD-space and 

EF . Then for  each Ef , the function ( )g x , defined 

by ( ) ( )xg x F T f  for all Gx , is continuous on G  and 

generates the distribution F f


  . Moreover, there exists a 

continuous seminorm q  on E such that 

        || * || ( )F f q f f


   E . 

Proof: As E is homogeneous,                

00 inG Tx xx x f T f    in  E . 

Also, F  is continuous on E. Hence ( )g x  is continuous on G 

for each Ef . Now, by the Corollary 2.6., the family 

{ : }GxT x  of translation operators on E is 

equicontinuous, therefore { : }GxFoT x  is also 

equicontinuous. So, using Theorem 9.5.3 ([4], p.203), there 

exists a continuous seminorm q on E such that 

| ( ) | | ( ) |xg x F T f ( )q f f  E  and Gx  . Hence, 

(4.4) || || ( ) Eg q f f    . 

Now our aim is to prove that ( )g x  generates the 

distribution F f


 . Define ( ) ( )n n xg x F T f  for every x  

in G. Since E is homogeneous, by Theorem 3.6, 

                n x xT f T f   in E. 

Consequently, 

(4.5)   ( ) ( ) ( ) ( )n n x xg x F T f F T f g x    as n  , for 

every  x  . 

Now, for every f  in E, 

lim ( ) lim ( ) ( )n n
n n

F f F f F f 
 

   as E is homogeneous. 

By ([8], Theorem 9.3.4.), { }nF  is an equicontinuous family 

of continuous linear functional on E which converges 

pointwise to F  in E* . Therefore arguing  just  as above, we 

can find a continuous seminorm q  in E such that for all 

positive integers n , 

| ( )( ) | | ( ) | ( )n n xF f x F T f q f 


   ,G Ex f   

which gives that || ( ) || (1)n F f O


  . 

Therefore F f


 L , and, for a.e. x, 

( ) ( )( ) ( )n ng x F f x F f x
 

     as n  .  

Now, it follows from (4.5) that  

( ) ( )g x F f x


   for a.e. x 

Hence ( )g x generates the distribution F f


 ,  

i.e., g F f


   in the sense of distribution.  

Now, from (4.4), || || ( )F f q f


  for all f in E. 

 

4.6. Theorem. A CFD-space E  is homogenous if and only if 

for every Ef  and 
EF , the series 

 (4.6)  




 )(ˆ)(ˆ nfnF  

is (C, 1)-summable to )( fF .  

 

Proof: One part is clear from Theorem 3.6 and the fact that 

)( fF n  is the n-th Cesaro sum of (4.6). Conversely, 

suppose that the series (4.6) is (C, 1)-summable to )( fF  

for every  f in E and F  in E* . Then  

)()(lim fFfF n
n




  E f  and
EF . 

This shows that fn  converges weakly to f  in E  for every  f  

in E. Thus EP    is weakly dense in E. Since EP   is 
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convex, EP   is strongly dense in E by ([5], p.66). Hence 

by Theorem 3.7, E is homogenous. 

 
5. CONCLUSIONS 
 
In this paper we define Convolutable Frechet Spaces of 

Distributions (briefly written as CFD-spaces) and generalize 

the previously known results to CFD-spaces. We have used 

various results and techniques of Functional analysis to 

obtain these results. The results obtained will be useful for 

further analysis in the field of Fourier analysis and 

Functional analysis. 
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