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1.Introduction 

Zero-shot learning (ZSL) is a subfield of machine learning 
that aims to recognize and classify new objects or 
concepts without prior exposure during training. 
Traditional supervised learning methods require large 
amounts of labeled data to train models, which can be costly 
and time-consuming. ZSL, on the other hand, provides an 
alternative solution to this issue by enabling models to 
generalize to new concepts via semantic representations. ZSL 
is based on the concept of transfer learning, which 
generalizes the knowledge acquired in related classes to new 
ones. This is accomplished by employing semantic 
representations, which capture the relationships between 
classes and enable the model to reason about the properties 
of unseen classes. There are two primary types of semantic 
representations: attribute-based and semantic space-based 
methods. Each class is described by a collection of attributes, 

such as color, size, and shape, which are used to reason about 

the properties of unseen classes. Classes are mapped to a high-
dimensional space based on their semantic relationships, such 
as co-occurrence and WordNet hierarchy, using semantic space-
based methods. ZSL has been implemented successfully in a 
variety of fields, including natural language processing, 
computer vision, and robotics. ZSL has been utilized in 
natural language processing for tasks such as sentiment 
analysis and text classification, in which the model must 
recognize new concepts not present in the training data. ZSL 
has been utilized in computer vision for tasks such as image 
classification and object detection, in which the model must 
recognize new objects or attributes not present in the 
training data. ZSL has been utilized in robotics for tasks 
such as object manipulation and grasping, in which the robot 
must recognize new objects not present in the training data. 

Despite its success, ZSL still faces a number of obstacles that 
must be resolved. Lack of large-scale datasets with sufficient 
labeled data for the seen classes and a di- verse set of unseen 
classes is one of the greatest obstacles. Another obstacle is the 
need for improved methods of semantic representation that 
can capture the complex relationships between classes. In 
addition, the evaluation of ZSL models remains an unresolved 
issue, as traditional classification metrics may not be 
appropriate for evaluating the performance of ZSL models. 

Recent developments in ZSL have yielded promising out- 
comes in addressing a number of these obstacles. For 
instance, generative models such as generative adversarial 
networks (GANs) and variational autoencoders (VAEs) have 
been utilized to generate synthetic data for unseen classes, 
thereby enhancing the performance of ZSL models. In addition, 
recent studies have proposed novel se- mantic representation 
methods, such as knowledge graph- based and graph neural 
network-based methods, that can capture the complexity of 
the relationships between classes. 

In this paper, we provide a comprehensive overview of the 
current techniques in ZSL, including the challenges and recent 
developments. First, we present the fundamental concepts of 
ZSL and the various types of semantic representations. Then, 
we examine the most recent developments in ZSL, such as 
generative models, novel semantic representation methods, 
and multi-modal ZSL. Further- more, we discuss the 
potential applications of ZSL in a variety of fields, including 
natural language processing, computer vision, and robotics. 
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Finally, we highlight the future directions and challenges of 
ZSL research, including the need for large-scale datasets, 
improved evaluation metrics, and more robust semantic 
representation methods. 

ZSL is a promising area of research that has the potential to 
enable models to recognize and classify new objects or 
concepts without prior exposure to them during training. 
Recent advances in ZSL have shown promising results in 
addressing some of these challenges, despite the persistence 
of obstacles. This review paper provides a thorough 
understanding of ZSL and highlights its potential 
applications and future research directions. 

2. Types of Zero Shot Learning 

2.1 Attribute Based ZSL 

Attribute-based zero-shot learning (ZSL) is a type of 
machine learning technique that enables a model to 
recognize previously untrained objects or categories. In 
attribute-based ZSL, the model is trained on a set of 
known categories, but it can classify new categories using 
the attributes associated with each category during 
inference. 

The attributes are a collection of semantic descriptions 
that describe the visual qualities or characteristics of an 
object or category. For instance, the attribute "has 
wings" could be associated with the category "bird," while 
"four legs" could be associated with the category "dog." 
During inference, the model receives as input a new 
image and predicts its category based on the image’s 
attributes. Even if the model has never seen the category 
before, it can still make a prediction based on the 
category’s attributes. 

Attribute-based ZSL is useful in situations where 
obtaining labeled data for all possible categories may be 
difficult or expensive. Utilizing semantic information in 
the form of attributes, it allows models to generalize to 
new categories. 

2.2 Semantic embedding-based zero-shot 
learning 

Based on Semantic Embedding Semantic embedding- 
based zero-shot learning (ZSL) is a machine learning 
technique that enables models to recognize and classify 
unseen classes using a semantic embedding space. Each class 
is represented as a vector of attributes or features within 
the semantic embedding space. 

In ZSL based on semantic embeddings, the model is 
trained on a set of known classes and their respective 
semantic embeddings. The model predicts the class of an 
unseen example during inference by projecting it onto the 
semantic embedding space and locating the closest class 
vector. 

Using a similarity measure, such as cosine similarity, the 
distance between the example and the class vector is 
computed. The predicted class is the one that is closest to the 
instance. 

Utilizing techniques like principal component analysis 
(PCA) or metric learning, the semantic embedding space is 
typically learned. By acquiring knowledge of the embedding 
space, the model can effectively generalize to new classes that 
were possibly never encountered during training. 

ZSL has been applied to a variety of tasks, including image 
classification, text classification, and natural language 
processing, on the basis of semantic embedding. It is useful 
when the number of seen classes is limited and new, unseen 
classes must be identified and classified. 

2.3 Generalized ZSL 

Generalized zero-shot learning (ZSL) is a type of machine 
learning approach that extends traditional ZSL methods to 
handle a scenario in which some of the test classes have 
been observed during training, in addition to new, 
unobserved classes. 

In generalized ZSL, the model is trained using a set of 
seen classes and their corresponding semantic embeddings, 
as well as a set of unseen classes for which no visual examples 
are available during training. During inference, the model is 
evaluated against both observed and unobserved classes. 

Generalized ZSL aims to teach a model that can effectively 
recognize and classify both seen and unseen classes. To 
accomplish this, the model must learn to transfer knowledge 
from seen classes to unseen classes without overfitting the 
seen classes. 

There are various strategies for generalizing ZSL, such as 
domain adaptation and hybrid methods. The objective of 
domain adaptation methods is to adapt the model’s 
representation to unseen classes by utilizing information 
available from seen classes. Hybrid methods combine 
various ZSL techniques, such as attribute-based and 
semantic embedding-based ZSL, to improve performance for 
both seen and unseen classes. 

Generalized ZSL is useful in situations where new classes 
must be identified and classified, but some similar classes have 
already been encountered in training. It enables the model to 
utilize the available knowledge from the seen classes to improve 
its performance on the unseen classes. 

2.4 Multi-modal zero-shot learning 

Multi-modal zero-shot learning (ZSL) is a type of machine 
learning technique that combines information from multiple 
modalities, such as images, text, and audio, to recognize and 
classify unseen classes. 
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In multi-modal ZSL, the model is trained using a 
collection of known classes, their corresponding semantic 
embeddings, and multiple modalities of data. During 
inference, the model predicts the class of an unseen 
example by analyzing its semantic embeddings and the 
various data modalities associated with it. 

In image classification, for instance, the model may be 
trained on a set of classes, their corresponding image 
features, and textual descriptions. During inference, the 
model may receive an image and textual description of an 
unseen class. Using the image characteristics and textual 
description, the model can then predict the semantic 
embedding of the unseen class and classify the image 
accordingly. 

Multi-modal ZSL is useful when multiple data modalities 
are available and each provides complementary information 
about the objects or classes being classified. By integrating 
data from multiple modalities, the model’s ac- curacy and 
generalization performance on unseen classes can be 
enhanced. 

Multiple tasks, including image classification, speech 
recognition, and natural language processing, have utilized 
multimodal ZSL. It is a potent method that can be utilized 
to solve a variety of real-world issues where data from 
multiple sources is available. 

3. Challenges in Zero Shot Learning 

The semantic gap between the visual and semantic 
domains presents one of the main difficulties in zero-shot 
learning. The generalization problem, which requires the 
model to apply to classes that have not yet been seen and 
may lack training samples, presents another difficulty. While 
some methods use semantic embeddings to fill the gap 
between the visual and semantic spaces, others transfer 
knowledge from seen to unseen classes. 

3.1 Evaluation Metrics 

Measurement Metrics: Zero-shot learning (ZSL) employs 
evaluation metrics to measure the performance of ZSL 
models in recognizing and classifying unseen classes. 
Several evaluation metrics are commonly employed in 
ZSL: 

1. Top-1 Accuracy: This metric measures the 
proportion of correctly predicted labels for a given set 
of un- seen classes. The predicted label of the model 
must match the ground-truth label for the 
classification of an example to be considered correct. 

2. Top-5 Accuracy: This metric measures the percent- 
age of instances for which the ground-truth label is 
among the top five labels predicted by the model. In 
other words, the model receives credit for identify- 

ing the correct class, even if its prediction is not the 
most confident. 

3. Harmonic Mean (H): This metric takes both the 
Top-1 and Top-5 accuracies into account and provides 
a more balanced evaluation of the model’s performance. 
It is the harmonic mean of the Top-1 and Top-5 
precisions. 

4. Area Under the Curve (AUC): This metric mea- sures 
the accuracy of the model’s ranking of unseen classes. It 
is calculated as the area beneath the re- ceiver 
operating characteristic (ROC) curve where the true 
positive rate is plotted against the false pos- itive rate 
for various threshold values. 

5. Mean Average Precision (MAP): This metric 
measures the model’s precision across all unseen 
classes on average. It is calculated as the mean of each 
class’s average precision scores. 

In ZSL, evaluation metrics are essential because they 
quantify the model’s performance in recognizing and clas- 
sifying unseen classes. Using these metrics, researchers are 
able to compare the performance of various ZSL mod- els and 
identify improvement opportunities. 

3.2 Data Bias 

Data bias in zero-shot learning (ZSL) is when the training data 
used to construct the model is not representative of the 
actual distribution of the classes being recognized and 
classified. This can result in inaccurate predictions and poor 
generalization performance, especially for classes that have not 
been observed. 

ZSL data can be biased in multiple ways. For instance, if the 
training data is skewed toward certain classes, such as animals 
or vehicles, the model may perform poorly on classes from 
other domains, such as food or sports. Similarly, if the 
training data is biased toward particular regions or cultures, 
the model may perform poorly when applied to classes from 
other regions or cultures. 

When semantic embeddings used to represent classes are 
biased or insufficient, data bias can also occur. For instance, 
if the semantic embeddings are derived from biased 
sources, such as a specific language or cultural context, the 
model may struggle to generalize to unobserved classes in 
other contexts. 

To reduce the impact of data bias in ZSL, researchers must 
design and curate their training and evaluation datasets 
with care. This requires ensuring that the training data is 
representative of the distribution of the classes being 
recognized and classified in the real world, and that the 
semantic embeddings are exhaustive and objective. 
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In addition, data augmentation techniques can be used 
to artificially increase the diversity of the training data, 
while domain adaptation techniques can be used to adapt the 
model’s representation to the unseen classes. Researchers 
can then carefully monitor the performance of their ZSL 
models on various subgroups of classes in order to identify 
potential biases and enhance the model’s generalization 
performance. 

3.3 Hybrid Methodologies 

Hybrid approaches in zero-shot learning (ZSL) combine 
multiple methods or modalities to improve the ZSL models’ 
precision and generalization performance. These methods 
combine data-driven and knowledge-based approaches to 
overcome the limitations of each and achieve superior 
results. 

Combining data-driven approaches, such as deep learning 
models, with knowledge-based approaches, such as 
semantic embeddings or attributes, is a common hybrid 
strategy in ZSL. For instance, a ZSL model may be trained using 
a deep neural network on a large amount of visual data, and 
then a knowledge-based approach, such as at- tributes or 
semantic embeddings, may be used to map the visual features 
to the corresponding class labels. 

Combining multiple modalities of data, such as visual 
and textual data, to improve the model’s precision is 
another hybrid approach in ZSL. For instance, a ZSL model 
may be trained on both visual and textual data using a 
multi-modal deep learning architecture, and then generalize 
to unseen classes using a knowledge-based approach. 

Hybrid approaches may also employ transfer learning 
strategies to transfer knowledge from related tasks to the 
ZSL task. For instance, a ZSL model may be pre- trained 
on a related task, such as image classification or object 
detection, and then fine-tuned using a smaller set of labeled 
examples for the ZSL task. 

Overall, hybrid approaches in ZSL can leverage the 
strengths of different methods and modalities to improve 
the accuracy and generalization performance of ZSL 
models, and are an active area of machine learning 
research. 

4. Zero Shot Learning with semantic output 
codes 

Zero Shot Learning through the use of semantic output 
codes: Zero-shot learning (ZSL) with semantic output 
codes is a method for classifying unseen classes using 
semantic representations. In this method, both the seen and 
unseen classes’ semantic information is used to create a 
semantic codebook, which represents the semantic 
relationships between classes and attributes. 

 

During training, the model is taught to predict the se- 
mantic code for each observed class example. This example’s 
semantic code is a binary vector that encodes the presence 
or absence of each attribute. The semantic code is a condensed 
representation of the visual characteristics of an example that 
captures the most pertinent information for classification. 

Once the model has been trained, it can be used to classify 
unobserved examples by predicting their semantic codes. The 
semantic code of an unseen example is then utilized to 
retrieve the semantic codebook class that is most similar. 
The retrieved class is then used as the class label prediction for 
the unseen example. 

ZSL with semantic output codes offers numerous benefits. 
First, it can handle both visible and invisible classes within a 
single framework, making it more applicable to real-world 
applications. Second, it can utilize the semantic relationships 
between classes and attributes to enhance the accuracy of the 
model and reduce the impact of noisy data. Lastly, it can 
handle the open-set problem by assigning examples that do 
not belong to any of the seen or unseen classes to a separate 
"unknown" class. 

However, ZSL with semantic output codes has limitations 
as well. For instance, it requires semantic annotations for 
both the visible and invisible classes, which is not always 
possible. Moreover, it may be sensitive to the quality of the 
semantic representations and the selection of the semantic 
codebook. 

5. Zero Shot Learning with visual attributes 

Zero-shot learning (ZSL) with visual attributes is a 
classification technique that employs a set of semantic 
attributes to represent the visual characteristics of objects and 
classify them into unseen classes. Suppose, for instance, 
that we wish to categorize images of animals according to 
their species. To represent the visual characteristics of 
various animals, we can use visual attributes like "has 
wings," "has fur," "has a beak," etc. 
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Figure 1: Zero-shot learning with textual description is a problem. Textual summaries for the various bird classes 

are shown on the left. Images for "seen classes" in the middle. Right: feature space classifier hyperplanes. To 
estimate a new classifier parameter using only a textual description is the objective. 

During training, the model is taught to predict the 
attributes of each observed class example. The attributes are 
a binary vector encoding the presence or absence of each 
attribute for the provided example. The attribute vector is 
a condensed representation of the visual characteristics of 
the example that captures the most pertinent information 
for classification. 

Once the model has been trained, it can be used to 
classify unobserved examples by predicting their attribute 
vector. The attribute vector of an unseen example is then 
utilized to retrieve the attribute space’s most similar class. 
The retrieved class is then used as the class label prediction 
for the unseen example. 

ZSL with visual attributes offers numerous benefits. 
First, it can handle both visible and invisible classes within a 
single framework, making it more applicable to real- 
world applications. Second, it can utilize the semantic 
relationships between attributes to enhance the accuracy of 
the model and reduce the impact of noisy data. Lastly, it can 
handle the open-set problem by assigning examples that do 
not belong to any of the seen or unseen classes to a 
separate "unknown" class. 

However, ZSL with visual attributes has limitations as 
well. For instance, it requires accurate visual attribute 
annotations for both the visible and invisible classes, which is 
not always possible. In addition, it may be affected by the 
quality of the attribute annotations and the attribute space 
chosen. 

6. Zero Shot Learning with Few Shot adaptation 

Zero-shot learning (ZSL) with few-shot adaptation is a 
classification technique that combines the advantages of 

ZSL and few-shot learning to classify examples into 
unknown classes using limited labeled data. Suppose, for 
instance, that we wish to classify images of birds into 
various species but have only a few labeled examples for each 
species. 

During training, both labeled examples from the seen 
classes and semantic representations of the unseen classes are 
used to train the model. Semantic representations may be 
attribute vectors or semantic embeddings. The model is then 
fine-tuned on a small number of labeled examples from the 
unseen classes, referred to as the support set, in order to 
accommodate the visual characteristics of the new classes. 

After the model has been optimized, it can be used to 
classify examples from unseen classes by comparing them to the 
training set. In particular, for each unseen example, the model 
selects the semantically most similar examples from the 
training set. The class label for the unseen example is then 
predicted using the selected examples. 

ZSL with few-shot adaptation offers numerous benefits. First, 
it can improve the model’s accuracy by utilizing the semantic 
information of both the seen and unseen classes. Second, it can 
deal with the few-shot learning problem, in which there are few 
labeled examples for the unobserved classes, by adapting the 
model to the new classes with a small number of labeled 
examples. Lastly, it can handle the open-set problem by 
assigning examples that do not belong to any of the seen or 
unseen classes to a separate "unknown" class. 

However, ZSL with few-shot adaptation has limitations as 
well. It requires accurate semantic representations for both 
the seen and unseen classes, which is not always possible. 
Additionally, it may be sensitive to the quality of the support 
set and the similarity metric chosen. 
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7. Zero Shot Learning for natural language 
processing 

Zero-shot learning (ZSL) for natural language processing 
(NLP) is a technique that enables a machine learning 
model to predict unobserved tasks without the need for 
additional training data. Suppose, for instance, that we 
wish to train a model to classify movie reviews into 
different sentiment categories, such as positive or 
negative, without explicitly training on the specific task. 

In ZSL for NLP, the model is trained on tasks that share 
semantic and linguistic characteristics with the unknown 
task. Frequently, these tasks are referred to as "auxiliary 
tasks." The model is trained to predict the labels of 
auxiliary tasks based on their inputs, such as text or audio 
data, during training. 

Once the model has been trained, it can be utilized to 
make predictions on the unseen task by utilizing the 
semantic and linguistic features learned from the auxiliary 
tasks. If the unknown task is to classify movie reviews, for 
instance, we can encode the text inputs of the reviews into a 
semantic space that represents the text’s meaning. The 
semantic space can be represented by a collection of 
semantic vectors, each of which corresponds to a 
particular sentiment category. The model can then predict the 
review’s sentiment category by selecting the vector in the 
semantic space that is most similar. 

ZSL for NLP has multiple benefits. First, it can reduce 
the quantity of labeled data required for training by 
utilizing the knowledge gained from related tasks. Second, 
it can deal with the zero-shot learning problem, which 
occurs when there are no labeled examples for the unseen 
task, by transferring the knowledge acquired from the 
auxiliary tasks. Lastly, it can manage the open-set 
problem, in which there may be examples that do not 
belong to any of the seen or unseen classes, by assigning them 
to a distinct "unknown" category. 

8. Relevant Work 

Our proposed work can be understood in terms of 
knowledge transfer and inductive learning. In general, the 
objective of knowledge transfer is to increase recognition by 
utilizing shared knowledge between classes. The majority 
of prior research focused on knowledge sharing exclusively 
within the visual domain, e.g. [12]; or on exporting 
semantic knowledge at the level of category similarities 
and hierarchies [10, 27]. Beyond the current state of the art, 
we investigate cross-domain knowledge sharing and 
transfer. We investigate how knowledge from the visual 
and textual domains can be utilized to discover cross-
domain correlation, which facilitates the prediction of 
visual classifiers from textual description. Motivated by 
the practical need to learn visual classifiers for uncommon 
categories, researchers have investigated approaches for 

learning from a single image (one-shot learning [18, 9, 11, 2]) 
or even from no images (zero-shot learning). Recognizing 
object instances from previously unseen test categories (the 
zero-shot learning problem) can be accomplished, in part, by 
leveraging knowledge about shared attributes and 
components. Typically, an intermediate semantic layer is 
introduced to facilitate the sharing of knowledge between 
classes and the description of previously unseen classes, e.g. 
[22]. For example, given appropriately labeled training 
data, it is possible to learn classifiers for attributes 
occurring in training object categories. Then, these classifiers 
can be used to identify the same attributes in instances of 
objects from novel test categories. The recognition process 
can then proceed based on these acquired characteristics [17, 
7]. These attribute-based "knowledge transfer" approaches 
utilize an intermediate visual attribute representation in 
order to describe categories of unseen objects. Typically, 
humans define attributes manually to describe shape, color, 
and surface material, e.g., furry, striped, etc. Therefore, an 
unseen category must be specified using the vocabulary of 
attributes currently in use. Rohrbach et al. [25] studied the 
extraction of valuable attributes from large text corpora. In 
[23], a method for interactively defining a vocabulary of 
attributes that are both human- readable and visually distinct 
was presented. Our work, in contrast, utilizes no explicit 
attributes. A new category’s description is entirely textual. It 
has been investigated how linguistic semantic 
representations relate to visual recognition. In [4], it was 
demonstrated that there is a strong correlation between 
Word-Net-based semantic similarity between classes and 
confusion between classes. Large-scale image datasets, such as 
ImageNet[5] and Tiny Images [30], have utilized the linguistic 
semantics of WordNet nouns [19] to collect large-scale image 
datasets, such as ImageNet[5] and Tiny Images [30]. It has 
also been demonstrated that WordNet-based hierarchies are 
useful for learning visual classifiers, e.g. [27]. Barnard et al. [1] 
demonstrated that learning the joint distribution of words 
and visual elements facilitates semantic clustering of images, 
the generation of illustrative images from a caption, and 
the generation of annotations for new images. Recent 
research that focuses on generating textual descriptions of 
images and videos, such as [8, 16, 34, 14], has demonstrated 
a growing interest in the intersection between computer 
vision and natural language processing. This includes 
generating sentences about objects, actions, attributes, 
spatial relationships between objects, contextual 
information in the images, scene information, and so on. In 
contrast, our work differs fundamentally in two ways. We are 
not interested in generating textual descriptions from 
images; rather, we are interested in predicting classifiers from 
text in a zero- shot setting. In terms of the learning context, 
the textual descriptions we employ are at the level of the 
category and do not consist of image-caption pairs, as is 
common in datasets used for text generation from images, such 
as [21]. 
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9. Problem Definition 

Figure 1 depicts the learning environment. The information 
in our problem comes from two distinct domains, denoted 
by V and T, respectively: the visual domain and the textual 
domain. Similar to traditional visual learning problems, 
training data are given in the form V = (xi, li)N, where xi is an 
image and li 1 Nsc is its class label. The number of classes 
available at training is denoted by Nsc, where sc stands for 
"seen classes." As is customary in visual classification 
settings, we can learn Nsc binary one- versus-all classifiers for 
each of these classes. Consider a typical binary linear classifier 
in the feature space with the form fk(x) = cT k x, where x is 
the modified visual feature vector and ck Rdv is the linear 
classifier parameters for class k. Given a test image, l = arg 
maxk fk(x) deter- mines its class. Our objective is to be 
able to predict a classifier for a new category using only the 
learned classes and textual description(s) of that category. 
To accomplish this, the learning process must also 
incorporate a textual description of the observed classes (as 
depicted in Fig. 1). Depending on the domain, each class may 
have a few, a couple, or as few as one textual description. 
ti Tk denotes the textual training data for class k. In this 
paper, we assume we are dealing with the extreme case of 
having only one textual description per class, which ex- 
acerbates the difficulty of the problem. Nonetheless, the 
formulation we propose in this paper applies directly to 
the case of multiple textual descriptions per class. Similar to 
the visual domain, the unprocessed textual descriptions must 
undergo a process of feature extraction, which will be 
described in Section 5. Let’s denote the extracted textual 
characteristic as T = tk Rdt k=1Nsc. Given a textual 
description t of a new unseen category C, the problem can 
be defined as predicting one-vs-all classifier parameters 
c(t) that can be used to directly classify any test image x as 
c(t). T x > 0 if x is a member of C c(t). T x 0 except if (1) 
Following the introduction of two potential frameworks 
for this problem and a discussion of their potential 
limitations, the proposed formulation is presented. 

9.1. Regression Models 

This problem can be formulated as a regression problem in 
which the objective is to use the textual data and the 
learned classifiers, (tk, ck)k=1Nsc, to learn a regression 
function from the textual feature domain to the visual 
classifier domain, i.e. a function c(): Rdt Rdv. Which 
regression model would be most appropriate for this 
problem? And would this approach to the problem yield 
reasonable results? A common regression model, such as 
ridge regression [13] or Gaussian Process (GP) Regression 
[24], learns the regressor to each dimension of the output 
domain (the parameters of a linear classifier) 
independently, i.e.  a set of functions cj (): Rdt R. 
Obviously, this does not account for the relationship 
between the visual and textual domains. A structured 
prediction regressor, which would learn the correlation 
between the input and output domains, would be preferable. 

However, even a structure prediction model will only learn the 
correlation between the textual and visual domains from the 
input-output pairs (tk, ck). Here, the visual domain 
information is encapsulated in the pre- learned classifiers, 
and prediction lacks access to the original visual domain 
data. Instead, we must directly learn the correlation 
between the visual and textual domains and make 
predictions based on this information. The data points are the 
textual description-classifier pairs, and the number of classes is 
typically small compared to the dimension of the classifier 
space (i.e. Nsc dv). In such a context, it is inevitable that any 
regression model will suffer from an underfitting issue. This is 
best explained by GP regression, in which the predictive variance 
increases in regions of the input space devoid of data points. 
This will result in poor classification predictions in these 
regions. 

9.2. Knowledge Transfer Models 

Alternately, the problem could be stated as domain 
adaptation from the textual to the visual domain. In the 
context of computer vision, domain adaptation research has 
centered on transferring categories learned from a source 
domain with a given distribution of images to a target 
domain with a different distribution, such as images or 
videos from different sources [33, 26, 15, 6]. We require 
an approach that learns the correlation between the 
textual domain features and the visual domain features and 
then uses this correlation to predict a new visual classifier 
given the textual domain features. In particular, [15] 
introduced a method for learning cross- domain 
transformation. In this study, a regularized asymmetric 
transformation between two domains was discovered. 
The method was used to transfer learned categories 
between distinct visual data distributions. The source and 
target domains do not need to share the same feature spaces 
or dimensionality, which is an attractive feature of [15] 
over other domain adaptation models. We can formulate 
the zero-shot learning problem as a domain adaptation, 
inspired by [15]. This is possible through the acquisition of a 
linear (or nonlinear kernalized) transfer function W between 
T and V. By optimizing with a suitable regularizer over 
constraints of the form tTWx l if t T and x V belong to the 
same class, and tTWx u otherwise, the transformation 
matrix W can be learned. Here l and u are model parameters. 
This transfer function serves as a compatibility function 
between the textual and visual features, returning high 
values if they belong to the same class and low values if they 
belong to different classes. It is evident that this transfer 
function can serve as a classifier. Given a textual feature t 
and a test image represented by x, a classification decision can 
be obtained using the formula tT Wx b, where b is a decision 
boundary that can be set to (l + u)/2. Consequently, the 
desired predicted classifier in Equation 1 can be obtained as 
c(t) = tT W (note that the feature vectors have been replaced 
with ones). Due to the fact that W was learned using only seen 
classes, it is unclear how the predicted classifier c(t) will 
behave for unseen classes. There is no assurance that this 
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10. Formulation of the Problem 

10.1 Primary Objective 

The proposed formulation aims to predict the hyperplane 
parameter c of a one-vs-all classifier for a new unseen 
class, given a textual description encoded by t and 
training-phase knowledge acquired from seen classes. Our 
solution architecture is depicted in Fig. Three elements 
are taught during the training phase: Classifiers: Individual 
one-vs-all classifiers ck are learned for each observed class. 
Probabilistic Regressor: Given (tk, ck), a regressor is 
discovered that can be used to provide a prior estimate for 
preg(c|t) (Details in Section 4.3). Transfer function for 
domains Given T and V, a domain transfer function, 
encoded in the matrix W, is learned to capture the 
relationship between the textual and visual domains 
(Details in Section 4.2). Each of these elements contains a 
subset of the problem’s information. How can such 
knowledge be combined to predict a new classifier given a 
textual description? The newly developed classifier must 
be consistent with the observed classes. The new classifier 
must place all observed instances on one side of the 
hyperplane and adhere to the learned domain transfer 
function. The resulting constrained optimization problem is 
as follows: c^(t) =argmin c,i 

cTc t TWc ln(preg(c|t)) + i s.t.: (cTxi) i, i 0, i = 1 
··· N t TWc l , , , l: hyperparameters (2) 

The first term acts as a regularizer on top of the 
classifier c. The second term ensures that the predicted 
classifier is highly correlated with tT W. Given the 
prediction of the regressor, the third term favors a 
classifier with a high probability. The constraints cTxi i 
require all observed data instances to lie on the negative side 
of the predicted classifier hyperplane, allowing for some 
misclassification via the slack variables i. The constraint t 
TWc l ensures that the correlation between the predicted 
classifier and t TW is no less than l, thereby ensuring a 
minimum correlation between text and visual features. 

10.2 Domain Transfer Functionality 

To learn the domain transfer function W, we adapted the 
following strategy from [15]. Let T represent the textual 
feature data matrix, and let X represent the visual feature 
data matrix, with each feature vector replaced by a 1. 
Observe that adding a 1 to the feature vectors is necessary for 
our formulation, as we require tTW to function as a 
classifier. We must address the following optimization 
issue: min W r(W) + i ci(TWXT) (3) where ci’s are loss 
functions over the constraints and r() is a regularizer 
matrix. The optimal W in Eq. 3 can be computed using 
inner products between data points in each domain 

separately, resulting in a kernalized non-linear transfer 
function; thus, its complexity is independent of the 
dimensions of either domain. The optimal answer to the 
equation 3 is W = TK 1 2 T LK 1 2 X XT, where KT = TTT 
and KX = XXT. 

L is determined by minimizing the following minimization 
problem: min L [r(L) + ]. 

p cp(K1 2 TLK1 2 X)], (4) where cp(K1 2 TLK1 2 

X)=(max(0,(l eiK1 2 TLK1 2 Xej)))2 for same class pairs of 
index i,j, or = (max(0,(eiK1 2 TLK1 2 Xej u)))2 otherwise, 
where ek is a vector of zeros except a one at the kth element, 
and u>l (note any appropriate l, u could work. In this 
instance, we used l = 2 and u = 2). We utilized Frobenius 
norm regularization. A second-order BFGS quasi-Newton 
optimizer is used to minimize this energy. Using the 
aforementioned transformation, W is computed after L has 
been computed. 

10.3. Probabilistic Regressor 

classifier will place all observed data on one side of the 
hyperplane and the new, unseen class on the opposite side. 

There are numerous possible regressors, but we require one 
that provides a probabilistic  estimate preg(c|(t)).  For the 
reasons outlined in Section 3, we also require a structure 
prediction method that can predict all  classifier dimensions 
simultaneously. We use the Twin Gaussian Process (TPG) 
[3] for these reasons. Utilizing Gaussian Process priors, TGP 
encodes the relationships between inputs and structured 
outputs.  This is  accomplished by minimizing the Kullback-
Leibler divergence between the marginal GP of the 
outputs (in our case, classifiers) and observations 
(textual features). The solution to the following 
nonlinear optimization problem yields the estimated 
regressor output (c (t)) in TGP: [3] c (t) = argmin (t) [KC 
(c, c) 2kc(c) Tu log(KC (c, c) kc(c) T(KC + cI) 1kc(c))] 
(5) in which u = (KT + tI)1kt(t) and = KT (t, t) 
k(t)Gaussian kernels Tu, KT (tl, tm), and KC (cl, cm) for 
input feature t and output vector c. kc(c)=[KC (c, c1), ··· , 
KC (c, cNsc)]T. kt(t)=[KT (t, t1), ··· , KT (t, tNsc)] t and c 
serve as regularization parameters to prevent 
overfitting.  This optimization problem is solvable using a 
second-order BFGS quasi- Newton optimizer with cubic 
polynomial line search for optimal step size selection [3]. In 
this case, the dimension of the classifier is predicted jointly. 
In this instance, preg(c|t) is a normal distribution. 
preg(c|t) = N (c = ~c(t), c = I) (6) TGP does not provide 
predictive variance, unlike Gaussian Process Regression, 
which explains why c = I. Nevertheless, it has the benefit of 
handling the dependence between the dimensions of the 
classifiers c and the textual features t. As a quadratic 
program, solving for c ln p(c|t) is a quadratic term in c that 
has the form ln p(c|t) (c c (t)) according to the TGP 
definition of preg(c|t).T(c c~(t)) = cTc 2cTc~(t)+~c(t) 
Tc~(t) (7) We reduce ln p(c|t) to 2cTc (t) because 1) c (t)Tc 
(t) is a constant (and thus has no effect on the optimization) 
and2) cTc is already included as a regularize in equation 2.
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Figure 2: Illustration of the Proposed Solution Framework for the task Zero-shot learning from textual 

description. 

 In our context, the dot product is the superior measure of 
similarity between two hyperplanes. Consequently, 2cTc 

(t) is minimized. Equation 2 reduces, given ln p(c|t) 
from the TGP and W, to a quadratic program on c with 
linear constraints. We tried various quadratic solvers, but 
the IBM CPLEX solver 2 provides the best speed and 
optimization for our problem. 

11. Experiments 

11.1. Datasets 

This approach was tested using the CU200 Birds [32] 
(200 classes - 6033 images) and the Oxford Flower- 102 
[20] (102 classes - 8189 images) image datasets, as they 
are among the largest and most widely used fine- 
grained datasets. Descriptive text were produced for 
each class in both datasets. The CU200 Birds image 
dataset was created based on birds with corresponding 
Wikipedia articles, so we created a tool to automatically 
extract Wikipedia articles given the class name. The tool 
successfully generated 178 articles automatically, while 
the remaining 22 were extracted manually from 
Wikipedia.  Only when the article title is a different 
synonym for the same bird class do these mismatches 
occur. In contrast, the Flower image dataset was not 
created using the same criteria as the Bird image dataset; 
therefore, not all classes of the Flower dataset have 
corresponding Wikipedia articles. The tool was able to 
generate approximately 16 classes from Wikipedia out of 
102, while the remaining 86 classes required manual 
generation of articles from Wikipedia, Plant Database 3, 
Plant Encyclopedia 4, and BBC articles 5. We intend to 
provide the extracted textual description as enhancements to 
these datasets. There is a sample textual description in 
the supplementary materials. 

11.2. Extracting Textual Characteristics 

Textual characteristics were extracted in two phases, as is 
typical in the literature on document retrieval. The initial 
phase is an indexing phase that produces textual features with 
tfidf (Term Frequency-Inverse Document Frequency) 
configuration (Term frequency as local weighting and in- 
verse document frequency as global weighting). The tfidf is 
a measure of a word’s significance within a corpus of text. 
The tfidf value increases proportionally with the number of 
times a word appears in the document, but is 
counterbalanced by the frequency of the word in the corpus, 
which helps to account for the fact that some words are more 
prevalent than others. Term’s normalized frequency in the 
provided textual description was used [29]. The inverse 
document frequency is a measure of a term’s frequency; in this 
study, the standard logarithmic idf [29] was utilized. In the 
second phase, the Clustered Latent Semantic Indexing (CLSI) 
algorithm [35] is used to reduce dimensionality. For document 
retrieval, CLSI is a low-rank approximation method for 
dimensionality reduction. In the Flower Dataset, tfidf 
features R8875, and final textual features R102 after CLSI. In 
the Birds Dataset, tfidf features are located in R7086, and after 
CLSI, textual features are located in 
R200.http://plants.usda.gov/java/ 
4http://www.theplantencyclopedia.org/wiki/Main Page 
5http://www.bbc.co.uk/science/0/ 

http://plants.usda.gov/java/
http://plants.usda.gov/java/
http://www.theplantencyclopedia.org/wiki/Main
http://www.bbc.co.uk/science/0/
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Figure 3: Zero-shot learning with textual description is a problem. Textual summaries for the various bird 
classes are shown on the left. Images for "seen classes" in the middle. Right: feature space classifier 
hyperplanes. To estimate a new classifier parameter using only a textual description is the objective.  

11.3. Visual features 

Classeme features [31] were utilized as the visual feature in 
our experiments as they provide an intermediate 
semantic representation of the input image. Classeme 
features are the output of a set of classifiers corresponding to 
a set of C category labels, which are drawn from a term 
list defined in [31] and are unrelated to our textual 
features. For each category c 1 C, a set of training images is 
collected by querying an image search engine with the 
category label. Following the extraction of a set of coarse 
feature descriptors (Pyramid HOG, GIST, etc.), a subset of 
feature dimensions was chosen [31] and a one-versus-all 
classifier c was trained for each category. The output of 
the classifier is real-valued and is such that if c(x) > c(y), 
then x is more similar to class c than y. The feature vector 
(descriptor) used to represent an image x is the classeme 
vector [1(x), ), C (x)]. The Classeme characteristic has a 
dimension of 2569. 

11.4 Methodology for Evaluating Experimental 
Results and Metrics: 

Similar to zero shot learning literature, we evaluated the 
performance of an unseen classifier in a one-vs-all setting 
where the test images of unseen classes are regarded as 
the positives and the test images of seen classes as the 
negatives. We have computed the ROC curve and 
reported the area under the curve (AUC) as a comparative 
metric for various approaches. In a zero-shot learning 
environment, test data from the seen class are typically 
much larger than those from the unseen class. This 
renders other metrics, such as accuracy, useless, as high 
accuracy can be achieved even if all unseen class test data 
are incorrectly classified; therefore, we utilized ROC curves, 
which are not affected by this issue. In each fold, four-
fifths of the classes were deemed "seen classes" 

 

 

 

Table 1: Comparative Evaluation on the Flowers and 
Birds 

 

Table 2: Percentage of classes that the proposed 
approach makes an improvement in predicting over 

the baselines (relative to the total number of 
classes in each dataset 

 

and used for training, while one-fifth of the classes were 
deemed "unseen classes" and their classifiers were 
predicted and evaluated. Within each of these class-folds, the 
observed classes’ data are further divided into training and 
test sets. The approach’s hyper-parameters were 
determined using an additional five-fold cross validation 
within the class-folds (i.e., the 80 Baselines: Since this 
work is the first to predict classifiers based solely on 
textual description, there are no previously published 
results with which to compare it. However, we designed 
three state-of-the-art benchmarks for comparison, which  
are intended to be consistent with our argument in Section 

baseline Flowers (102) % 

improvement 

Birds (200) % im- 

provement 

GPR 100% 98.31% 

TGP 66% 51.81% 

DA 54% 56.5% 

Approach Flowers Avg AUC 

(+/- std) 

Birds Avg AUC 

(+/- std) 

GPR 0.54 (+/- 0.02) 0.52 (+/- 0.001) 

TGP 0.58 (+/- 0.02) 0.61 (+/- 0.02) 

DA 0.62(+/- 0.03) 0.59 (+/- 0.01) 

Approach 0.68 (+/- 0.01) 0.62 (+/- 0.02) 
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class TGP 

(AUC) 

DA 

(AUC) 

Our 

(AUC) 

%Improv. 

2 0.51 0.55 0.83 57% 

28 0.52 0.54 0.76 43.5% 

26 0.54 0.53 0.76 41.7% 

81 0.52 0.82 0.87 37% 

37 0.72 0.53 0.83 35.7% 

 
Table 3: Top-5 classes with highest combined 

improvement    in Flower dataset 

3. Specifically, we used: 1) A Gaussian Process Regressor 
(GPR) [24], 2) Twin Gaussian Process [3] as a structured 
regression method, and 3) Nonlinear Asymmetric Domain 
Adaptation [15]. Due to the fact that our formulation 
utilizes the TGP and DA baselines, it is essential to 
determine whether or not the formulation outperforms 
them. Notably, we also evaluate TGP and DA as 
alternative formulations for the problem, neither of which 
has been used in the same context previously. Results: 
Table 1 displays the average AUCs for the proposed 
method versus the three baselines for both datasets. As 
expected, GPR performed poorly in all classes of both data 
sets, as it is not a structure prediction method. The DA 
formulation performed slightly better than TGP on the 
Flower dataset, but slightly worse on the Bird dataset. 
On both datasets, the proposed method outperformed all 
baselines, with a significant difference on the flower 
dataset. It is also evident that the TGP performed better 
on the Bird dataset due to the larger number of classes 
(more points used for prediction). Fig. 3 displays the 
ROC curves for our method based on the best predicted 
unseen classes from the Birds dataset on the left and the 
Flower dataset in the center. Figure 4 depicts the AUC 
for each class in the Flower dataset. Additional findings 
are included in the supplementary materials. On the 

right side of Figure 3 is the improvement over the three 
baselines for each class, calculated as (our AUC- baseline 
AUC)/baseline AUC Table 2: Percentage of classes that the 
proposed method outperforms the baselines in predicting 
(relative to the total number of classes in each dataset). The 
dataset where our method produced the greatest average 
improvement. The purpose  of this table is to demonstrate 
that both TGP and DA performed poorly in these 
instances, whereas our formulation based on both 
performed significantly better. This demonstrates that our 
formulation is not merely a combination of the two best 
approaches, but can significantly improve prediction 
performance. To evaluate the effect of the constraints in the 
objective function, we eliminated the constraints (cTxi) i, 
which attempts to ensure that all observed examples are on the 
negative side of the predicted classifier hyperplane, and 
evaluated the approach. With the constraints, the average 
AUC for the flower dataset (using a single fold) decreased to 
0.59 from 0.61. Likewise, we assessed the impact of the 
constraint tT Wc l. The average AUC was reduced to 0.58 
from 0.65 as a result of the constraint. This demonstrates 
the significance of this formulation constraint. 

12. Conclusion and Future Activities 

We investigated the problem of predicting visual classifiers 
from a textual description of classes in the absence of 
training images. We investigated and tested various 
formulations of the problem within the context of fine- 
grained categorization. We proposed a novel formulation that 
captures information between the visual and textual 
domains by transferring knowledge from textual features to 
visual features, which leads indirectly to the prediction of the 
visual classifier described in the text. Rather than using 
linear classifiers in the future, we intend to propose a kernel-
based solution to the problem. In addition, we will investigate 
the prediction of classifiers based on complex- structured 
textual features. 

 

Figure 4: AUC of the predicated classifiers for all classes of the flower datasets.



                  International Research Journal of Engineering and Technology (IRJET)        e-ISSN: 2395-0056 

                Volume: 10 Issue: 08 | Aug 2023              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2023, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 362 
 

Refernces 

[1] K. Barnard, P. Duygulu, and D. Forsyth. Clustering art. 
In CVPR, 2001. 2 

[2] E. Bart and S. Ullman. Cross-generalization: 
Learning novel classes from a single example by feature 
replacement. In CVPR, 2005. 1, 2 

[3] L. Bo and C. Sminchisescu. Twin gaussian pro- 
cesses for structured prediction. IJCV, 2010. 5, 6 

[4] J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does 
classifying more than 10,000 image categories tell us? In 
ECCV. 2010. 1, 2 

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. 
Fei- Fei. Imagenet: A large-scale hierarchical image 
database. In CVPR, 2009. 2 

[6] L. Duan, D. Xu, I. W.-H. Tsang, and J. Luo. Visual 
event recognition in videos by learning from web data. 
TPAMI, 2012. 3 

[7] A. Farhadi, I. Endres, D. Hoiem, and D. A. Forsyth. 
Describing objects by their attributes. In CVPR, 2009. 1, 2 

[8] A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young,C. 
Rashtchian, J. Hockenmaier, and D. Forsyth. Every picture 
tells a story: Generating sentences from images.In ECCV. 
2010. 3 

[9] L. Fe-Fei, R. Fergus, and P. Perona. A bayesian 
approach to unsupervised one-shot learning of object 
categories. In CVPR, 2003. 1, 2 

[10] R. Fergus, H. Bernal, Y. Weiss, and A. Torralba. 
Semantic label sharing for learning with many categories.In 
ECCV. 2010. 2 

[11] M. Fink. Object classification from a single 
example utilizing class relevance metrics. In NIPS, 2004. 2 

[12] G. Griffin and P. Perona. Learning and using 
taxonomies for fast visual categorization. In CVPR, 2008. 
2 

[13] A. E. Hoerl and R. W. Kennard. Ridge Regression: 
Biased Estimation for Nonorthogonal Problems. 
Technometrics, 1970. 3 

[14] N. Krishnamoorthy, G. Malkarnenkar, R. Mooney, K. 
Saenko, U. Lowell, and S. Guadarrama. Generating natural-
language video descriptions using text-mined 
knowledge. NAACL HLT, 2013. 3 

[15] B. Kulis, K. Saenko, and T. Darrell. What you saw 
is not what you get: Domain adaptation using asymmetric 
kernel transforms. In CVPR, 2011. 3, 4, 5, 6 

[16] G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. 
Berg, and T. L. Berg. Baby talk: Understanding and 
generating simple image descriptions. In CVPR, 2011. 3 

[17] C. H. Lampert, H. Nickisch, and S. Harmeling. 
Learning to detect unseen object classes by betweenclass 
attribute transfer. In CVPR, 2009. 1, 2 

[18] E. G. Miller, N. E. Matsakis, and P. A. Viola. Learning 
from one example through shared densities on transforms. In 
CVPR, 2000. 2 

[19] G. A. Miller. Wordnet: A lexical database for english. 
COMMUNICATIONS OF THE ACM, 1995. 2 

[20] M.-E. Nilsback and A. Zisserman. Automated flower 
classification over large number of classes. In ICVGIP, 2008. 
2,6 

[21] V. Ordonez, G. Kulkarni, and T. L. Berg. Im2text: 
Describing images using 1 million captioned photographs.In 
NIPS, 2011. 3 

[22] M. Palatucci, D. Pomerleau, G. E. Hinton, andT. M. 
Mitchell. Zero-shot learning with semantic output codes. In 
NIPS, 2009. 2 

[23] D. Parikh and K. Grauman. Interactively building a 
discriminative vocabulary of nameable attributes. In CVPR, 
2011. 2 

[24] C. E. Rasmussen and C. K. I. Williams. Gaussian 
Processes for Machine Learning. The MIT Press, 2005. 3, 6 

[25] M. Rohrbach, M. Stark, G. Szarvas, and B. Schiele. 
Combining language sources and robust seman- tic relatedness 
for attribute-based knowledge transfer. In Parts and 
Attributes Workshop at ECCV, 2010. 2 

[26] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting 
visual category models to new domains. In ECCV. 2010. 3 

[27] R. Salakhutdinov, A. Torralba, and J. B. Tenen- baum. 
Learning to share visual appearance for multiclass object 
detection. In CVPR, 2011. 1, 2 

[28] B. Saleh, A. Farhadi, and A. Elgammal. Object- centric 
anomaly detection by attribute-based reasoning. In CVPR, 
2013. 1 

[29] G. Salton and C. Buckley. Term-weighting 
approaches in automatic text retrieval. IPM, 1988. 6 

[30] A. Torralba, R. Fergus, and W. T. Freeman. 80 
million tiny images: A large data set for nonparametric 
object and scene recognition. PAMI, 2008. 2 

[31] L. Torresani, M. Szummer, and A. Fitzgibbon. 
Efficient object category recognition using classemes. In ECCV, 
2010. 



                  International Research Journal of Engineering and Technology (IRJET)        e-ISSN: 2395-0056 

                Volume: 10 Issue: 08 | Aug 2023              www.irjet.net                                                                        p-ISSN: 2395-0072 

  

© 2023, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 363 
 

[32] [32] P. Welinder, S. Branson, T. Mita, C. Wah, F. 
Schroff, S. Belongie, and P. Perona. Caltech-UCSD Birds 
200. Technical report, California Institute of Technology, 
2010. 2, 6 

[33] J. Yang, R. Yan, and A. G. Hauptmann. Cross- 
domain video concept detection using adaptive svms. In 
MULTIMEDIA, 2007. 3 

[34] Y. Yang, C. L. Teo, H. Daum´e III, and Y. Aloi- 
monos. Corpus-guided sentence generation of natural 
images. In EMNLP, 2011. 3 

[35] D. Zeimpekis and E. Gallopoulos. Clsi: A flexible 
approximation scheme from clustered term-document 
matrices. In In SDM, 2005. 6 

[36] Research progress of zero-shot learning: Xiaohong 
Sun, Jinan Gu, Hongying Sun - Applied Intelligence 51, 
3600-3614, 2021. 

[37] Chao, WL., Changpinyo, S., Gong, B., Sha, F. (2016). 
An Empirical Study and Analysis of Generalized Zero-Shot 
Learning for Object Recognition in the Wild. In: Leibe, B., 
Matas, J., Sebe, N., Welling, M. (eds) Computer Vision – 
ECCV 2016. ECCV 2016. Lecture Notes in Computer 
Science(), vol 9906. Springer, Cham. 
https://doi.org/10.1007/978-3-319-46475-64 

[38] F. Pourpanah et al., "A Review of Generalized 
Zero-Shot Learning Methods," in IEEE Transac- tions on 
Pattern Analysis and Machine Intelligence, vol. 45, no. 4, 
pp. 4051-4070, 1 April 2023, doi: 
10.1109/TPAMI.2022.3191696. 

[39] A review of generalized zero-shot learning meth- 
ods: Farhad Pourpanah, Moloud Abdar, Yuxuan Luo, 
Xinlei Zhou, Ran Wang, Chee Peng Lim, Xi - Zhao Wang, 
QM Jonathan Wu - IEEE transactions on pattern analysis 
and machine intelligence, 2022. 

[40] Distinguishing unseen from seen for generalized 
zero-shot learning: Hongzu Su, Jingjing Li, Zhi Chen, Lei 
Zhu, Ke Lu - Proceedings of the IEEE/CVF Con- ference on 
Computer Vision and Pattern Recognition, 7885-7894, 
2022. 

[41] A survey of zero-shot learning: Settings, methods, 
and applications: Wei Wang, Vincent W Zheng, Han Yu, 
Chunyan Miao - ACM Transactions on Intelligent Systems 
and Technology (TIST) 10 (2), 1- 37, 2019. 

[42] Contrastive embedding for generalized zero-shot 
learning: Zongyan Han, Zhenyong Fu, Shuo Chen, Jian Yang 
- Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, 2371- 2381, 2021. 

[43] Open world compositional zero-shot learning: 
Massimiliano Mancini, Muhammad Ferjad Naeem, 

Yongqin Xian, Zeynep Akata - Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition, 
5222-5230, 2021. 

[44] An embarrassingly simple approach to zero-shot 
learning: Bernardino Romera-Paredes, Philip Torr - In- 
ternational conference on machine learning, 2152-2161, 
2015. 

[45] Zero-shot learning-the good, the bad and the ugly: 
Yongqin Xian, Bernt Schiele, Zeynep Akata - Proceedings of the 
IEEE conference on computer vision and pattern 
recognition, 4582-4591, 2017. 

[46] Zero-shot learning—a comprehensive evaluation of 
the good, the bad and the ugly: Yongqin Xian, Christoph H 
Lampert, Bernt Schiele, Zeynep Akata- IEEE transactions 
on pattern analysis and machine intelligence 41 (9), 2251-
2265, 2018. 

[47] Synthesized classifiers for zero-shot learning: 
Soravit Changpinyo, Wei-Lun Chao, Boqing Gong, Fei Sha - 
Proceedings of the IEEE conference on computer vision and 
pattern recognition, 5327-5336, 2016. 

[48] Unsupervised domain adaptation for zero-shot 
learning: Elyor Kodirov, Tao Xiang, Zhenyong Fu, Shaogang 
Gong - Proceedings of the IEEE international conference on 
computer vision, 2452- 2460, 2015. 

[49] Multi-modal cycle-consistent generalized zero- shot 
learning: Rafael Felix, Ian Reid, Gustavo Carneiro - 
Proceedings of the European Conference on Computer Vision 
(ECCV), 21-37, 2018. 

[50] Zero-shot learning via visual abstraction: Stanis- law 
Antol, C Lawrence Zitnick, Devi Parikh - Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, 
September 6-12, 2014, Proceedings, Part IV 13, 401-416, 
2014. 

[51] Knowledge-aware zero-shot learning: Survey and 
perspective: Jiaoyan Chen, Yuxia Geng, Zhuo Chen, Ian 
Horrocks, Jeff Z Pan, Huajun Chen - arXiv 
preprintarXiv:2103.00070, 2021. 

[52] Semantic-guided multi-attention localization for 
zero-shot learning: Yizhe Zhu, Jianwen Xie, Zhiqiang Tang, 
Xi Peng, Ahmed Elgammal - Advances in Neural Information 
Processing Systems 32, 2019. 

https://doi.org/10.1007/978-3-319-46475-64

