

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 382

Designing a Generative AI QnA solution with Proprietary Enterprise

Business Knowledge using Retrieval Augmented Generation (RAG)

Suvoraj Biswas

Solutions Architect, Ameriprise Financial, Minneapolis, Minnesota, USA
---***---

Abstract - Large Language Models from OpenAI’s
ChatGPT or Google’s BARD have the capability to generate
human-like responses in natural language. This capability
can be used to design solutions to solve many enterprise
business use cases. In this prototype solution we are trying
to design an Enterprise content search solution using
Generative AI. This QnA (Question and Answering)
framework would be designed based on OpenAI’s APIs on
top of the private business knowledge for internal
stakeholders of an organization. This solution would try to
leverage the summarization and embeddings generation
capabilities of OpenAI’s API as well as Vector Database as
part of the private knowledge repository in the solution. In
the prototype solution we will measure the cost of the Q&A
system based on OpenAI's offerings with different types of
LLM models for a fixed knowledge dataset.

Key Words: Generative AI, LLM, Embeddings, Vector
Database, Pinecone, Langchain, Open AI, GPT (Generative
Pre-trained Transformer), Machine Learning, Solution
Architecture, Enterprise AI Knowledge framework,
Retrieval Augmented Generation (RAG) framework.

1. INTRODUCTION

Content is an integral part for any Enterprise. The
contents or business knowledge are useful for internal
stakeholders who consume this knowledge about a
process or workflow and complete a specific workstream.
Consider the following problem statements and use cases:

a) Airline industry- It uses various internal and
external applications for managing
bookings/reservations or passengers data or fleet
schedules. An internal employee like a booking
agent has to have good business knowledge to
serve the external customers. The agent spends a
huge time figuring out the correct workflow by
referring to the proprietary enterprise knowledge
articles.

b) Financial organizations- They have built a huge
knowledge and research repository based on the
market research done by their analysts over time
but finding the correct step or referring to the
correct research is a huge pain when the
information is in a case study format.

The traditional Enterprise search system depends on the
regular full text search or partial text search and lists
down the knowledge sources or articles based on the exact
word matching. This sometimes pulls the incorrect
sources of information or too much information.

Our proposed Generative AI based solution would help the
enterprise stakeholders to correctly point out the exact
response or steps/process flows out of the tons of
knowledge articles. The solution outlined below would
also use the Large Language Model’s summarization
capability to provide exact responses so that users do not
need to browse through the knowledge sources to identify
the information they are looking for. The process is called
Retrieval Augmented Generation (RAG) where the LLM
model is used to generate human readable response in the
natural language while setting the context or boundary
within the Enterprise business knowledge so that the LLM
model doesn’t hallucinate or generate incorrect response.

That would definitely help the enterprise to save tons of
business hours with a high customer satisfaction rate. In
the following sections we will cover some important
concepts of AI which are the basic building blocks of our
proposed solution.

1.1 Introduction to Embeddings

Embedding is one of the major building blocks in our
solution. Embeddings refer to the mathematical
representation of a piece of text or words or graphic
contents such as images or media contents (video/audio)
in such a way that it becomes easier to find the closeness
or relatedness of those data. E.g. consider the following
three sentences -

a) Peter loves eating cheese pizza more than anything
b) ChatGpt is disrupting everything
c) Dominos is offering some really cool deals

For a human it is very easy to figure out that the two
sentences (a) and (b) have some closeness since both are
connected with pizza, however the 2nd sentence (b) has
no relatedness with the rest of the sentences. If these
above three sentences are plotted against a three
dimensional graph it would probably look like below :

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 383

Fig -1: Plotting the sentences into a 3 D space

In the machine world embeddings work similarly. It
generates a complex mathematical model to represent the
above lines by generating an “N” number of dimensions.
This mathematical representation is called a “Vector”. In
the Generative AI landscape Embeddings (Vectors) play an
important role. Large Language Models like ChatGpt have
the capabilities to generate Embeddings of the input
content and at the same time can preserve the meanings of
the supplied data. The LLM model called "text-
embedding-ada-002" can generate embeddings having
1536 dimensions.

1.2 Introduction to Vector Database

As we can see the complex multi dimensional
representation of the data in the machine learning world
can not be stored in the traditional relational database or
noSql database. The traditional columnar or scalar
databases lack the capabilities to store the vector data
type and scale accordingly. Information retrieval in the
vector database works differently than the traditional
database, where it tries to output content which exactly
matches with the input query whereas in the vector
database it uses algorithm like Kth nearest neighbor (K-
NN) or Approximate Nearest Neighbor (ANN) to find
data having shortest distance and return the similar
results.

Vector databases add more functionality to an LLM
based application like semantic retrieval of data or adding
a memory by remembering the context of the interaction.
In our proposed solution, the vector database is playing an
integral role.

Fig -2: Embeddings storage mechanism in the Vector DB

1.3 An Overview of Prompt Engineering

In the AI world Prompt Engineering refers to the
designing of a short piece of text or phrase based on
certain principles that can be passed to the Large
Language Model to effectively generate the contents as
output. The prompt engineering is one of the important
building blocks as if this is not properly constructed then
LLM models like ChatGpt can hallucinate meaning it either
generates an illogical meaningless content or out of
context responses. So it is always a best practice to
validate the input texts we pass to the LLM model’s API
based on the defined principles of Prompt Engineering.
Based on the intent or purpose of the input phrases the
model can exhibit capabilities like summarizing a large
pool of texts or content or inferring or clarifying the topics
or transforming the input texts or expanding the input
text.

1.4 Overview of the OpenAI LLM models

OpenAI has offerings from a diverse set of Large
Language Models having varying degree of capabilities
and limitation of input tokens. For example GPT 4 and GPT
3.5 are capable of understanding the natural language as
input and based on the intent or requirements can
generate responses in natural language. The DALL-E
model is pre-trained to generate or produce graphical
images based on the input or prompt engineering in
natural language. The Embeddings model “text-
embedding-ada-002” can produce embeddings of the
supplied input texts which help to find the relatedness
between two different phrases or sentences. Following
table summarizes the various models and their basic
functionalities.

Table -1: OpenAI LLM capabilities

OpenAI’s Large Language Models

Moderation This model is fine tuned to detect unsanitized
content

Whisper It can generate text from audio.

Embeddings It can generate embeddings (mathematical

representation) of texts

DALL-E It can generate images based on natural

language input.

GPT-3.5 LLM model that understands natural
language and generates the same.

GPT-4 LLM models that can understand natural
language and can generate the same. An
improved version over GPT-3.5

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 384

2. DESIGNING THE LLM SOLUTIONS

In our proposed solution we tried to utilize the AI or LLM
workflows as much as possible to design one of the robust
and scalable Generative AI based solutions. In the
traditional Question & Answer based product the system
works by matching either exact data from the article or
doing partial or full text search and listing the article
results. Sometimes this works best but most of the time it
misses the intent of the question being asked by users and
lists only results based on just word matching. Sometimes
this frustrates the end users as they still need to go
through the entire article to figure out what they are
looking for and sometimes the results lack listing it
correctly.

Our Generative AI solution tries to use the power of Vector
database based on the Embeddings data model and not
only lists the top lists of content but it utilizes the OpenAI
summarizing capability to assist the user with the point
content or instructions that they are looking for. The
entire solution consists of two workflows - Pre-Processing
or ingestion of the data and Retrieval Framework

2.1 Pre-Processing (Ingestion pipeline)

In the pre-processing stage, we designed the Ingestion
framework which is the backend component. This is
responsible to ingest the Enterprise knowledge repository
by scanning the sources of articles and then breaking them
into chunks of tokens or smaller meaningful segments.
This strategy is called the chunking strategy. Based on
the article source and the way they are formatted, the
engineering team needs to determine the chunking
strategy so that the article source can be easily ingested to
build an LLM knowledge repository.

Based on the chunking strategy, the tokens are looped
through by the framework and for each token block it is
sent to the Embeddings API of the Embeddings LLM (text-
embedding-ada-002) to generate the corresponding
Embeddings of the input tokens. While sending the token
blocks to the LLM model the framework needs to consider
the token limitation that is enforced by OpenAI. So this
process using this framework shouldn’t be realtime and
should be considered as the Day 1 activity or pre-
processing activity.

Following information flow diagram shows that the input
knowledge articles are extracted from the HTML source or
document sources like PDF / Word docs / CSVs. This
extracted content is split into multiple chunks based on
the chunking strategy defined by the content team or the
business team. E.g. We can consider the chunking strategy
as sentences consisting of 10 or more words (fixed size
chunking) or phrases based on logical groups (content
aware chunking). If the input articles are enterprise
articles then fixed size chunking performs best. However if
input content are research based articles then content

aware chunking would work best to identify the exact
logical segments.

Also we need to use the stop words elimination strategy
to remove any unwanted stop words to make each chunk a
meaningful & insightful text chunk. As you know that the
stop words refer to the common words or text character
or symbol that generally doesn’t carry much meanings of
its own but in our natural language it either connects two
phrases or multiple words to form paragraphs or
sentences (example of stop words are - he, him, they, has,
have, that, which, in, out, be, ; , .). We need to eliminate the
stop words from the text chunks which the solution is
generating so that we can stay within the limit of the
tokens input to the LLM and make the solution cost
effective.

The text chunks are sent to the Embeddings API
(/embeddings) of OpenAI to generate the embeddings
vector. The Vector Embeddings are stored in the Vector
database alongside the metadata information of the source
article which can be referenced if needed.

Fig -3: Pre-Processing workflow High Level Design

Table -2: A sample DB table structure is as follows:

Sample Data Model

Id Auto generated Id (type: number)

embeddings_content Embeddings data (field type:

vector)

article_name It stores the article name (type:

text)

article_link URL of the HTML article

create_date Record creation date time

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 385

Fig -3: OpenAI Embeddings API call using Postman

2.2 SERVE / Retrieval Framework

Once we have the pre-processing work completed by
ingesting the enterprise knowledge content, we will have
the Vector database available for consumption by other
components.

The Serve framework is where the end users would be
able to query against the AI based knowledge repository
we built during the pre-processing stage. The high level
design steps are given below -

a) User asked a question, which is sent to OpenAI’s
moderation API (/moderations) to validate if this
is a valid and meaningful question and doesn’t
have any sensitive or invalid wordings.

b) If the question is invalid then the user is alerted
immediately and no responses are generated.

c) If the question passes the moderation strategy
then this is a meaningful and valid in-context
question.

d) This valid question is then posted to OpenAI's
embeddings API which converts it into a series of
Vector Embeddings for further processing.

e) This question phrase of Embeddings data is used
to query the knowledge repository (Vector
Database) that is curated during the pre-
processing stage.

f) In the vector database the similarity search is
performed to list the top similar results based on
ranking using algorithms such as cosine
similarity.

g) This result is then sent to OpenAI’s completion
API (/v1/completions) which summarizes into a

natural language pattern for the user to
understand easily. The metadata (article url or
references) are also preserved alongside the
summarization.

h) The result from the OpenAI’s completion API is
also validated with a general moderation action.
This way we ensure the answers coming from the
internet data trained foundation model do not
have any mixed invalid data from outside. Though
we put the guard rails when we invoked the
completion API while passing the top results as a
context.

i) The valid response is then sent back to the user.

Fig -5: Retrieval / Serve Framework High Level Design

3. TECHNOLOGY STACK

The recommended technology stack for both the
frameworks are given below. Since this Generative AI
landscape is evolving fast so we may expect more new
tools and technologies will be available to solve various
potentia;l use cases and some tools would be retired.

a) Development Framework: Langchain is one of
the most popular python frameworks for building
LLM based apps. Both the ingestion and the Serve
components are built with Langchain.

b) Vector Database: As a OnPremise solution the
recommendation is to use the pgvector extension
for PostGres database. Postgres with pgvector
extension is available as a docker container.

c) UI framework: Streamlit or Chainlit are the
popular python framework which can be used to
glue the UI/UX side. However, ReactJs or
AngularJs can also be used to build interactive UI
components.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 386

4. RESULTS

We created a prototype project with the basic minimum
python components to see the performance. The
prototype minimum viable product can be enhanced with
more advanced python modules to make it more feature
rich. Based on the Langchain AI framework, the prototype
solution also integrated with in-memory open source
Chroma Vector database for storing the Embeddings.

We measured the performance of the OpenAI Embeddings
generation based on the supplied document having 200
words. The performance metrics have been compared
with what is available in the market from free open source
libraries.

We also captured the performance of the various LLM
models available from OpenAI for a fixed size prompt. The
results are given below.

4.1 QnA code

In our prototype solution we used python code to
demonstrate the ingestion processes we solutioned above.
We used the Langchain framework and Pinecone vector
database to store the embeddings generated by the
OpenAI’s default LLM model “text-embedding-ada-002”.
The ingestion code is the basic code block but this can be
extended to scan and load PDF, html, csv, excel data
sources. We also integrated a retrieval component to
demonstrate how we can query the vector database to
retrieve most similar data and then send it to the LLM
model to summarize and produce response in natural
language.

Step 1: Create an Vector index data store in Pinecone
SAAS database having dimension size of 1536 and
supporting cosine metric for retrieval

Fig -4: Pinecone console UI to create index

Step 2: Following python modules should be installed
first.

pip langchain

pip pinecone

Step 2: Run the QnA python code snippet shared below
which demonstrates how the text data is vectorized using
OpenAI’s api and stored in the Pinecone database created
in Step 1.

Also similar documents are retrieved based on the given
queries and passed the context to LLM to generate human
readable answers in natural language.

import langchain, pinecone

from langchain.llms import OpenAI

from langchain.vectorstores import

Pinecone

from langchain.document_loaders import

DirectoryLoader

from langchain.embeddings.openai import

OpenAIEmbeddings

from langchain.chains.question_answering

import load_qa_chain

from langchain.text_splitter import

RecursiveCharacterTextSplitter

directory_path = 'data'

PINECONE_ENV = "<pinecone env>"

PINECONE_API_KEY = "<pinecone apikey>"

PINECONE_INDEX_NAME = "qna-private-

enterprise-business-data-pinecone"

OPEMAI_API_KEY = "<openai apikey>"

Set up Pinecone client

pinecone.init(api_key=PINECONE_API_KEY,

environment=PINECONE_ENV)

index =

pinecone.Index(PINECONE_INDEX_NAME)

print("******** Pinecone initialized.

Index status ********\n")

print(str(index.describe_index_stats()))

print("**********************************

*****************\n")

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 387

Load the source documents (e.g.

frequently asked Q/A for ecommerce site)

def load_documents(directory_path):

 print("\nSTEP 1:: Scanning directory &

loading all the documents ")

 loader =

DirectoryLoader(directory_path)

 documents = loader.load()

 print("Found ecommerce FAQ sample ...

loading the document for chunking\n")

 return documents

split or chunk the texts based on fixed

chunk size (1000)

def split_docs(documents, chunk_size=500,

chunk_overlap=20):

 print("\nSTEP 2:: Started Chunking the

document ")

 text_splitter =

RecursiveCharacterTextSplitter(chunk_size

=chunk_size, chunk_overlap=chunk_overlap)

 chunks =

text_splitter.split_documents(documents)

 print("***** Total Number of documents

chunked:: " + str(len(chunks)) + "\n")

 return chunks

Generate Embeddings using OpenAI's

Embeddings model and store into Pinecone

database

def generate_embeddings():

 print("\nSTEP 3:: Initializing OpenAI

Embeddings model for converting docs into

vectors")

 embeddings =

OpenAIEmbeddings(openai_api_key=OPEMAI_AP

I_KEY, model="text-embedding-ada-002")

 return embeddings

def

store_embeddings_in_pinecone(embeddings):

 print("\nSTEP 4:: Store the embeddings

into the Pinecone vector db ")

 index = Pinecone.from_documents(chunks,

embeddings,

index_name=PINECONE_INDEX_NAME)

 return index

Retrieve similar documents from

Pinecone

def get_similiar_docs(query, k=1):

 similar_docs =

index.similarity_search(query, k=k)

 return similar_docs

def get_answer(query):

 model_name = "text-davinci-003"

 llm = OpenAI(model_name=model_name,

temperature=0,

openai_api_key=OPEMAI_API_KEY)

 chain = load_qa_chain(llm,

chain_type="stuff")

 similar_docs = get_similiar_docs(query)

 answer =

chain.run(input_documents=similar_docs,

question=query)

 return query + " \nAnswer:: " + answer

+ "\n\n"

print("\n****** Starting Enterprise data

ingestion to load FAQ articles into

Pinecone vector db******")

loaded_docs =

load_documents(directory_path)

chunks = split_docs(loaded_docs)

embeddings = generate_embeddings()

index =

store_embeddings_in_pinecone(embeddings)

print("*************** Ingestion

completed ***************\n")

print("**********************************

*****************\n")

print("\n****** Starting Retrieval using

OpenAI and context from Pinecone vectordb

******\n")

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 388

query1 = "How to cancel my order ?"

print("Question 1:: " +

get_answer(query1))

query2 = "Do you have any loyalty program

?"

print("Question 2:: " +

get_answer(query2))

query3 = "How do I reset my password ?"

print("Question 3:: " +

get_answer(query3))

query4 = "Can I return a product

purchased using store credit?"

print("Question 4:: " +

get_answer(query4))

query5 = "What to do if a wrong item is

received ?"

print("Question 5:: " +

get_answer(query5))

Code execution results and pinecone index dashboard
from Windows terminal.

Fig -5: output of Ingestion code (in the terminal)

Fig -6: Stored Vectors in the Pinecone database

5. CONCLUSION

In this article we demonstrated how we can leverage the
Retrieval Augmented Generation technique to provide a
context to the Large Language Model to generate human
understandable responses in natural language which can
be used as an Enterprise Intelligent QnA system that could
help the internal as well as external stakeholders to
perform AI based search to find answers out of the huge
knowledgebase. We also demonstrated how the enterprise
knowledge articles are ingested as Vectorized format into
Vector database (Pinecone) which could be used to find
similar answers out of huge data using cosine algorithm
and then use the Open AI’s completion API to generate the
meaningful answer. A sample python code is used to
demonstrate the flow which can be enhanced more with
added features and cater to the required use case.

REFERENCES

[1] OpenAI API reference documentation and sample
requests/response model for completion &
embeddings api:
https://platform.openai.com/docs/api-reference

[2] AWS paper on the Retrieval Augmented Generation
(RAG) strategy for enterprises: using context with
LLM
https://docs.aws.amazon.com/sagemaker/latest/dg/j
umpstart-foundation-models-customize-rag.html

[3] Source code for the QnA python code in Github
repository: https://github.com/suvorajb/Enterprise-
QnA-demo/tree/main

[4] Pinecone Vector database documentation on
Langchain:
https://python.langchain.com/docs/modules/data_co
nnection/vectorstores/integrations/pinecone

[5] Langchain documentation on Question answering
over documents:
https://python.langchain.com/docs/use_cases/questi
on_answering/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 07 | July 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 389

BIOGRAPHIES

Suvoraj Biswas has almost 19+
years of IT Work Experience in
solutioning and building enterprise
business critical applications in the
field of IoT, Generative AI, Cloud
Migration and Enterprise
Architecture. He is working as a
Solution Architect in a leading
Financial Organization. based out of
Minneapolis.

