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Abstract - With the widespread development of deep 
learning, automatic composition has become a highly 
topical topic occupying the minds of music computer 
scientists. The paper proposes advanced arithmetic for 
music engenderation using Generative Adversarial 
Networks (GANs). The music is divided into tracks and the 
note segment of the tracks is expressed as a piano roll by a 
trained GAN model whose generator and discriminator play 
a continuous zero-sum game to produce high musical 
integrity. 
 
In most cases, although GAN excels in image generation, the 
model adopts a cross-channel deep convolutional network 
structure in accordance with the properties of the music 
data in this article, producing music more closely matched 
to human hearing and aesthetics. 
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1. INTRODUCTION  
 
Music Engenderation composes music on the computer 
using machine learning methods. With the increase in AI 
data and research, researchers have started exploring 
machine learning in music creation.   

Deep learning is a branch of machine learning methods 
that can recognize patterns and make decisions without 
explicit programming. It shows promising results in 
several areas such as natural language processing for 
texts, computer vision for images, and speech recognition 
for speech. In addition, deep learning techniques in 
artificial music engenderation have successfully generated 
human-like compositions. However, most research has 
focused on musical composition and neglected the aspect 
of expressive musical performance. Therefore, musical 
information stored on MIDI (Musical Instrument Digital 
Interface) tracks, such as speed, proved useless during 
practice. This makes the  music produced rather 
mechanical and boring. 

This document concerns the design of a music production 
system that could produce music  with built-in speed, also 
known as musical dynamics. To do this, the training data 
must encode speed as well as altitude and time 

information. The piano roll (a picture-like representation 
of data) was used to encode information, with one axis 
representing tempo and the other axis representing pitch. 
Each pixel intensity in the range of 0–128 was represented 
by the note's velocity. DCGAN was chosen as the deep 
learning architecture used in this article. It can capture 
and learn the data distribution from a data set and 
generate a sample from the same distribution. Finally, the 
model generates sample snippets: some are synthesized 
with musical dynamics and some are not. These extracts 
were mixed with normal music for analysis and a user 
study was conducted. 

2. RELATED WORK 

Algorithmic composition is a subject of work that dates 
back to 1959. However, the recent developments of Deep 
Neural Networks (DNN), which have proven astonishing 
results in learning from big datasets, allowed this topic of 
music generation to be further developed. Over the past 
couple of years, tons of proposed models addressing music 
generation have been published, all of them on deep 
learning algorithms. 

2.1 Recurrent Neural Network  
    
The most popular architecture in music creation systems 
is the recurrent neural network (RNN). It is a feedforward 
neural network, meaning that the output from the hidden 
layers is transmitted back to it and the layer below it. As a 
result, it has the capacity to record information and pick 
up knowledge from sequence data. However, because the 
weight matrix is updated continuously during 
backpropagation, RNN experiences the vanishing and 
exploding gradient problem. 

Long Short-Term Memory (LSTM), an RNN variant, uses a 
variety of gates to overcome the issue in a unique RNN. 
These gates include input, output, forget, and cell state 
gates. Information can be sent through cell states as a 
conduit. An applicant is chosen by the input gates. The 
input gates pick a candidate from the inputs and change of 
any previously available pertinent data. The forget gates, 
on the other hand, purge the cell states of unimportant 
data. The information that is sent to the next concealed 
state is finally decided by the output gates. 
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A Google group called Magenta utilized LSTM to create the 
expressive music creation system Performance RNN. It 
takes advantage of the MIDI tracks' velocity, pitch, and 
note durations. It was noted that the music had dynamism 
and phrasing. It could not, however, show long-term 
structure. 

2.2 Generative Adversarial Network (GAN) 

Impressive results were obtained when the Generative 
Adversarial Network (GAN) was used to create music. It 
comprises two network models that are engaged in a zero-
sum game: a generator and a discriminator. The goal of the 
generator is to deceive the discriminator by converting a 
random noise input into a sample that matches the 
distribution of the real samples. The discriminator's goal is 
to separate a genuine sample from a produced sample, 
nevertheless. Following the Nash equilibrium of both 
network models, the discriminator is eliminated. 

The Music and AI Lab in Taiwan created MuseGAN, a 
system that can create multi-track music without the need 
for human input. It converted MIDI recordings' note length 
and pitch into a piano-roll format. To create the multi-
track piano roll that served as the training data, various 
musical instruments were encoded into several piano rolls 
and piled together. 

2.3 DCGAN 

The Deep Convolutional GAN (DCGAN) model is no more 
than a GAN whose discriminator and generator networks 
comprehend some convolutional layers, such as CNNs do. 
The work of Radford, Metz, and Chintala led to the 
adoption of some already proven modifications to the CNN 
standard architecture. The major components of this 
model are Strided Convolutions, Fractional Strided 
Convolutions, Eliminating Fully-Connected Layers, Batch 
Normalization, Generator and Discriminator. 

The convolution has a favorable effect on extracting 
picture features and employs convolution in place of the 
fully connected layer. Step size convolution is used in 
place of the upsampling layer. More importantly, we use 
the full-channel lateral convolution kernel, which enables 
the model to learn Be more focused on musicality and 
converge more quickly because, since the piano roller 
blinds are a form of music, we don't need to worry too 
much about the longitudinal convolution. 

3. PROPOSED MODELS 

All of the suggested models will be discussed in this paper. 
These adhere to the DCGAN's nature. Despite slight 
modifications, the convolutional approach and the 
suggested changes by Radford, Metz, and Chintala are 
adopted here. 

All of the models provided in this paper share the core of 
the method. The focus now is on each network's own 
structure because the dynamics between the discriminator 
and generator networks were already discussed in the 
previous section. 

To construct the random vector z, the method begins by 
selecting 100 samples from a normal distribution N (0, 1). 
This vector will be input into the generator network and 
pass through a layer of linear operations, with the bias 
initialized to zero and the weight matrix initialized at 
random from a normal distribution N (0, 0.2). The output 
of this linear layer is then batch-normalized, 3-
dimensionally reshaped, and subjected to the ReLU non-
linearity. Convolutional layers are used in the subsequent 
phases; their parameters will be determined later, once 
they vary depending on each proposed model. With the 
exception of the last one where the Tanh nonlinearity is 
used, each convolutional layer's input is batch-normalized, 
and its output is subject to the ReLU nonlinearity. 

An input for the discriminator network is a three-
dimensional form of created or actual data. Convolutional 
layers are used in the subsequent phases; their 
parameters will be determined later, once they vary 
depending on each proposed model. The LReLU with a 
leak of 0.2 is still applied as a non-linearity after each 
convolutional layer, and all convolutional layer inputs—
with the exception of the first—are batch-normalized. 
Following the convolutional processes, the three-
dimensional output shape is flattened and subjected to a 
linear layer, the parameters of which are initialized as the 
linear layer used in the generator network, to create a 
single output unit. A sigmoid nonlinearity is added to this 
final unit. 

Three models are proposed with different approaches to 
the convolutional steps.  

3.1 Original DCGAN - Model 1 

The DCGAN model from the beginning is fairly similar to 
Model 1. The depth of the networks has to be modified to 
only 3 convolutional layers each due to the varying 
dimensions of the data. Although the filters still have 
relatively small spatial extents and the strides are also of 
the same order of magnitude, both the filter's and the 
stride's dimensioning have changed. 

Table 3.1 provides details on the corresponding 
convolutional layer parameters. 

Table -1: Model 1 convolutional layer’s 
 

Network Layer Input                   Stride Output 

Generator Conv 1 17×23×256 5×5 85×115×128 

Conv 2 85×115×128 4×3 340×345×64 
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Network Layer Input                   Stride Output 

Conv 3 340×345×64 2×1 680×345×32 

Discrimin
ator 

Conv 1 680×345×32 2×1 340×345×64 

Conv 2 340×345×64 4×3 85×115×128 

Conv 3 85×115×128 5×5 17×23×256 

 

3.2 Strided Width - Model 2 
 
In this model, it is suggested to move along the breadth, 
which implies that the receptive field will only take into 
account the entirety of the action taking place at each 
temporal interval. This makes sure that the analysis of the 
frequency component, or the notes being played, is 
entirely the responsibility of the first convolutional layer. 
The temporal link between each time period will therefore 
be controlled by the subsequent convolutional layers. 

Figure 1 shows the architecture of the Model 2 networks, 
while Table 2 lists the parameters for the corresponding 
convolutional layers. 

Table -2: Model 2 convolutional layer’s 

Network Layer Input                  Stride Output 

Generator Conv 1 1×23×256 1×5 1×115×128 

Conv 2 1×115×128 1×3 1×345×64 

Conv 3 1×345×64 680×1 680×345×32 

Discrimin
ator 

Conv 1 680×345×32 680×1 1×345×64 

Conv 2 1×345×64 1×3 1×115×128 

Conv 3 1×115×128 1×5 1×23×256 

 
 

 

 

Fig -1 Generator & Discriminator Network Architecture 
for model 2 

3.3 Strided Height - Model 3 
 
In a way, Model 3 is the antithesis of Model 2. This model 
suggests "stumbling along the height," which implies that 
the receptive field will evaluate the whole time series 
while covering one frequency interval at a time. This 
makes sure that the analysis of the temporal component, 
or the determination of which time-steps a particular note 
is being played, is entirely the responsibility of the first 
convolutional layer. Therefore, the relationship between 

various notes will be controlled by the following 
convolutional layers. 

Figure 2 shows the architecture of the Model 3 networks, 
while Table 3 details the specifications of the 
corresponding convolutional layers. 

Table -3: Model 3 convolutional layer’s 
 

Network Layer Input                  Stride Output 

Generator Conv 1 17×1×256 5×1 85×1×128 

Conv 2 85×1×128 3×1 340×1×64 

Conv 3 340×1×64 1×345 680×345×32 

Discrimin
ator 

Conv 1 680×345×32 1×345 340×1×64 

Conv 2 340×1×64 3×1 85×1×128 

Conv 3 85×1×128 5×1 17×1×256 

 
 

 

 

Fig -2: Generator & Discriminator Network Architecture 
for mod 3 

5. IMPLEMENTATION 
 
The model explained in the previous section was 
implemented, and the results were captured. All the steps 
involved and points taken into consideration while 
performing the experiment are explained under the 
following subtopics. Results were obtained after the 
experiment was evaluated to determine the precession of 
the study. 

 

5.1 Dataset 
 

There are 100 MIDI tracks and 103 WAV files in Cymatics' 
Oracle Hip Hop Sample Pack. We solely utilized MIDI 
recordings in this work since they carry musical data in a 
symbolic manner. We used MIDI tracks with durations of 8 
or 16 seconds and records with minor tonality, as the bulk 
of the songs fell into this category, in order to simplify the 
training data.  The notes are composed of a beat, a pitch, a 
velocity, and a duration. 
 
The open-source Python module MusPy, which generates 
symbolic music, was used to extract the MIDI data, 
including pitch, velocity, and note duration. With the use 
of MusPy tools, this data was subsequently encoded into a 
piano-roll data representation. 
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5.2 Data Pre - Processing 

The MIDI file is loaded into the program using MusPy tools 
for data pre-processing, where it is parsed into a music 
object with a temporal precision of 12 timesteps per beat. 
Since the music object is inaudible to the human ear and 
can only be transposed to the key of C major, it was 
restricted by clipping its velocity to at least 40. We chose 
to extract just up to 4 octaves of pitches (48 notes) 
because the musical piece will not contain all 128 pitches. 
The training data's output dimension was (N, 48, 48, 1), 
where N is the number of training samples and (48, 48, 1) 
is the size of a single piano-roll. 

5.4 Generator and Discriminator 

The generator transforms (100,1) random vectors into 
M*N*C as inputs. The letters M and N stand for the height 
and breadth, respectively, and the letters C stand for the 
number of channels. Then, it goes via 3 Conv2DTranspose 
layers with 128, 64, and 1 filters that, respectively, activate 
Tanh, ReLU, and ReLU. The generator's output dimension 
will be the size of a piano roll with the coordinates (48, 48, 
1). 

It was developed for the discriminator in the opposite 
order from the generator. It receives the piano-roll as 
input and runs it through three Conv2D layers with the 
LeakyReLU activation function. The output value was then 
predicted using a Sigmoid activation function after it was 
flattened and passed through three dense layers. 

5.5 GAN Training 

The training of the generator and discriminator uses the 
Adam optimizer. The GAN's two sides can both overwhelm 
the other. The generator will have trouble reading the 
gradient if the discriminator model is overtrained since it 
will output values that are so close to 0 or 1. Otherwise, it 
will repeatedly take advantage of discriminator flaws that 
result in false negatives.  

We discovered during the experiment that we can run as 
many iterations as necessary. After all, the goal of the 
music creation algorithm is to produce better-sounding 
models rather than massive ones. 

GAN model training takes quite a bit, therefore, if parallel 
GPU training is possible, we can train GAN models more 
quickly than we could otherwise. The Nvidia GeForce RTX 
2080 graphics processing unit was utilized. 

5.5 Data Post - Processing 

The resulting piano roll was padded to a size of (128, 48, 
1) to go back to the original piano roll, same as before data 
preprocessing. MusPy library methods were used to 
transform the piano roll back into a MusPy music object, 

which was then written into a MIDI track in order to 
create MIDI tracks from a post-processed piano roll. 

6. EVALUATION 

A very subjective topic is music. Right now, hearing is 
necessary in order to evaluate the musical quality. We thus 
employ two sets of programs to assess the outcomes of 
our experiments. We conducted a poll with two groups: 
experts in the music industry and others who just 
sometimes listen to music. We blended in some generated 
music by our model and a variety of song genres that we 
randomly listen to and untrained music. A few simple 
questions were posed, along with a rating system for the 
music on the basis of its softness. These replies show that 
the method for creating music is capable of producing 
melodic and harmonic progressions that are engaging. 

 
 

Chart -1: User Study 
 

7. CONCLUSION 
 
In this study, we present a generation model for the GAN 
framework to generate note sequences. We employ a deep 
convolutional neural network and tune it to the properties 
of musical notes; this optimization approach allows the 
convolution network to concentrate on picking up musical 
information and conducting tests more quickly. In order to 
hasten the training of discriminators, we also get some 
understanding of common sense at the same time. 
Experimental results and arbitrary user assessments 
demonstrate the suggested model's ability to produce 
musically inspired sequences. The model is theoretically 
developed and possesses optimal qualities, despite the 
experimental results being below the level of human 
performance. A future study on the use of GAN for music 
production may concentrate on producing music of any 
duration or collecting a bigger training data set. 
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