

Efficient Design for Multi-story Building Using Pre-Fabricated Steel Structure by Integrating It with BIM Application

Samrudh¹, Shruti G², Sharat Chouka³

¹ Master's Student, Department of Civil Engineering Poojya Doddappa Appa College of Engineering, Kalaburagi, Karnataka, India. -585102 ² Asst. Professor, Department of Civil Engineering Poojya Doddappa Appa College of Engineering, Kalaburagi, Karnataka, India. -585102 ³ Asst. Professor, Department of Civil Engineering Poojya Doddappa Appa College of Engineering, Kalaburagi, Karnataka, India. -585102 ***

Abstract - Pre-fabricated steel structures used in a construction of buildings to overcome the problems like natural hazards, wastage, safety and to improve the productivity through saving cost and time. In this adequate structural design and effective manufacturing are both integral process for the efficient steel structure. The steel structure design significantly reduces the overall cost, increase the safety, sustainability, productivity and reduces the construction time. The use of Building Information Modelling (BIM) in this structure increases the product quality and this also provide the accurate quantity to take off and improve the scheduling and provide cost saving techniques. BIM helps to represents the different dimensions like 2D, 3D, 4D & 5D models to stimulate the planning, design, construction, and operation. It helps AEC (Architects, Engineers & Constructors) to visualize what is to be built in stimulated time and identify the operational problems. So, the project report extends us to know the designing of the pre-fabricated steel structure using Indian Standard Code in the STAAD.pro software for structural analysis, for 2-Dimensional plan Autodesk's AutoCAD software is used and to represent the drawing in 3-dimensional Autodesk's Revit software is used and later for the 4 Dimensional i.e., scheduling of the works is done in Autodesk's Navisworks in this time management is done and clashes were also detected. This BIM application made the work easy during the construction and avoid the delay and proper management is done due to which there is no conflict of interest between the Client & Contractor.

Key Words: BIM, Pre-fabricated steel, Navisworks, AEC, Scheduling, Clash Detection.

1.INTRODUCTION

1.1 Prefabricated Steel Structure

A Prefabricated steel structure is basically a structure that is made up of steel. These structures are engineered at the factory and get assembled at the site. In prefabricated steel structure construction framing will be fabricated completely at the factory and transported to the site for the assembling. Multi-storied steel structure is typically fabricated with the structural frames which are fabricated out of steel. It consists of columns and beams which are customized with respect to the building and most of the nodes are rigidly connected. The frame structure is the most common among the steel structured multi-storied building. The frame structure is the typically vertical load bearing structure.

1.2 Building Information Modelling

Building information modeling is the digital prestation of physical and functional characteristics of the building. BIM integrates the structured and multi-disciplinary data for the assistance throughout the lifecycle i.e., from planning, designing to construction and operations (AEC-Architect, Engineering & Construction industry).

The concept BIM was first started in late 1970s. The software tools emerged during late 1970s and early 1980s for the modeling buildings were GLIDE, RUCAPS, SONATA, ArchiCAD, REFLEX & GABLE 4D Series. The term BIM was first used in the papers in 1985 by Simon Ruffle. BIM is officially recognized by international standard in 2013 by giving an ISO code ISO- 16739 and later in 2019 depending on the UK papers ISO published series as ISO-19650.

In India IBIMA (India Building Information Modeling Association) is a national level society which represents the entire BIM community. In India due to population growth and economic growth there is expand in the construction market. Indian government officials gave a statement that BIM could save around 20% of the construction time and give a scope for the wider infrastructure development.

It was observed that due to increase in the population and demand in the infrastructure development today there is a big fault line due to which AEC (Architect, Engineering and Construction) community are unable to full fill the demand on time. The fault lines might be due to the budget constraints or also might be because of the availability of the area etc. So, we need to design the structure in more efficient way like budget friendly, good utilisation of space and reducing the construction time with good durability of the structure. International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 10 Issue: 08 | Aug 2023www.irjet.netp-ISSN: 2395-0072

2. METHODOLOGY

This project provides the information and demonstration of the designing of the five-story steel building i.e., prefabricated steel structure for the multipurpose work space and understanding how BIM (Building Information Modelling) can be utilised in the building design to make the building more efficient. The plot area considered for the construction of the building is 100 x 60 meters i.e., 6000 sqmt of plot area. The methodology considered in this project is firstly we design the building and integrate it with BIM. The basic stages involved in this are:

- First stage the building planning is done through AutoCAD software and the structural design is also done in this level only, through Staad Pro V8i software, sections are designed and analysed through which we get the structural stability of the building.
- Second stage after knowing the plan, section, and structural design of the building the 3D model of the building is created in Revit architecture software and for the structural member the Revit structure software can be used.
- Now in third stage the 4D modeling of the building is done i.e., time management through the software called Autodesk Navisworks.

The design codes are to be used as per the Indian standards:

- IS 875 Code of Practice for Design Loads
- IS 1893 Criteria for Earthquake Resistant Design of Structures
- IS 800 General Construction in Steel
- Building Bye-Laws 2017 Government of Karnataka

3. MODELLING & DESIGN PROPERTY

3.1 Geometrical properties:

SI. No	Parameters	Specification
1.	Type of structure	Shopping Complex.
2.	Number of storeys	Stilt + 4 Story
3.	Plot Size	100 x 60 m
4.	Size of the building	88.46 x 44.46 m
5.	Height of Floors	3.3m
6.	Height of the Building	16.5 m
7.	Walls	230mm thick brick wall
8.	Size of Steel Beam and Column	IW 550400x1632 & IW 550400x2040
9.	Thickness of slab	150mm
10.	Material	Steel, Concrete, Aluminium

11.	Loads	Indian Standards
12.	Soil type	Hard Soil
13.	Seismic Zone	Zone II

Table 1 General Properties

3.2 AutoCAD 2-Dimensional Drawings

SIDE ELEVATION

Fig. 1 Elevations of the Structure

Fig. 2 Floor Plan of the Structure

4. STRUCTURAL DESIGN AND ANALYSIS IN STAAD.PRO

4.1 Introduction to Staad.Pro

The structural analysis programme STAAD.PRO is renowned for its analysis, variety of applications, compatibility, and time-saving features. In order to perform 3D structural analysis and design for both steel and concrete structures, structural engineers use STAAD.

An analytical model for structural analysis can be built from a physical model created in the structural design programme. To ensure that the structural design complies with local laws, STAAD incorporates a number of design code standards.

4.2 Designing and Analysis Procedure in Staad.Pro

- 1. Open STAAD.Pro V8i Software the select the space option the select the length sppecification meter and kilonewton then select next and finish option
- 2. Job Information is created for the specified
- 3. Modelling is done by adding and joing nodes with respect to the distance and shape of the building later joined it with beam option from the top toolbox and layered to different floors and keeping in mind of providing the expansion joint.
- 4. Now add plate section to each floor as the slab, for that go select the 4 node plate option from the top tool box later select the plate cursor then draw the plate for all the floor.
- 5. Now to assign the section data base for the beam and column go to general and select the property the select the section database there select the steel column and go to Indian select the w section and specify the beam and column specifications and add it.
- 6. Now to select the thickness and add slab thickness od 150mm i.e 0.15 then click on add
- Now associate all the beams, columns and slab to the members and render to see the steel building.
 For the following steel building the specification is given: Beams = IW550400x1632 (Steel)
 Columns = IW550400x2040 (Steel)
 Plate = 150mm (Concrete)
- 8. Now to give a support go the general and select support and select create support select the fixed support select ok the add the support to the structure.
- 9. Now to add the Loads go to general and select the Loads and Definition select the load case details add Dead Load, Live Load, Wall Load & Select Autoload Combination for the other loads.
 Dead Load = Self weight -1 KN/m² Live Load = 5 KN/m² Wall Load = 5.37 KN/m²

Load Combination

- 10. Now to add materials go to general and select the materials and assigned materials will be observed if not assign it.
- 11. Now to do the analysis go to Analysis/Print option click on apply and go to post processing here we can observe the displacement, reactions of nodes and forces, stresses of beam and contour of plates.
- 12. Now need to design the steel and concrete member to do that go to modelling and select the design and choose the steel member, change the code to the Indian standards i.e IS 800 2007 LSD and select the parameters I.e Track & Yield Strength of 550000kn/m² and define the parameters to the steel members and give the command of check code, member take off, select & take off. Now assign the steel members i.e beams and columns for all the parameters.
- 13. Now choose concrte design and select the IS 456 and select the parameters of Clear cover, Compressive strength & Yield strength and define parameters of 0.025m, 30000kn/m² & 550000kn/m² repectiviely now go to command and select design elemets and take off after assign the slabs.
- 14. Now select Analysis/Print option and click on apply and later run analysis and go to post processing and check for the output file

4.3 Output of the design and analysis in Staad.pro

Beam	L/C	Length m	Max x mm	Dist m	Max y mm	Dist m	Max z mm	Dist m	Max mm	Dist m	Span/Max
111	1 DEAD LOA	10.000	0.001	8.333	-0.002	6.667	-0.000	0.333	0.002	6.667	>10000
	2 LIVE LOAD	10.000	0.001	9.167	0.000	0.000	0.000	0.000	0.001	9.167	
	7 WALL LOA	10.000	0.001	9.167	0.000	0.000	0.000	0.000	0.001	9.167	
	3 GENERATE	10.000	0.001	8.333	-0.003	5.833	-0.000	0.333	0.004	5.833	>10000
	4 GENERATE	10.000	0.001	8.333	-0.002	4.167	-0.000	0.333	0.002	4.167	>10000
	5 GENERATE	10.000	0.001	8.333	-0.003	4.167	-0.000	0.333	0.003	4.167	>10000
	6 GENERATE	10.000	0.001	8.333	-0.002	5.833	-0.000	0.333	0.002	5.833	>10000

Fig. 3 Maximum Relative displacement in Beam 111 of the Structure

	Beam	LIC	Node	Fx kN	Fy kN	Fz kN	Mx kNm	My kNm	Mz kNm
Max Fx	47	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	47	232.24417E	-79.004	493.422	0.378	3386.609	-8286.664
Min Fx	93	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	112	-913.184	6911.526	-22.827	3.268	154.243	-18753.756
Max Fy	779	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	347	2961.802	18908.877	629.442	-16.679	-811.339	-961.727
Min Fy	787	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	356	2937.755	-18924.730	-618.981	16.886	-788.825	-930.093
Max Fz	640	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	277	56828.035	-352.441	2761.752	-0.261	-2282.389	4541.117
Min Fz	601	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	238	45427.098	1481.676	-2437.227	0.076	1664.765	-9272.342
Max Mx	947	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	448	2351.231	15537.755	670.274	65.970	-4925.699	2874.899
Min Mx	890	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	441	2351.691	15549.119	-688.685	-66.740	5056.450	2874.825
Max My	58	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	130	139.15545E	191.102	1445.844	0.283	17507.049	-13403.118
Min My	8	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	80	94176.156	-964.880	-1692.885	-0.918	-19764.906	67549.125
Max Mz	14	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	86	155.88653E	-691.429	251.028	-0.161	3750.443	96091.844
Min Mz	38	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	110	155.89503E	687.508	247.207	0.134	3765.274	-96443.000

Fig. 4 Summary of Forces acting on Beams

International Research Journal of Engineering and Technology (IRJET) www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

		Shear N				Membrane		Be	nding Mome	nt
	Plate	L/C	SQX (local) N/mm2	SQY (local) N/mm2	SX (local) N/mm2	SY (local) N/mm2	SXY (local) N/mm2	Mx kNm/m	My kNm/m	Mxy kNm/m
Max Qx	1060	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	0.002	0.000	-0.018	-0.014	-0.001	-0.546	2.016	0.001
Min Qx	1061	2 LIVE LOAD	-0.000	-0.000	-0.000	-0.000	-0.000	0.019	1.158	0.000
Max Qy	1065	2 LIVE LOAD	-0.000	0.000	-0.000	-0.000	0.000	-1.159	-0.019	0.000
Min Qy	1029	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	0.000	-7.123	0.001	0.000	0.000	-181.625	-1068.384	0.000
Max Sx	1023	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-0.000	0.000	0.006	0.006	0.001	-0.002	-0.002	0.000
Min Sx	1062	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-0.000	-0.000	-0.042	-0.020	-0.021	0.003	0.003	0.00
Max Sy	1007	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-0.000	0.000	0.006	0.005	0.000	-0.001	-0.001	-0.000
Min Sy	1063	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-0.000	0.000	-0.022	-0.041	0.021	-0.004	-0.004	0.00
Max Sxy	1063	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-0.000	0.000	-0.022	-0.041	0.021	-0.004	-0.004	0.00
Min Sxy	1062	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-0.000	-0.000	-0.042	-0.020	-0.021	0.003	0.003	0.00
Max Mx	1017	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-0.000	-0.066	0.001	0.001	0.000	0.378	-0.206	0.000
Min Mx	1029	5 GENERATED INDIAN CODE GENRAL_STRUCTURES 3	0.000	-7.123	0.001	0.000	0.000	-181.625	-1068.384	-0.000
Max My	1060	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	0.002	0.000	-0.018	-0.014	-0.001	-0.546	2.016	0.001
Min My	1029	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	0.000	-7.123	0.001	0.000	0.000	-181.625	-1068.384	0.000
Max Mxy	1058	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	0.000	-0.000	-0.006	-0.006	-0.011	-0.000	-0.000	0.005
Min Mxv	1006	3 GENERATED INDIAN CODE GENRAL STRUCTURES 1	-0.000	0.000	0.001	0.001	.0.005	.0.000	0.000	.0.003

Fig 5 Summary of Shear, Membrane & Bending Force of
plates

			35M/100/010/010/02/02/02/02/02/02/02/02/02/02/02/02/02	
K K Shear, Membrane and Bending	λ Summary λ Principal and Von Mis λ	Summary /	(Global Moments)	Combined Stresses

				ipal	Von Mis		Tresca	
	Plate	UC	Top N/mm2	Bottom N/mm2	Top N/mm2	Bottom N/mm2	Top N/mm2	Bottom N/mm2
Max Principal (top)	1060	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	0.524	0.128	0.622	0.625	0.687	0.680
Min Principal (top)	1029	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-284.902	48.434	264.039	264.039	284.902	284.902
Max Principal (bottom)	1029	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-48.433	284.902	264.039	264.039	284.902	284.902
Min Principal (bottom)	1060	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-0.163	-0.552	0.622	0.625	0.687	0.680
Max Von Mis (Top)	1029	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-48.433	284.902	264.039	264.039	284.902	284.902
Min Von Mis (top)	1042	7 WALL LOAD	-0.000	-0.000	0.000	0.000	0.000	0.000
Max Von Mis (Bottom)	1055	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-48.434	284.902	264.039	264.039	284.902	284.902
Min Von Mis (bottom)	1042	7 WALL LOAD	-0.000	-0.000	0.000	0.000	0.000	0.000
Max Tresca (top)	1029	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-48.433	284.902	264.039	264.039	284.902	284.902
Min Tresca (top)	1042	7 WALL LOAD	-0.000	-0.000	0.000	0.000	0.000	0.000
Max Tresca (bottom)	1029	3 GENERATED INDIAN CODE GENRAL_STRUCTURES 1	-48.433	284.902	264.039	264.039	284.902	284.902
Min Tresca (bottom)	1042	7 WALL LOAD	-0.000	-0.000	0.000	0.000	0.000	0.000

Fig 6 Summary of Principal & Von mis values of plates

Fig 7 Max Absolute value of Live Load in Plate

Impact Factor value: 8.226

© 2023, IRJET

Page 852

ISO 9001:2008 Certified Journal

Fig 9 Property of Beam 111

Fig 10 Design Property of Beam 111

Fig 12 Beam Graphs of Beam 111

Fig 15 Connections of Joints

5. 3- DIMENSIONAL DESIGN IN AUTODESK REVIT

5.1 Introduction to Autodesk Revit

For structural engineers, mechanical, electrical, and plumbing (MEP) engineers, designers, and contractors, Autodesk Revit is a building information modelling programme. Charles River programme, a 1997 startup that changed its name to Revit Technology Corporation and was later acquired by Autodesk in 2002, was the company that created the initial programme. The programme enables users to create a building and all its parts in 3D, add 2D drafting elements to the model, and retrieve building data from the building model's database.

5.2 Designing Procedure in Autodesk Revit

- Start the Autodesk Revit application and select the templet insert the Autodesk AutoCAD drawing file through going to the inset option in the tool bar and insert the file.
- Create the different Levels by going to elevation and there will get the insert level option in the tool bar and place it at the different levels of building
- Draw the walls along the plan and give the properties to the wall for 6 inch and 9-inch wall and go to the tool bar and place the doors and windows
- Now go to the circulation in the tool bar and draw the staircase path by selecting the type and boundary and pathway.
- Now select the flooring from tool bar and draw the boundary of flooring and enter which kind of flooring by changing the properties.
- Draw the same things to all the rest of the floors and mention the things and later select the ceiling from the tool bar draw the boundary of ceiling and apply the property.
- Now place the lighting, furniture, and plumbing works to all the floors by going to components and loading library then placing it in required places.

- Now go to the view place topography and give the angle for the camera to visual representation of the drawing.
- For the walkthrough option go to the view and select the 3D option from the menu bar and draw the pattern of the walkthrough and exit later render it and export.

5.3 Output of the Design in Revit

Fig 16 Front view of the model without and with rendering in revit

Fig 17 Angular view of the model without and with rendering in revit

6. 4-DIMENSIONAL DESIGN IN AUTODESK NAVISWORKS

6.1 Introduction to Autodesk Navisworks

In this user can evaluate 3D designs using Navisworks. Users of Navisworks can open and combine 3D models, navigate through them in real-time, and review the model using a variety of tools including comments, redlining, viewpoints, and measurements. Navisworks is primarily used in the architecture, engineering, and construction (AEC) industries as a complement to 3D design packages (such as Autodesk Revit, AutoCAD, and MicroStation). Interference detection, 4D time simulation, photorealistic rendering, and PDF-like publication are some of the plug-ins that improve the program.

6.2 Designing Procedure in Autodesk Navisworks

- Save the file in NWC file in the 3D modelling software and open it then it creates the cache of Navisworks later save the file in NWF so that to carry on the further usage.
- The General user interface screen opens to carry out the work of 4D modeling and the 3D Model will appear
- Now for the 4D Modelling i.e., scheduling and time management go to the TimeLiner option in the toolbar of the screen and click on it the interface pops on screen
- Now schedule the items from the selection tree and select the date and time of the work which start and end.
- Now to check the clash detectivity go to the toolbar select the clash detection option and later the sub screen pops up and select the structure and run the test. It will detect t the number of works which may overlap and shows the tolerance level and status of difficulty in the progress of work.
- Now go to the simulate and create the animations and sections later export it to BIM360 and share

6.3 Output of the Design in Navisworks

Fig 18 Section view from top in Navisworks

Fig 19 Section view from side in Navisworks

Fig 20 Assigning the Items to Schedule

Fig 21 Clash Detection Test

Fig 22 View of the Navisworks

Fig 23 Section view Through Angular Rotation in Navisworks

7. OBSERVATION AND DISCUSSIONS

7.1 Importance of BIM in AEC Industry

In this it was noted that how BIM helped for digitalized documentation at the pre-construction stage. Also, with this it was noted that BIM reduced the construction time, cost, and compressive checks. It was noted that the error during the construction phase has drastically reduced because of the pre visualisation of the model, simulation of the model and detectivity of the clashes. BIM also keeps the information of all the phases of the project, status of the work and continuity off work. All the team members of that project can access to work irrespective of place where they are, due to which the management and coordination will be great during the construction phase which also reduces the

www.irjet.net

wastage. In this project the 2D, 3D, 4D modelling is done and structural analysis is also done to specify the stability and visualization of the building.

7.2 Modelling and Design Properties of the **Building**.

In this phase of project, the kind of the building was decided to design and got to conclusion that the prefabricated steel structure could be used for the building, it was noted from the literature survey the usage of prefabricated steel in the building is more efficient as compared to conventional concrete for beams and columns. By using the prefabricated steel structure, the utility space will also increase and the construction cost and construction time of the building will be reduced. The building is for commercial usage i.e., Shopping Mall complex so the norms for the building design is done with respect to the building bylaws of Karnataka Urban Development Authority. The building is of Stilt + 4 Floors so while designing this building it was considered of the specification of commercial building and designed accordingly for example the passage should be given with the width of 2 meters, provisions of stair case and elevators respectively and provisions of the washrooms and ventilations, many more safety precautions.

7.3 Analyzing the Structural Properties of the **Building**.

In this phase of the project structure of the building is analysed, it was noted that the structural properties are designed with respect to the Indian standards and critical values are taken into consideration for beams and columns of steel to design. The structural analysis and design are done in Staad.pro software which made a to understand the Relative displacement, Forces acting on Beams and Plates, Stresses acting on Beams and Plates, Maximum absolute value of Loading, General Properties, Design Properties, Shear Bending, Steel Design, Moment Connections and Shear Connections many more. In this software the design is done in such a way the structural member should be more efficient for example, by taking the Member-1 details in the analysis part the given property was at the higher node and steel value was also higher but after performing Design analysis the steel value of the same member is designed according the load combination and the quantities are calculated the results page are like,

STAAD SPACE - PAGE NO.

STAAD.PRO CODE CHECKING - IS-800-2007-LSD (V2.0)

L	Member Num	per:	1						
L	Member Sect	tion: ST	IW5504	00x2040	(INDIAN	SECTION	IS)		
L	Status: PA	SS Ratio	: 0.456	Critica	1 Load C	ase:	4 Loca	ation:	3.30
L	Critical Co	ondition:	Sec. 9.3	.2.2					
I	Critical De	esign For	ces: (Un	it: KN	METE)				
L	FX:	6.903	E+03 C	FY:	-26.235	E+00	FZ:	-17.8	86E+00
I	MX:	527.636	E-06	MY:	-40.416	E+00	MZ:	71.8	46E+00
1-									
L	Section Pro	operties:	(Unit	: CM)					
L	AXX: 3	98.000E+0	0	IZZ:	288.01	1E+03	I	RZZ:	26.901E+00
Ľ	AYY:	58.090E+0	0	IYY:	35.20	7E+03	E	XYY:	9.405E+00
L	AZZ:	90.000E+0	0	IXX:	909.00	00E+00		CW:	4.233E+06
L	ZEZ:	9.306E+0	3	ZPZ:	9.66	56E+03			
L	ZEY:	2.817E+0	3	ZPY:	2.98	2E+03			
1-									
I	Slenderness	Check:	(Unit:	KN N	ETE)				
L	Actual Leng	gth:	3.300E	+00					
I	Parameters	LZ:	3	.300E+00	LY:	3.30	00E+00		
L		KZ:		1.000	KY:		1.000		
L	Actual Rat:	io: 35.0	9 Allowab	le Ratio:	180.00	LOAD:	6 FX:	3	.619E+03 C
1-									
L	Section Cla	ass:	Compact;	Flange C	lass:	Compa	act; Web	Class:	Plastic
1-									

STAAD SPACE - PAGE NO.

STAAD.PRO CODE CHECKING - IS-800-2007-LSD (V2.0)

Cension: (U	nit: KN M	ETE)			
Parameters:	FYLD:	550.000E+03	FU:	420.000E+03	
	NSF:	1.000	ALPHA:	0.800	
fielding :	Design Force:	0.000E	2+00	LC: 0	
	Capacity:	19.900E	E+03	As per: Sec. 6.2	
aupture :	Design Force:	10.0001	2+02	LC: U	
	capacity:	10.656		As per: Sec. 0.5	
Compression:	(Unit: KN	METE)			
Buckling Class	: Major: a	Minor: b	As per:	cl. 7.1.2.2	
Major Axis:	Design Force:	6.9188	E+03 L	C: 3 Loc:	0.000
	Capacity:	19.890E	E+03 A	s per: Sec. 7.1.2	2
linor Axis:	Design Force:	6.918E	E+03 L	C: 3 Loc:	0.000
	Capacity:	16.8695	5+03 A	s per: Sec. 7.1.2	
Shear: (Uni	t: KN)				
Major Axis:	Design Force:	17.8868	z+00 L	C: 3 Loc:	0.000
	Capacity:	2.2898	E+03 A	s per: Sec. 8.4	
Minor Axis:	Design Force:	-26.235E	E+00 L	C: 3 Loc:	0.000
	Capacity:	1.7328	E+03 A	s per: Sec. 8.4	
ending. (T					
Parameters: (0	Laterally Unst	upported KX	<: 1.00	LX: 3.300E+00	General
Major Axis:	Design Force:	-71.8468	E+00 L	C: 3 Loc:	3.300
	Capacity:	3.7098	E+03 A	s per: Sec. 8.2.2	2
Minor Axis:	Design Force:	-40.416	E+00 I	C: 3 Loc:	3.300
Minor Axis:	Design Force: Capacity:	-40.416 1.491	E+00 I E+03 A	C: 3 Loc: s per: Sec. 8.2.	3.300 1.2
Minor Axis: Combined Inter	Design Force: Capacity: raction:	-40.4161 1.4911	E+00 I E+03 A	C: 3 Loc: s per: Sec. 8.2.	3.300 1.2
Minor Axis: Combined Inter Parameters: F	Design Force: Capacity: caction: PSI: 1.00 CM	-40.4163 1.4913 X: 0.900	E+00 I E+03 A	C: 3 Loc: s per: Sec. 8.2 0.900 CMZ: 0	3.300 1.2 .900
Minor Axis: Combined Inter Parameters: F Section Streng	Design Force: Capacity: raction: PSI: 1.00 CM gth: Ratio:	-40.416 1.491 	E+00 I E+03 A CMY: As per:	C: 3 Loc: s per: Sec. 8.2 0.900 CM2: 0 Sec. 9.3.1.1	3.300 1.2 .900
Minor Axis: Combined Inter Parameters: F Section Streng	Design Force: Capacity: raction: PSI: 1.00 CM gth: Ratio: LC:	-40.416 1.491 X: 0.900 0.020 2	E+00 I E+03 A CMY: As per: Loc:	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300	3.300 1.2 .900
Minor Axis: Combined Inter Parameters: E Section Streng Overall Member	Design Force: Capacity: 	-40.4163 1.4913 X: 0.900 0.020 2 nding+Compress	E+00 L E+03 A CMY: As per: Loc: sion):	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300	3.300 1.2 .900
Minor Axis: Combined Inter Parameters: E Section Streng Overall Member Equation 1:	Design Force: Capacity: faction: 2SI: 1.00 CM yth: Ratio: LC: r Strength (Be Ratio:	-40.4161 1.4911 x: 0.900 0.020 2 nding+Compress 0.456	E+00 L E+03 A CMY: As per: Loc: sion): As per:	C: 3 Loc: s per: Sec. 8.2 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2	3.300 1.2 .900
Minor Axis: Combined Inter Parameters: F Section Streng Overall Member Equation 1:	Design Force: Capacity: raction: 2SI: 1.00 CM yth: Ratio: LC: strength (Be Ratio: LC:	-40.4161 1.4911 x: 0.900 0.020 2 nding+Compress 0.456 3	E+00 L E+03 A CMY: As per: Loc: sion): As per: Loc:	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300	3.300 1.2 .900
Winor Axis: Combined Inter Parameters: F Section Streng Overall Member Equation 1: Equation 2:	Design Force: Capacity: 	-40.4161 1.4911 X: 0.900 0.020 2 nding+Compres: 0.456 3 0.381	E+00 L E+03 A CMY: As per: Loc: sion): As per: Loc: As per:	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 Sec. 9.3.2.2	3.300 1.2 .900
Minor Axis: Combined Inter Parameters: F Section Streng Overall Member Equation 1: Equation 2:	Design Force: Capacity: 	-40.4161 1.4917 X: 0.900 0.020 2 nding+Compres: 0.456 3 0.381 3	E+00 L E+03 A CMY: As per: Loc: sion): As per: Loc: As per: Loc:	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 Sec. 9.3.2.2 3.300	3.300 1.2 .900
Minor Axis: Combined Inter Parameters: F Section Streng Dverall Member Equation 1: Equation 2: 	Design Force: Capacity: caction: 2SI: 1.00 CM th: Ratio: LC: Ratio: LC: Ratio: LC: Batio: Batio:	-40.4161 1.4911 X: 0.900 0.020 2 nding+Compres: 0.456 3 0.381 3 Uoad Case M	E+00 I E+03 A CMY: As per: Loc: sion): As per: Loc: As per: Loc:	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 Sec. 9.3.2.2 3.300	3.300 1.2 .900
Minor Axis: Combined Inter Parameters: E Section Streng Overall Member Equation 1: Equation 2: Checks	Design Force: Capacity: raction: FSI 1.00 CM yth: Ratio: LC: Ratio: LC: Ratio: Ratio:	-40.416 1.491 x: 0.900 0.020 2 nding+Compress 0.456 3 0.381 3 Load Case No	E+00 I E+03 A CMY: As per: Loc: sion): As per: Loc: As per: Loc: o. I	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 Sec. 9.3.2.2 3.300 coation from Star	3.300 1.2 .900 t.(METE)
Minor Axis: Combined Inter Parameters: F Section Streng Dverall Member Equation 1: Equation 2: Checks Pension	Design Force: Capacity: raction: SSI: 1.00 CM yth: Ratio: LC: Ratio: LC: Ratio: Ratio Ratio 0.00	-40.4161 1.4911 x: 0.900 0.020 2 nding+Compress 0.456 3 0.381 3 Load Case No 0 0 0	E+00 I E+03 A CMY: As per: Loc: sion): As per: Loc: Loc: CMY: As per: Loc: Loc: Loc: Loc: Loc: Loc: Loc: Loc	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 Sec. 9.3.2.2 3.300 coation from Star 0.000E+	3.300 1.2 .500 t(METE)
Minor Axis: Combined Inter Parameters: F Section Streng Dverall Member Equation 1: Equation 2: Checks Tension Compression	Design Force: Capacity: raction: PSI: 1.00 CM PSI: Action LC: C: Ratio: LC: Ratio: Ratio 0.00 0.41	-40.4161 1.4911 x: 0.900 0.020 2 nding+Compres: 0.456 3 0.381 3 Load Case No 0 0 3	E+00 I E+03 A CMY: As per: Loc: Ssion): As per: Loc: As per: Loc: o. I	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 Sec. 9.3.2.2 3.300 cocation from Star 0.000E+ 0.000E+	3.300 1.2 .500 t (METE) 00
Minor Axis: Combined Inter Parameters: F Section Streng Dverall Member Equation 1: Equation 1: Equation 2: Checks Pension Compression Shear Major	Design Force: Capacity: caction: 28I: 1.00 CM 28I: 1.00 C	-40.4161 1.4911 2.0.900 0.020 2 nding+Compres: 0.456 3 0.381 3 Load Case No 0 0 0 3 8 3	E+00 I E+03 A CMY: As per: Loc: sion): As per: Loc: Loc: Loc: Loc: Loc: Loc: Loc: Loc	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 Sec. 9.3.2.2 3.300 Sec. 9.3.2.2 0.000E+ 0.000E+ 0.000E+	3.300 1.2 .500 t (METE) 00 00 00
Minor Axis: Combined Inter Parameters: F Section Streng Dverall Member Equation 1: Equation 2: Checks Pension Compression Shear Major Shear Major	Design Force: Capacity: caction: SSI: 1.00 CM yth: Ratio: LC: Ratio: LC: Ratio: Ratio 0.00 0.41 0.00 0.01	-40.416 1.491 .491 .0.020 2 nding+Compress 0.456 3 0.381 3 Load Case No 0 0 3 5 3	E+00 I E+03 A As per: Loc: sion): As per: Loc: Loc: Loc: o. I	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 Sec. 9.3.2.2 3.300 sec. 9.3.2.2 0.000E+ 0.000E+ 0.000E+	3.300 1.2 .500 t (METE) 00 00 00
Minor Axis: Combined Inter Parameters: F Section Streng Doverall Member Equation 1: Equation 2: Checks Pension Compression Shear Major Shear Minor Shead Minor	Design Force: Capacity: caction: SSI: 1.00 CM gth: Ratio: LC: Ratio: LC: Ratio: 0.00 0.41 0.00 0.01 0.01	-40.4161 1.4911 X: 0.900 0.020 2 nding+Compress 0.456 3 0.381 3 Load Case No 0 0 3 5 3 9 3	E+00 I E+03 A CMY: As per: Loc: Sion): As per: Loc: Loc: Loc: Loc: Loc: Loc: Loc: Loc	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 sec. 9.3.2.2 3.300 coation from Star 0.000E+ 0.000E+ 3.300E+ 0.000E+ 3.300E+ 0.000E+ 0.000E+ 3.300E+ 0.000E+ 0.000E+ 3.300E+ 0.00	3.300 1.2 .900 t (METE) 00 00 00 00
Minor Axis: Combined Inter Parameters: F Section Streng Dverall Member Equation 1: Equation 2: Checks Tension Compression Shear Major Shear Minor Bend Minor	Design Force: Capacity: raction: PSI: 1.00 CM PSI: 1.00 CM LC: LC: LC: Ratio: LC: Ratio: 0.00 0.41 0.00 0.01 0.01 0.01	-40.4161 1.4911 2 2 nding+Compress 0.456 3 0.381 3 Load Case No 0 0 3 5 3 5 3 5 3 7 3	E+00 I E+03 A CMY: As per: Loc: sion): As per: Loc: Loc: CMY: As per: Loc: Loc: Loc: Loc: Loc: Loc: Loc: Loc	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 sec. 9.3.2.2 sec. 9.3.2.2 s	3.300 1.2 .900 t(METE) 00 00 00 00 00 00 00
Minor Axis: Combined Inter Parameters: F Section Streng Overall Member Equation 1: Equation 2: Checks Tension Compression Shear Major Shear Major Shear Minor Bend Major Bend Major	Design Force: Capacity: raction: FST: 1.00 CM yth: Ratio: LC: Ratio: LC: Ratio: 0.00 0.41 0.00 0.01 0.01 0.02 0.02	-40.416 1.491 .491 .0.20 2 nding+Compress 0.456 3 0.381 3 Load Case No 0 0 3 5 3 7 3 0 2 0 2 0 3 0 3 0 2 0 3 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0	E+00 I E+03 A CMY: As per: Loc: sion): As per: Loc: As per: Loc: o. I	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 Sec. 9.3.2.2 3.300 coation from Star 0.000E+ 0.000E+ 0.000E+ 3.30E+ 3.300	3.300 1.2 .500 t (METE) 00 00 00 00 00 00 00 00 00 00 00
Minor Axis: Combined Inter Section Streng Deverall Member Equation 1: Equation 2: Checks Pension Compression Shear Major Shear Minor Shead Minor Sec. 9.3.1.1	Design Force: Capacity: 	-40.4161 1.4911 x: 0.900 0.020 2 nding+Compress 0.456 3 0.381 3 Load Case No 0 0 3 5 3 5 3 5 3 7 3 0 2 6 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	E+00 I E+03 A CMY: As per: Loc: sion): As per: Loc: As per: Loc: o. I	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 Sec. 9.3.2.2 sec. 9.3.2.2 s	3.300 1.2 .500 t (METE) 00 00 00 00 00 00 00 00 00 00 00 00 00
Minor Axis: Combined Inter Parameters: F Section Streng Doverall Member Equation 1: Equation 2: Checks Pension Compression Shear Major Shear Major Shear Minor Sec. 9.3.1.1 Sec. 9.3.2.2 (1)	Design Force: Capacity: 	-40.416 1.491 2.000 0.020 2 nding+Compress 0.456 3 0.381 3 Load Case No 0 0 3 5 3 9 3 7 3 0 2 6 3 1 3 0 2 1 3 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3	E+00 I E+03 A CMY: As per: Loc: Sion): As per: Loc: Loc:	C: 3 Loc: s per: Sec. 8.2. 0.900 CMZ: 0 Sec. 9.3.1.1 3.300 Sec. 9.3.2.2 3.300 sec. 9.3.2.2 3.300 cocation from Star 0.000E+ 0.000E+ 3.300E+ 3.300E+ 0.0	3.300 1.2 .900 t (METE) 00 00 00 00 00 00 00 00 00 00 00 00 00

International Research Journal of Engineering and Technology (IRJET)

IRJET Volume: 10 Issue: 08 | Aug 2023

www.irjet.net

-- PAGE NO. 1935

e-ISSN: 2395-0056 p-ISSN: 2395-0072

STAAD	SPACE

STEEL TAKE-OFF -----

	PROFILE	LENGTH (METE)	WEIGHT (KN)	
ST	IW550400X2040	1188.00	3632.211	
ST	IW550400X1632	5278.81	14598.535	
		TOTAL =	18230.746	

STAAD SPACE

-- PAGE NO. 1953

STAAD.PRO MEMBER SELECTION - IS-800-2007-LSD (V2.0)

	Member Number:	1						
	Member Section:	ST IW5503	50x010	(INDIAN	SECTION	S)		
	Status: PASS Ra	tio: 0.857	Critica	1 Load C	ase:	4 Locat	ion:	3.30
	Critical Conditi	on: Sec. 9.3	.2.2					
	Critical Design	Forces: (Un	it: KN	METE)				
	FX: 6.	903E+03 C	FY:	-26.235	E+00	FZ:	-17.8	86E+00
	MX: 527.	636E-06	MY:	-40.416	E+00	MZ:	71.8	46E+00
-								
	Section Properti	es: (Unit	: CM)					
	AXX: 229.000	E+00	IZZ:	135.28	2E+03	R	Z:	24.305E+00
	AYY: 66.770	E+00	IYY:	16.47	9E+03	R	Y:	8.483E+00
	AZZ: 90.000	E+00	IXX:	143.00	0E+00	(:W:	3.545E+06
	ZEZ: 4.763	E+03	ZPZ:	4.68	9E+03			
	ZEY: 1.318	E+03	ZPY:	1.23	0E+03			
	Slenderness Chec	k: (Unit:	KN M	ETE)				
	Actual Length:	3.300E	+00					
	Parameters:	LZ: 3	.300E+00	LY:	3.30	0E+00		
		KZ:	1.000	KY:		1.000		
	Actual Ratio: 3	8.90 Allowab	le Ratio:	180.00	LOAD:	6 FX:	3	.619E+03 C
	Section Class:	Compact;	Flange C	lass:	Compa	ct; Web (lass:	Plastic

STAAD SPACE

STAAD.PRO MEMBER SELECTION - IS-800-2007-LSD (V2.0)

-- PAGE NO. 1954

	Member Numbe:	r: 1			
	Member Section	on: ST IW550	350X010 (INDIA	N SECTIONS)	
-	Tension:	(Unit: EN N	(द्रणाद्र)		
	Parameters:	FYLD:	550,000E+03	FU: 420.000E+03	
		NSF:	1.000 AL	PHA: 0.800	
	Yielding :	Design Force:	0.000E+00	LC: 0	
		Capacity:	11.450E+03	As per: Sec. 6.2	
	Rupture :	Design Force:	0.000E+00	LC: 0	
		Capacity:	6.156E+03	As per: Sec. 6.3	
-					
	Compression:	(Unit: KN	METE)		
	Buckling Cla	ss: Major: a	Minor: b As	per:Cl. 7.1.2.2	
	Major Axis:	Design Force:	6.918E+03	LC: 3 Loc:	0.000
		Capacity:	11.390E+03	As per: Sec. 7.1.	2
	Minor Axis:	Design Force:	6.918E+03	LC: 3 Loc:	0.000
		Capacity:	9.340E+03	As per: Sec. 7.1.	2
	Shear: (U	nit: EN)			
	Major Axis:	Design Force:	17.886E+00	LC: 3 Loc:	0.000
		Capacity:	2.462E+03	As per: Sec. 8.4	
	Minor Axis:	Design Force:	-26.235E+00	LC: 3 Loc:	0.000

1							
	Bending: (Unit:	KN ME	PE)				
I.	Parameters: Late	rally Unsur	oported 1	KX: 1.	.00 LX:	3.300E+	00 General
1	Major Axis: Desi	gn Force:	-71.84	6E+00	LC:	3 Loc:	3.300
I	Capa	city:	1.68	3E+03	As per:	Sec. 8.	2.2
L	Minor Axis: Desi	gn Force:	-40.41	6E+00	LC:	3 Loc:	3.300
L	Capa	city:	615.00	DE+00	As per:	Sec. 8.	2.1.2
1-	Cambined Tatanati						
	Combined Interaction	1 00 000	0 000	carry.	0 000	CN17 .	0 000
	Parameters: PSI:	I.UU CMA	0.500	CMI:	0.500	CM2:	0.900
5	Section Strength:	Ratio:	0.090	As per	r: sec.	9.3.1.1	
!		TC:	4	Loc:	3.3	00	
1	Overall Member Str	ength (Bend	ding+Compres	ssion):			
I	Equation 1:	Ratio:	0.857	As per	sec.	9.3.2.2	
I		LC:	3	Loc:	3.3	00	
L	Equation 2:	Ratio:	0.692	As per	: Sec.	9.3.2.2	
1		LC:	3	Loc:	3.3	00	
-	Checks	Ratio	Load Case 1	No.	Locatio	n from St	art(METE)
	Tension	0.000	0			0.000	E+00
i.	Compression	0.741	3			0.000	E+00
1	Shear Major	0.007	3			0.000	E+00
i.	Shear Minor	0.015	3			0.000	E+00
i	Bend Major	0.043	3			3.300	E+00
i.	Bend Minor	0.066	3			3.300	E+00
1	Sec. 9.3.1.1	0.090	4			3.300	E+00
i	Sec. 9.3.2.2 (i)	0.857	3			0.000	E+00
1							

-- PAGE NO. 5666

STEEL TAKE-OFF

STAAD SPACE

	PROFILE	LENGTH (METE)	WEIGHT (KN)
ST	IW550350X010	26.40	29962.524	
ST	IW350300x010	1849.74	1310948.743	
ST	IW550350X012	13.20	15373.784	
ST	IW350350X012	159.60	130513.611	
ST	IW400350X010	213.00	180515.584	
ST	IW450300x010	46.20	39383.054	
ST	IW450350X010	123.40	114365.688	
ST	IW450350X1020	6.60	7981.283	
ST	IW450300x012	19.80	17369.106	
ST	IW350350X010	119.60	93654.192	
ST	IW350350X1632	242.30	323031.346	
ST	IW350300X012	330.92	242730.160	
ST	IW350350X2040	73.38	110558.022	
ST	IW500400x010	310.30	332180.782	
ST	IW350350X1020	48.92	52127.142	
ST	IW450350X016	878.72	897132.732	
ST	IW400350X1632	48.46	67488.333	
ST	IW500350X010	180.00	184663.814	
ST	IW400350X016	332.00	312630.005	
ST	IW500350X012	240.46	253840.794	
ST	IW400300x010	245.57	189862.363	
ST	IW350350X016	160.00	140356.407	
ST	IW550400x010	134.60	158767.267	
ST	IW550400x012	30.60	37155.786	
ST	IW600400X010	97.38	127895.306	
ST	IW450350X1632	97.38	143339.265	
ST	IW400300X012	21.15	16876.230	
ST	IW500400X016	96.00	111809.335	
ST	IW450350X012	6.60	6313.065	
ST	IW350350X1225	60.00	70178.196	
ST	TW500400X012	20.00	22104.147	
ST	TW550400X016	24.00	30688.091	
ST	TW550400X1632	210.52	582,194	
ST	IW550400X1632	210.52	582.194	

************ END OF DATA FROM INTERNAL STORAGE ************

412. START CONCRETE DESIGN

------ PAGE 5666 Ends Here >------STAAD SPACE -- PAGE NO. 5667

413. CODE INDIAN
414. CLEAR 0.025 MEMB 1002 TO 1009 1017 TO 1027 1029 TO 1070
415. FC 30000 MEMB 1002 TO 1009 1017 TO 1027 1029 TO 1070
416. FYMAIN 550000 MEMB 1002 TO 1009 1017 TO 1027 1029 TO 1070
417. DESIGN ELEMENT 1002 TO 1009 1017 TO 1027 1029 TO 1070

ISO 9001:2008 Certified Journal Page 857

International Research Journal of Engineering and Technology (IRJET)

-- PAGE NO. 5949

1

1)

1)

1)

LOADTYPE DEAD TITLE WALL LOAD

e-ISSN: 2395-0056 p-ISSN: 2395-0072

7

Volume: 10 Issue: 08 | Aug 2023 IRIET STAAD SPACE STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. LOADTYPE DEAD TITLE DEAD LOAD CENTER OF FORCE BASED ON Y FORCES ONLY (METE). (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS) x = 0.441303073E+02 Y = 0.955934177E+0 z = -0.229817538E+02 ***TOTAL APPLIED LOAD (KN METE) SUMMARY (LOADING SUMMATION FORCE-X = 0 00 -5834666.61 SUMMATION FORCE-Y = SUMMATION FORCE-Z = 0.00 SUMMATION OF MOMENTS AROUND THE ORIGIN-0.00 MZ= -257485611.57 -134090896.55 MY= *** TOTAL REACTION LOAD (KN METE) SUMMARY (LOADING SUMMATION FORCE-X = SUMMATION FORCE-Y = 0.00 5834666.61 SUMMATION FORCE-Z = -0.00 SUMMATION OF MOMENTS AROUND THE ORIGIN-134090896.04 MY= -0.01 MZ= 257485611.57 MAXIMUM DISPLACEMENTS (CM /RADIANS) (LOADING AT NODE MAXIMUMS x = -4.19562E - 03455 Y = -3.01386E+01390 z = -5.86638E-03 459 BX= -2.26476E-01 390 RY= -4.39501E-06 398 RZ= -5.75047E-04 469 STAAD SPACE CENTER OF FORCE BASED ON Y FORCES ONLY (METE) . (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS) 0,441150012E+02

MV-

MX=

2140101.63 MY=

```
-- PAGE NO. 5960
                     z = -0.221887691E+02
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING
                                                           2)
   SUMMATION FORCE-X =
SUMMATION FORCE-Y =
                                   0.00
                              -96449.75
    SUMMATION FORCE-Z =
                                   0.00
   SUMMATION OF MOMENTS AROUND THE ORIGIN-
                                      0.00 MZ=
          -2140101.64 MY=
                                                    -4254880.52
***TOTAL REACTION LOAD ( KN METE ) SUMMARY (LOADING
                                                           2)
    SUMMATION FORCE-X =
                                   0.00
    SUMMATION FORCE-Y =
                              96449.75
    SUMMATION FORCE-Z =
                                   -0.00
   SUMMATION OF MOMENTS AROUND THE ORIGIN-
```

-0.00 MZ=

4254880.52

```
CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
      (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
                     x = 0.441118551E+02
                     Y = 0.99000025E+01
                     z = -0.241683594E+02
***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING
                                                          7 1
    SUMMATION FORCE-X =
                                  0.00
    SUMMATION FORCE-Y =
                              -9506.32
    SUMMATION FORCE-Z =
                                  0.00
   SUMMATION OF MOMENTS AROUND THE ORIGIN-
   MX=
           -229752.17 MY=
                                     0.00 MZ=
                                                    -419341.34
*** TOTAL REACTION LOAD ( KN METE ) SUMMARY (LOADING
                                                          7)
    SUMMATION FORCE-X =
SUMMATION FORCE-Y =
                                   0.00
                               9506.32
    SUMMATION FORCE-Z =
                                 -0.00
   SUMMATION OF MOMENTS AROUND THE ORIGIN-
   MX=
           229752.17 MY=
                                     0.00 MZ=
                                                     419341.34
 STAAD SPACE
                                                         -- PAGE NO. 5968
MAXIMUM DISPLACEMENTS ( CM /RADIANS) (LOADING
                                                    7)
         MAXIMUMS AT NODE
   X = -2.24959E - 05
                      395
   Y = -1.27781E-04
                       403
   Z = -1.23955E-05
                       444
   RX= 2.70234E-08
                       394
   RY= -9.09643E-09
                       395
```

STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO.

7.3 Designing the 3-Dimensional Model.

465

RZ= 7.79744E-08

In this phase of the project, it was noted that the floor plan of the building was designed in the 3-Dimensional model with the help of software Autodesk Revit to get the broader perspective of the design and understand the reallife experience, in this phase all the components were placed in the building and designed with glazing according to the requirement like Flooring, Ceiling, Lighting, Wall Cladding, Stairs, Elevators, and many more after designing the 3 Dimensional Model, the building was viewed from different angles and walkthrough was done so the real life experience can be done and later the views are rendered because to watch the building in different lighting condition of the eyesight. Through this phase of modelling the section can be mentioned clearly and stages are also mentioned with the components this will be useful for the further designing process.

7.5 Designing the 4-Dimensional Model.

In this phase of the project, it was noted the scheduling of the work is done with respect to the duration of the construction and visualised with respect to the time. This can be done through 4-Dimensional Modelling i.e., through software Autodesk Navisworks Manage this software is used for the 4-Dimensional and 5-Dimensional Modelling, the file

International Research Journal of Engineering and Technology (IRJET) Volume: 10 Issue: 08 | Aug 2023 www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

is imported from the Autodesk Revit where all the components were mentioned with their stages so in this software by scheduling the time to that component it will calculate the work procedure and time. The special ability of this software is to detected the clashes so that we can get the clear idea at pre construction phase only about the overlapping of work so that we can reassign the work later the clash can be avoided and due to time scheduling is done by simulating the steps we get to know the pace of the work it can be used in all the three phases in pre-construction to check the clashes and provide the time details, in construction to match over the things and post construction to calculate and analyse the things.

8. CONCLUSION

This project gives the systematic approach for the construction of multistorey building with prefabricated steel structure which is highly efficient with respect to construction and with respect to the space utilisation. In this model of presentation, the Key plan is done in AutoCAD software and it is visualised in 3-Dimensional through Autodesk Revit later analysed the structural aspects in Bently STAAD.pro software and for time management that is 4-Dimensional modelling is done in Autodesk Navisworks Manage. During the structural analysis all the Indian Standard Codes are used for the Steel Design IS 800, for Loading IS 875, for RCC IS 456 and taken to the consideration that the steel columns and beams are in W section which are more stable and productive as compared to any other and later the joints are connected with nut and bolts. From the analysis it was known that the maximum deflections, displacements, and forces are acting on the body through generated loads and all the critical loads are examined and the maximum span is calculated and provided so that more utility of space can be done. The walkthrough is done for the 3-Dimensional Model in the Revit so that the clear idea would come and later it is rendered so that the realistic approach can be shown. In the 4-Dimensional Modelling the scheduling is done with respect to the work and the things are simulated so to get information about how it works. Through which the construction time is reduced by 40% and construction cost is reduced by 20-30% when compared to the conventional method of construction and wastage is reduced to just less than 2% and overlapping of the works is almost equal to Nil. Due to this BIM application the close approach to the reality can be visualised and can reduce the mistake and disputes between the contractor engineer and client during the constructions.

The use of prefabricated steel structure is not actively used other than Tier-I city in India because of the availability and transportation, to resolve the condition is future scope of discussion and implementation of BIM techniques in this project open the path for the further research for other then prefabricated steel structure like for conventional concrete structure or pre-stressed structure and many more for the Construction Scheduling, Construction Management, Construction Safety and Visualizing.

DECLARATIONS

Conflict Of Interests: The authors have no competing interests to declare that are relevant financial or nonfinancial interests to disclose or no conflict of interest.

Funding: No funding was received for conducting this study

All signing authors participated in writing of the article. All authors approved the publishing version of manuscript.

REFERENCE

[1] Mooyoung Yoo, Jaejun Kim, Changsik Choi, "Effects of **BIM-Based Construction of Prefabricated Steel Framework** from the Perspective of SMEs," Applied Sciences, 26 April 2019, 9, 1732.

[2] Shengxin Chen, Jie Wu, Jialin Shi, "A BIM Platform for the Manufacture of Prefabricated Steel Structure," Applied Sciences, 13 November 2020, 10, 8038

[3] Zhan Zhenguang, "Application of BIM Technology in the Construction Phase of Steel Structure Engineering," IOP Conference Series: Earth and Environmental Science, October 2021, 783, 012118

[4] Rafaela Bortolini, Carlos Torres Formoso, Daniela D. Viana, "Site logistics planning and control for engineer-toorder prefabricated building systems using BIM 4D modeling," Elsevier, 29 November 2018, 98(2019) 248-264

[5] Yin-Gang Wang, Xiong-Jun He, Jia He, Cheng Fan, "Virtual Trial assembly of steel structure based on BIM platform", Elsevier, 31 May 2022, 141 (2022) 104395

[6] Shi An, Pablo Martinez, Mohamed Al Hussein, Rafig Ahmad, "Automated verification of 3D manufacturability for steel frame assemblies", Elsevier, 28 May 2020, 118(2020) 103287

[7] Ling-Kun Chen, Rui-Peng Yuan, Xing-Jun Ji, Xing-Yu Lu, Jiang Xiao, Jun-Bo Tao, Xin Kang, Xin Li, Zhen-Hua He, Shu Quan, Li-Zhong Jiang, "Modular composite building in urgent emergency engineering projects: A case study of accelerated design and construction of Wuhan Thunder God Mountain/Leishenshan hospital to Covid 19 pandemic", Elsevier, 18 December 2020, 124(2021) 103555

[8] Mohammad Delavar, John K Dickinson, Girma T Bitsuamlak "Discussion on BIM Implementation in Pre-Engineered Building Industry", Researchgate, 4 June2016, **GEN-178**

[9] Jose Ignacio Avendano, Sisi Zlatanova, Pedro Perez, Alberto Domingo and Christian Correa, "Integration of BIM in Steel Building Projects (BIM-DFE): A Delphi Survey", MDPI, 13 September 2022, 12, 1439

[10] Deepa Patil, "Building Information Modelling Application in Construction Industry", International Journal of Science and Research (IJSR), 5 May 2020, SR20525213518

[11] Somnath D Khochare, Ashish P Waghmare, "3D, 4D and 5D Building Information Modelling for Commercial Building Projects", International Research Journal of Engineering and Technology, 5 January 2018, 2395-0056

[12] Jessie Ya-Ting Ho, Satish Mohan, "Building Information Modeling Applications in Construction Management – A case study for modeling information and outcomes", American Journal of Engineering Research, 28 March 2021, 2320-0847

[13] IS: 800 (2007), —Indian Standard Code of Practice for General Construction In Steel Bureau of Indian Standards, New Delhi.

[14] IS: 875 (Part 1), —Indian Standard Code of Practice for design loads for building and structures, Dead Loads|| Bureau of Indian Standards, New Delhi.

[15] IS: 875 (Part 2), —Indian Standard Code of Practice for design loads for building and structures, Live Loads|| Bureau of Indian Standards, New Delhi.

[16] IS 456:2000, —Indian Standard Plain and Reinforced Concrete-Code of Practice||, Bureau of Indian Standards, New Delhi, 2000.

[17] Building Bye-Laws for Urban Areas, Urban Development, Government of Karnataka, 2017.

[18] Dana K Smith, Michael Tardif, "Building Information Modeling – A Strategic Implementation Guide", John Wiley & Sons, 2009

[19] S K Duggal, "Design of Steel Structures", 3^{rd} Edition, McGraw Hill, 2017