

Dynamic Wind Analysis of High-Rise Building

Kale Shivani Rajendra¹, Dr. Y. M. Ghugal²

¹PG Student, Government college of Engineering, Karad, Maharashtra, 415124, India ² Professor, Government college of Engineering, karad, Maharashtra, 415124, India ***

Abstract - Due to extensive urbanization, high-rise construction is a new trend in Indian metropolitan areas. High-rise buildings have distinct design requirements than low- and mid-rise structures. Typically, the wind is the critical load that must be taken into account in tall buildings for the structure's safety and serviceability. Due to along-wind and across-wind, any tall building may shake and oscillate in both directions. Even though the structural damage is not imminent, these oscillations could nonetheless be uncomfortable for the occupants. As a result, serviceability requires a precise measurement of building motion. Both the national building code and other Indian standard codes fall short in addressing the various problems associated with towering buildings. BIS just published the Code IS 16700: 2017 "Criteria for Structural Safety of Tall Concrete Buildings". This Work deals with the detailed wind analysis of 180m tall building as per IS 16700: 2017.

Key Words: High-Rise, wind, along, across, oscillations etc.

1. INTRODUCTION

The wind-induced response of a tall building depends on a variety of factors. These include the building's geometrical and dynamical characteristics as well as the approach flow's turbulence characteristics. There are a few analytical methods available for calculating the wind-induced response of tall buildings in both along and across wind directions. Aerodynamic forces, such as the drag force and lift force, act on structures under the influence of wind flow. There is a drag force acting parallel to the mean wind and a lift force acting perpendicular to that force.

2. METHODOLOGY

Methodology that will be adopted is as follows,

- 1. Carry out literature review to understand the tall building design philosophy.
- 2. Analytical Estimation of the Dynamic Wind Response as per IS 875: 2015 (part 3)

Fig.2. Analysis model

- 3. Study of Gust factor method which is performed on single tower with 54 floors + terrace having an approximate height of 180 m.
- 4. The Modelling will be done in ETABS.
 - Model Structure with Dynamic wind loading as per code.
- 5. Analyze the Result obtained.

2.1 PARAMETER CONSIDERED FOR ANALYSIS

The load along wind or drag load is calculated using the gust factor approach. The Code IS 875:2015 provides the "gust factor method," but these methods for computing load along wind, across wind, or for other components are not yet fully developed. for all building kinds. However, a designer is permitted to calculate all wind speeds using the gust factor approach. Elements of load on a structure utilizing any theory that is accessible. As a result, the following factors are taken into:

floor	Column size	Beam size	Shear wall
1 to 6	1000x1000mm	600x800mm	230mm
7 to 12	900x900mm	600x800mm	230mm
13 to 18	800x900mm	600x800mm	230mm
19 to 30	800x800mm	600x800mm	230mm
31 to 42	700x700mm	600x800mm	230mm
43 to 54	600x600mm	600x800mm	230mm

Table -1 Structural member information

Table -2Building details

Number of stories	G + 53
Floor height	3.3 m
Base dimension of building	33.00 m X 23.00 m
Aspect ratio (height/width)	7.74
Grade of slabs & beams	M60
Grade of column/shear wall	M50
Grade of steel	Fe 500
Depth of slab	150
Dead load	2.5kn/m^2
Impose load	3.5kn/m^2
Assumed City	Mumbai
Basic wind Speed	44m/s
Terrain Category	4

Table -3 Wind loads will be calculated in accordancewith IS 875: 2015 (Part 3)

Basic wind velocity for Mumbai V _b	44 m/s
Probability factor (Risk coefficient) <i>k</i> 1	1.0
Terrain category factor 4 for 180m height <i>k</i> ₂	1.26
Topography factor k_3	1.0
Importance factor k_4	1.0

2.2 DESIGN WIND SPEED AND WIND PRESSURE

To get design wind velocity at every height (Vz) for the selected structure, the basic wind speed (Vz) for any location must be obtained from Fig.1 IS: (875(Part 3)-1987) and adjusted to include the following effects:

Vz = Vb.k1.k2.k3

The following connection between wind pressure and wind velocity shall be used to determine the design wind pressure at any height above mean level:

Pz=0.6 (Vz)^2

2.3 Wind load calculation as per IS 875 (part 3):2015

The variation of wind force on a structure must be known for the preliminary design, which includes the proportioning of the structure. The meteorological departments' extensive data on wind speeds and the findings of research done to comprehend wind features and their impact on structures, based on these data and experiments conducted in wind tunnels, form the foundation of the wind loading codes. Depending on the kind of building or structure, the IS 875 (Part 3): 2015 suggests using either the force coefficient approach or the gust factor method for the computation of wind loads. So, in order to calculate the wind load, dynamic analysis must be done if the aspect ratio, or the height to minimum lateral dimension ratio, is more than 5 or the natural frequency. less than 1.0 is present in the first mode. The code advises taking into consideration an interference factor (IF) as a multiplication factor for the wind loads corresponding to isolated buildings in order to account for the interference effect of another interfering tall building of the same or different height, based on studies on tall rectangular buildings. According to the code, the interference zones have been divided into four zones based on the distance to the interfering structure's position.

Along wind load

Tall buildings are considered flexible slender structures, and IS 875 (Part 3): 2015 defines a gust factor or gust effectiveness factor technique for determining along wind load or drag load. The process calculates the Gust Factor using hourly mean wind speed. The design peak along wind base bending moment was calculated by adding the moments brought on by design peak along wind loads acting along the building's height at various heights as follows::

$$Ma = \Sigma Fz Z$$

The along wind load on a structure on a strip area at any height z (m) is given by:

$$F_z = C_{f,z} A_z P_d G$$

where Cf,z is the drag force coefficient for the building corresponding to Az, Az is the effective frontal area considered for the structure at height z in P_d , is the design hourly mean wind pressure at height z due to hourly mean wind and G is the gust factor.

Across wind load

An empirical formula proposed by IS 875 (Part 3): 2015 is suggested for taking into account the dynamic impacts of across wind load flexible constructions. For enclosed buildings, the crosswise wind design peak base bending moment Mc is provided by:

Mc = 0.5gh ph bh^2(1.06-0.06k)
$$\sqrt{(\prod *Cfs/\beta)}$$

Where $gh = \sqrt{2\log e}$ (3600fa), a peak factor in cross wind direction for resonant response, Ph is hourly mean wind pressure at Height h (Pa), k is a mode shape power exponent for representation of the fundamental mode shape and Cfs is across wind Force spectrum coefficient generalized for a linear mode.

Then, the across wind load distribution on the building obtained from Mc using linear distribution of loads as:

$$Fzc = (3Mc/h^2)*z/h$$

Along wind and across wind									
		Long body orientation				Short body orientation			
Story	Abs.	Fx along	Fy across	MX	MY	Fy along	Fx across	MY	MX
data	height	KN	KN	KNm	KNm	KN	KN	KNm	KNm
54	178.2	1181.244	301.0255	210497.7	53642.74	629.9968	301.0255	112265.4	53642.74
53	174.9	1176.875	295.5025	205835.4	51683.39	627.6664	295.5025	109778.9	51683.39
52	171.6	1172.361	290.0828	201177.1	49778.22	625.259	290.0828	107294.4	49778.22
51	168.3	1167.706	284.7664	196525	47926.18	622.7767	284.7664	104813.3	47926.18
50	165	1144.388	279.5531	188824	46126.27	610.3402	279.5531	100706.1	46126.27
49	161.7	1139.559	274.4431	184266.8	44377.46	607.7651	274.4431	98275.61	44377.46

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056 p-ISSN: 2395-0072

IRJET Volume: 10 Issue: 07 | July 2023

www.irjet.net

48 158.4 1134.626 269.4364 179724.8 42678.72 605.1338 269.4364 95853.2 42678.72 47 155.1 1129.602 264.5328 175201.3 41029.04 602.4546 264.5328 93440.71 41029.04 151.8 1124.504 259.7325 170699.8 39427.4 599.7357 259.7325 91039.88 39427.4 46 45 148.5 1101.367 255.0355 163552.9 37872.77 587.3955 255.0355 87228.24 37872.77 44 145.2 1096.25 250.4416 159175.5 36364.12 584.6668 250.4416 84893.62 36364.12 43 141.9 1091.105 245.951 154827.9 34900.45 581.9229 245.951 82574.86 34900.45 42 138.6 1085.945 241.5636 150512 33480.72 579.1709 241.5636 80273.09 33480.72 41 135.3 1063.28 237.2795 143861.8 32103.92 567.0829 237.2795 76726.31 32103.92 40 132 1058.209 233.0986 139683.6 30769.01 564.3783 233.0986 74497.93 30769.01 128.7 229.0209 29474.99 39 1053.156 229.0209 135541.2 29474.99 561.6832 72288.63 38 125.4 225.0465 28220.83 225.0465 28220.83 1048.13 131435.5 559.0024 70098.91 122.1 547.2573 221.1753 27005.5 37 1026.107 221.1753 125287.7 27005.5 66820.11 36 118.8 1021.238 217.4073 121323.1 25827.99 544.6605 217.4073 64705.67 25827.99 213.7425 35 115.5 1016.417 213.7425 117396.2 24687.26 542.089 62611.28 24687.26 994.9962 210.181 23582.31 210.181 59540.57 34 112.2 111638.6 530.6647 23582.31 33 108.9 990.3636 206.7227 107850.6 22512.11 206.7227 57520.32 22512.11 528.1939 32 105.6 985.7927 203.3677 104099.7 21475.63 525.7561 203.3677 55519.84 21475.63 31 102.3 981.2875 200.1159 100385.7 20471.85 523.3533 200.1159 53539.05 20471.85 30 99 960.6387 19499.76 512.3407 196.9673 50721.73 196.9673 95103.24 19499.76 29 95.7 956.3483 193.9219 91522.53 18558.33 510.0524 193.9219 48812.01 18558.33 28 92.4 936.1974 190.9798 86504.64 17646.53 499.3053 190.9798 46135.81 17646.53 27 89.1 916.3963 188.1409 81650.91 16763.36 488.7447 188.1409 43547.15 16763.36

			Long body	orientation		Short body orientation			
Story	Abs.	Fx along	Fy across	MX	MY	Fy along	Fx across	MY	MX
data	height	KN	KN	KNm	KNm	KN	KN	KNm	KNm
26	85.8	912.4731	185.4053	78290.19	15907.77	486.6523	185.4053	41754.77	15907.77
25	82.5	893.1637	182.7728	73686.01	15078.76	476.354	182.7728	39299.2	15078.76
24	79.2	874.1963	180.2436	69236.35	14275.3	466.238	180.2436	36926.05	14275.3
23	75.9	870.6428	177.8177	66081.79	13496.36	464.3428	177.8177	35243.62	13496.36
22	72.6	852.1564	175.495	61866.55	12740.93	454.4834	175.495	32995.49	12740.93
21	69.3	834.0022	173.2755	57796.35	12007.99	444.8012	173.2755	30824.72	12007.99
20	66	830.8157	171.1592	54833.83	11296.51	443.1017	171.1592	29244.71	11296.51
19	62.7	827.7136	169.1462	51897.64	10605.46	441.4473	169.1462	27678.74	10605.46
18	59.4	795.763	167.2364	47268.32	9933.84	424.407	167.2364	25209.77	9933.84
17	56.1	792.9369	165.4298	44483.76	9280.612	422.8997	165.4298	23724.67	9280.612
16	52.8	776.0226	163.7265	40973.99	8644.758	413.8787	163.7265	21852.8	8644.758
15	49.5	759.4179	162.1264	37591.18	8025.255	405.0229	162.1264	20048.63	8025.255
14	46.2	729.4202	160.6295	33699.21	7421.083	389.0241	160.6295	17972.91	7421.083
13	42.9	700.1898	159.2359	30038.14	6831.219	373.4346	159.2359	16020.34	6831.219
12	39.6	671.7138	157.9455	26599.87	6254.64	358.2473	157.9455	14186.59	6254.64
11	36.3	643.979	156.7583	23376.44	5690.326	343.4555	156.7583	12467.43	5690.326
10	33	604.5716	155.6744	19950.86	5137.254	322.4382	155.6744	10640.46	5137.254
9	29.7	578.5663	154.6936	17183.42	4594.401	308.5687	154.6936	9164.49	4594.401

International Research Journal of Engineering and Technology (IRJET)

T Volume: 10 Issue: 07 | July 2023

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

	8	26.4	507.1775	153.8162	13389.49	4060.747	270.4947	153.8162	7141.059	4060.747
	7	23.1	451.2604	153.0419	10424.11	3535.269	240.6722	153.0419	5559.528	3535.269
	6	19.8	388.8739	152.3709	7699.703	3016.944	207.3994	152.3709	4106.508	3016.944
	5	16.5	397.8794	151.8031	6565.01	2504.752	212.2024	151.8031	3501.339	2504.752
	4	13.2	397.0276	151.3386	5240.765	1997.669	211.7481	151.3386	2795.074	1997.669
	3	9.9	396.226	150.9773	3922.638	1494.675	211.3205	150.9773	2092.073	1494.675
	2	6.6	395.4749	150.7192	2610.134	994.7467	210.9199	150.7192	1392.072	994.7467
Base	1	3.3	394.7745	150.5644	1302.756	496.8624	210.5464	150.5644	694.8031	496.8624

3. RESULT

Results obtained from the analysis of the Etabs models using above value are as follows: Base Shear Results:

Base shear in X – direction by dynamic wind analysis model is found out to be 45500 kN. Base shear in Y – direction by dynamic wind analysis model is found out to be 24661 kN. Deflection Results:

Deflection in X – direction by dynamic wind analysis model is found out to be 322.29mm. Deflection in Y – direction by dynamic wind analysis model is found out to be 255.03 mm. Drift Results:

Drift in X – direction by dynamic wind analysis model is found out to be 0.00228.

Drift in Y – direction by dynamic wind analysis model is found out to be 0.001787.

4. CONCLUSIONS

1. The gust effectiveness factor approach provides critical wind pressures to be taken into consideration in the design of multistory frames because the gust pressures computed by this method rise with the height of the building and are more important than static pressures.

2. The energy content of the wind's changing component also rises as building frame height does.

5. SCOPE FOR FUTURE WORK

1. Tall buildings with varied aspect ratios and various aerodynamic modifications exhibit various wind-induced responses along and across them.

2. Along and across wind-induced reactions of tall buildings with various structural systems and aspect ratios.

6. REFERENCES

[1] Calin Dragoiescu, Jason Garber and K. Suresh Kumar, "A Comparison of Force Balance and Pressure Integration Techniques for Predicting Wind-Induced Responses of Tall Buildings", RWDI N1K 1B8, (2006)

[2] P. Mendis, T. Ngo, N. Haritos, A. Hira, "Wind Loading on Tall Buildings", EJSE Special Issue: Loading on Structures (2007)

[3] B. Dean Kumar and B.L.P. Swami, "Wind effects on tall building frames-influence of dynamic parameters", Indian Journal of Science and Technology, Vol. 3 No. 5 (2010)

[4] Halder, L. and Dutra ,"Wind effects on multi-storied buildings: a critical review of Indian codal provisions with special reference to American standard", Asian Journal of Civil Engineering (Building And Housing), 11(3), (2010), 345-370

[5] I.srikanth and B.vamsi. Krishna ,"study on the effect of gust loads on tall buildings",(2014)

[6] Gangisetty. Venkata. Krishna and Ratnesh. Kumar, Issues In "Design Of Tall Concrete Buildings In India With Reference To IS 16700: 2017 Code", (2018)

[7] Pooja Niphade, Prof.Amruta.G.Whatte."Gust Analysis of Tall Building by IS 875(Part3)-1987 and by ETabs software ",IJESTER Vol 5. No. 3 (2018)

[8] Davenport (1967). "Gust loading factors." J. Struct. Div., ASCE, 93(3), 11-34

[9] Review of Indian Wind Code – IS – 875 (part 3) 1987 Document No. IITK – GSDMA –Wind 01 – V 2.0, IITK – GSDMA Project on Building Codes, Department of Civil Engineering, IIT Kanpur, India (2004)

[10] Vellozzi and Cohen "Gust response factors" J. Struct. Div., ASCE, 94(6), 1295-1313.