

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 537

Reproducing the Motion of Object AR Models in React.Js Using

Tensorflow.Js and React Three Fiber

Atharva Borekar

Software Developer, Idox PLC, Pune, India
---***---

Abstract - In recent years, our community has been using a
variety of communication methods. Some of these are social
networking sites like Instagram and Snapchat. One of the most
popular reasons is the various camera filters (based on AR)
used when creating videos and clicking photos. Some are
simple, while others are difficult to reproduce; they all have
complex methods and a large number of calculations that are
performed many times per second. This article introduces you
to the principles and core codes of AR-based filters with the
help of example transformations in React.Js using
Tensorflow.Js and React Three Fiber.

Key Words: Augmented Reality, React.Js, Tensorflow.Js,
React Three Fiber, 3d Object Modelling

1. Introduction

The way our society communicates and interacts with the
digital world has changed over the years.

The spread of virtual platforms and applications has led to
the use of new technologies, especially augmented reality
(AR). Platforms like Instagram and Snapchat are capitalizing
on the appeal of AR by combining beautiful cameras with
interactive features that enhance the user experience.
Ranging from the unusual to the complex, these filters are
based on complex mathematics that need to be calculated
every second.

This article delves into the complex world of AR-based
filters and uncovers the code behind the complexities that
make visualization so exciting.

We explore design patterns in React.Js that integrates
TensorFlow.js and React Three Fiber. By introducing the
product and process behind this model, we aim to reveal the
core of AR-based filters and make them available to
developers.

In this article, we will make a general introduction to the
content of AR-based filters. Our purpose is not limited to the
use of filters; it also covers the core code that makes the
filters compatible with real-world conditions.

Using the power of React.js, TensorFlow.js and React
Three Fiber, we demonstrate the effectiveness of designs
that bring this content to life.

Node.js can be a powerful framework for building
interactive and AR features. We will also demonstrate the
TensorFlow.js integration that allows models to perform
complex arithmetic operations in real time. To achieve this,
React Three Fiber simplifies the integration of 3D images

and video, increasing the overall accuracy of the AR
experience.

We invite readers on a journey that encourages us to
uncover the complex process of AR-based filters as well as
find new ways to integrate this technology into many
applications. By understanding the principles of AR
evolution, developers can use this knowledge to create
collaboration and communication in different formats.

In the next section, we'll introduce the basics of AR-based

filters and show you the math behind how they work.
In summary, this article presents a combination of

React.js, TensorFlow.js, and React Three Fiber for object
modeling in AR. By unveiling the rules of

AR-based filters, we empower developers to go beyond
the experience and embrace the real world.

2. Literature Review

The advancement of technology and its profound impact on
modern life are blurring the lines between virtual and real,
paving the way for new digital experiences[2]. Augmented
reality (AR), a metaphor for embedding digital content in the
physical world, has received a lot of attention in recent years.
Known for their camera filters and interactive visuals, AR-
based apps are already changing the way people interact with
digital content[3].

The use of AR-based filters on popular social networks such
as Instagram and Snapchat has attracted great interest. From
pretty face distortions to environmental enhancements, these
filters enhance visual interpretation and self-expression.
When users use these filters, they have a digital interaction
with the world around them.
The magic of AR-based filters lie in their mathematical
properties that create overlapping images of the real
world[2]. Researchers and developers are looking for better
ways to manage these filters, trying to find calculations that
will facilitate real-time interaction. The combination of
mathematics and creative expression has become the main
focus of AR filter development.

Calculations to support AR filters cover a wide range of topics
including but not limited to image recognition, object
tracking, and adaptive vision[3].
Image recognition algorithms commonly used in deep
learning, such as TensorFlow.js, allow filters to recognize and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 538

track different faces or objects in the environment. These
capabilities help align the digital support with the user's
physical behavior or environment, making the entire AR
experience more realistic.

In the software development world, libraries like React.js
have become powerful tools for creating interactive user
experiences.
React.js manifests simplify the creation of electronic
components, allowing developers to change content when
data changes. Developers can create flawless AR
environments when combined with a library like React We
Fiber that extends the power of React.js to 3D graphics.

React interface:
Using the graphical capabilities of Node.js and React Three
Fiber, developers can create AR-based filters that respond to
user actions and the environment in real time. While the
documentation for the AR-based technology is rich, but there
is still a large gap between React.js, TensorFlow.js, and React
Three Fiber in terms of design to explore resources together.
This article fills this gap by providing general guidelines for
integrating these concepts into the development of AR-based
reusable models.
By presenting a combination of techniques and calculations,
this article will increase understanding of the evolution of AR
filters and encourage innovation in the field.
This is why information about augmented reality is getting
more attention due to the rise of AR-based filters in social
media and other apps[3]. Powered by complex algorithms,
these filters provide users with a digital experience that
blends seamlessly with the physical world[2].
React.js, TensorFlow integration.
React Three Fiber brings a new direction to AR filter
development by supporting design, technology integration,
creativity and user interaction.
This article builds on current research to understand the
potential of the technology and support future efforts in
virtual reality.

3. Methodology

AR Realms uses various engines to perform various tasks in
AR filter. Despite their volume, the essence of their
mathematical thinking remains the same.

To create a prototype, the following steps must be
performed:

1. Specify the object i.e. the person in our situation.
2. Use ML models to recognize human movement.
3. Calculate various factors such as points and angles in

3D geometric space.
4. Use angles and points from point 3 to switch to the

3D model.
5. Place the model in 3D space.

Steps:

 Knowing the current position of the body
The basis of our research is knowing objects and
their movements using advanced learning methods.
BlazePose is a TensorFlow.js Model that helps
predict the human body by detecting 33 skeletons of
the human body. From the eyes to the fingers, these
elements are important features for capturing
movement. Leveraging BlazePose, our framework
can recognize and track the movement of content as
a leader to create immersive AR experiences.

 Calculation of points and angles:
The mathematical logic behind AR filters are
essential to creating realistic interactions.
Calculating angles and points in 3-dimensional
geometric space is the cornerstone of recycling. We
find the angle between the bone points using the
Math.atan2 function. This method must carefully
calculate the angles of the different axes and convert
radians to degrees. The resulting angles facilitate the
movement of the 3D model.

 Integrating Angle Data with 3D Models:
Integrating angles and points seamlessly into 3D
models is an important step in enabling object
models that replicate motion. Built on Three.js, React
Three Fiber provides a powerful platform for
rendering and visualizing 3D objects.
Using the angles we can adjust the custom body of
the 3D model. For example, adjust the rotation of the
legs according to the angles to simulate real
movement.

 Anti-aliasing algorithm for natural motion:
We have developed a smoothing algorithm to
improve the smoothness and naturalness of the
copy. Real movement in the world is characterized
by constant change. We can reduce the abrupt
change of poses by calculating the average of the
previous 10 points of the estimate. This approach
provides great AR experiences and easy adaptations
to product design.

Note:
The steps mentioned above need to happen "n" number of
times per second where "n" should prominently fall in the
range of 10-60 for optimal performance. All these steps are
then run in a sequential manner and generate a move
replicating 3d humanoid in a 3d space.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 539

3.1 Technical Specifications

The Pose Estimation Component is a React-based web
application that utilizes TensorFlow.js for real-time pose
detection from a webcam feed. It estimates the human body's
key points and calculates various angles between body parts
to provide insights into the user's pose. This technical
specification outlines the key functionalities, components,
and implementation details of the Pose Estimation
Component.

3.2 .Key Features

 Real-time Pose Detection:

The component captures video from the user's
webcam and performs real-time pose detection on
the captured frames.

 Angle Calculation:
It calculates angles between various body parts
based on detected keypoints to assess the user's
pose.

 Visualization:
The component provides a visual representation of
the user's pose on a canvas, displaying keypoints
and lines connecting relevant body parts.

 Angle Averaging:
It calculates the average angle values over a period
to smooth out fluctuations in pose data.

 Modular Design:
The component is designed to be modular and can
be easily integrated into larger applications.

3.1. Dependencies
1. TensorFlow.js (tf.js): TensorFlow.js is used for the

underlying machine learning model and pose
estimation.

2. React: The component is built using React for user
interface development.

3. React Webcam: This library is used to capture video
from the user's webcam.

4. HTML5 Canvas: The Canvas element is used for
rendering the pose estimation overlay

5. React Three Fiber: Library used to do 3d calculations
and render model.

4. Component Architecture

 Initialization
- The component initializes TensorFlow.js with the
WebGL backend for GPU acceleration.
- It sets up a `Webcam` component to capture video
from the user's webcam.
- A canvas element is created for rendering the video
feed and pose estimation overlay.

 Pose Detection
- The component loads a pre-trained pose detection
model (BlazePose) using TensorFlow.js.
- Pose estimation is performed continuously on each
frame of the webcam feed.

 Data Processing
- Keypoints representing various body parts are
detected and extracted from the video frames.
- The component calculates angles between
keypoints based on predefined rules and part sets.
- Angle averaging is applied to provide smoother
angle data.

 Visualization
- The detected keypoints are visualized on the
canvas with blue dots.
- Lines connecting relevant body parts are drawn in
red to represent joint angles.
- The canvas is updated in real-time to reflect the
user's current pose.

 Data Export
- The calculated pose data, including keypoints and
angles, is made available for external components
like react three scene via callback functions.

Figure 1: Architectural Flow

4.1 . Component Functions

1. getModel
- This asynchronous function initializes and returns
the pose detection model (BlazePose) using
TensorFlow.js.

2. drawLines
- Draws lines connecting keypoints on the canvas to
represent joint angles.

3. drawKeypoints
- Renders keypoints on the canvas as blue dots.

4. detect
- Captures video frames from the webcam.
- Performs pose estimation using the loaded model.
- Calculates and visualizes keypoints and angles on
the canvas.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 540

5. runModel
- Initiates the continuous execution of the `detect`
function at regular intervals (e.g., every 10
milliseconds).

6. getAngles
- Calculates angles between keypoints based on
predefined rules and part sets.

7. getDirectAngle
- Computes the direct angle between two points in
3D space.

8. angleBetweenLines
- Calculates the angle between two lines formed by
three points.

9. getAverage
- Computes the average value of an angle over a set
of historical angle measurements.

4.2 . Using the Pose Estimation Component

1. Include the component in a React application and
provide callback functions to receive pose data
(keypoints and angles).

2. Initialize the component, ensuring that it captures
video from the user's webcam.

3. Start the pose detection process, which continuously
updates the canvas with the user's pose.

4. Retrieve and utilize the calculated pose data for your
application's specific requirements.

4.3 . Model (3d Humanoid) Architecture

1. Initialization
The component imports the 3D model of a humanoid
robot using the useGLTF hook from @react-
three/drei. It sets up initial values for angle history,
initializing an array for each angle element.

2. Angle History
The component updates the angle history by
pushing new angle values into the respective arrays
for each angle element. Historical angle
measurements are used for angle averaging,
providing smoother animations.

3. Animation Logic
The useFrame hook from @react-three/fiber is used
to update the 3D model's bones and perform real-
time animation.
The component calculates the rotation angles for
specific bones based on the averaged angle data
from the Pose Estimation component.
The rotation angles are applied to the 3D model's
bones to mimic the user's pose.Start the pose
detection process, which continuously updates the
canvas with the user's pose.

4. Component Rendering
The 3D model is rendered within a <group> element
with the appropriate transformations (position,
rotation, and scale).

4.3 . Model (3d Humanoid) Functions

1. updateAngles
This function updates the angle history for each
angle element based on the provided pose
estimation data. It maintains a fixed-length history
array for each angle element to enable angle
averaging.

2. getAverage
This function calculates the average value of angle
measurements for a specific angle element by
summing historical measurements and dividing by
the number of measurements.

5. Results

The Model component presented here is designed to
integrate a 3D model of a humanoid robot into a React
application. It utilizes real-time pose estimation data to
animate the 3D model, mimicking the user's movements and
poses. Below, we discuss the key features and functionalities
of this component and its expected outcomes.

5.1. Expected Outcome

When this Model component is integrated into a React
application and supplied with real-time pose estimation data
(the angles prop), it results in the following outcomes:

1. The 3D model of the humanoid robot will animate in
real-time, responding to the user's movements and
poses.

2. The arms, thighs, calves, pelvis, and head of the 3D
model will mimic the corresponding movements of
the user's body, creating an interactive and visually
engaging experience.

3. The animations will be smooth and responsive,
thanks to the angle averaging logic applied to
historical angle measurements.

Developers can further customize and enhance the
component to suit their application's specific requirements,
such as integrating additional interactions or rendering
multiple 3D models simultaneously.

Overall, the Model component provides a visually compelling
way to visualize and interact with 3D models in real-time,
making it a valuable tool for applications in fields like gaming,
virtual reality, fitness tracking, and more.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 541

Figure 2: 3d Humanoid (right) imitating poses from
left figure obtained through live camera feed (left)

Blurred Part on bottom: Live Camera Feed

The Pose Estimation 3D Model Component offers a visually
engaging way to visualize and animate a 3D model in
response to real-time pose estimation data. Its modular
design makes it easy to integrate into various applications,
including fitness apps, virtual reality environments, and
interactive simulations. Developers can leverage this
component to enhance user experiences and create
immersive applications that respond to users' movements
and poses.

6. CONCLUSIONS

In the rapidly evolving field of Augmented Reality
(AR), this research paper reveals a way to uncover the
intricacies behind building motion-replicating object models
using React.js, TensorFlow.js, and React Three Fiber.

By doing extensive research on the marriage of disparate
technologies and math, we present the process that creates
beautiful AR filters that have become an integral part of our
digital interactions.

The advent of AR has changed the way society interacts with
digital images, particularly through platforms like Instagram
and Snapchat, where AR-based camera filters have become
the importance of visual perception. Ranging from bad
competition to complex environmental improvements, these
filters engage users by merging the digital and physical
worlds. But below the surface, these wonderful experiences
are based on tough math.

Our research illuminates the multifaceted process of creating
motion-replicating object models in AR.
Leveraging React.js, TensorFlow.js, and React Three Fiber,
we're laying out a strong foundation for bringing AR filters
to life. This connection not only enables developers and
supporters to understand complex technologies but also
encourages them to create digital experiences.

Our journey of discovery has many important stages.
We explore areas such as object recognition, motion
tracking, angle and point calculation in 3D space. Application
of the Math.atan2 function reveals the ability to derive the
angles of skeleton elements as a bridge between
mathematical theory and interactive magnification. The
combination of creativity and technology is further
expressed by integrating these angles into a 3D model using
React Three Fiber.

To make it smooth and natural, we've added an aesthetic
that helps deliver a more realistic AR experience.
From the middle of the previous estimate, we bridge the gap
between sudden change and continuous change and make it
useful in explaining the view from design standards.

In a nutshell, this research paper begins a journey in AR,
technology, and mathematics, complete with a synthesis of
the design model. Using React.js, TensorFlow.js, and React
Three Fiber, we unravel the complex processes that drive AR
filters and highlight the inherent potential of these
technologies.
As AR continues to define human interaction with the digital
environment, this research highlights the evolution of
innovation, creativity and mathematical thinking.

7. Appendices

In the pursuit of creating a movement replicating object AR
model using React.js, TensorFlow.js, and React Three Fiber,
several critical code snippets and functions contribute to the
overall framework's functionality and efficiency. This
appendices section provides a detailed breakdown of the key
code components involved in the creation of the movement
replication model.

7.1. Appendix A: Angle Calculation Functions

To accurately replicate human movements in an AR context,
the calculation of angles between skeletal points is essential.
The following functions facilitate angle calculations and data
processing within the framework.

// Constants for identifying different parts

 let partSet = new Set<string>()
 partSet.add("left-shoulder-left-elbow-left-wrist")
// ... (Other parts)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 542

// Calculate the angle between two points
in radians and convert to degrees

const getDirectAngle = (start: {x:number, y:number,
z:number}, end: {x:number, y:number, z:number}, firstAxis:
string, secondAxis: string) =>
 (Math.atan2(
 start?.[firstAxis] - end?.[firstAxis],
 start?.[secondAxis] - end?.[secondAxis]
) * 180) / Math.PI;

7.2. Appendix B: Angle Calculation and Smoothing

The getAngles function computes angles between skeletal
points, utilizing the previously defined partSet. Additionally,
the function incorporates direct angle calculations for
specific body parts. Smoothing algorithms are employed to
ensure fluid and natural movements.

// Calculate angles between different skeletal points

function getAngles(pose: any) {
 const keypoints = pose.keypoints;
 const angles: any = {};

 for (let i = 0; i < keypoints.length; i++) {
 for (let j = 0; j < keypoints.length; j++) {
 for (let k = 0; k < keypoints.length; k++) {
 if (partSet.has(partIndexes[i] + "-" +
 partIndexes[j] + "-" +
 partIndexes[k]
)
) {
 const a = keypoints[i];
 const b = keypoints[j];
 const c = keypoints[k];

 angles[
 partIndexes[i]-
 partIndexes[j]-
 partIndexes[k]
] = angleBetweenLines(a.x, a.y,
 b.x, b.y,
 c.x, c.y
);
 }
 }
 }
 }
// ... (Other direct angle calculations)

return angles;
}

// Calculate the average of a given angle
 element's history

const getAverage = (angleElement: string) => {
 const sum = anglesHistory[angleElement]
 .reduce(
 (a: number, b: number) => a + b,
 0
);
 let avg = sum;
 avg = avg / anglesHistory[angleElement]
 .length;
 return avg;
};

7.3 Appendix C: Angle Calculation Algorithm

The angleBetweenLines function calculates the angle
between two lines defined by three points, utilizing vector
arithmetic and trigonometry. The algorithm accurately
computes angles while considering the orientation of the
lines.

// Calculate the angle between two lines
 defined by three points
function angleBetweenLines(
 x1: number, y1: number,
 x2: number, y2: number,
 x3: number, y3: number
) {
 // Calculate the vectors representing
 the two lines
 const vec1 = [x1 - x2, y1 - y2];
 const vec2 = [x3 - x2, y3 - y2];

 // Calculate the dot product of
 the vectors
 const dotProduct = vec1[0] * vec2[0] +
 vec1[1] * vec2[1];

 // Calculate the lengths of the vectors
 const length1 = Math.sqrt(
 vec1[0] ** 2 +
 vec1[1] ** 2
);
 const length2 = Math.sqrt(
 vec2[0] ** 2 +
 vec2[1] ** 2
);

 // Calculate the angle between the
 vectors in radians
 const angle = Math.acos(
 dotProduct /
 (length1 * length2)
);

 // Convert the angle to degrees
 const angleDegrees = (angle * 180) / Math.PI;

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 10 Issue: 09 | Sep 2023 www.irjet.net p-ISSN: 2395-0072

© 2023, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 543

 // Determine the clockwise angle
 between the lines
 const det = vec1[0] * vec2[1] -
 vec1[1] * vec2[0];
 if (det > 0) {
 return 360 - angleDegrees;
 } else {
 return angleDegrees;
 }
}

REFERENCES

[1] On-device, Real-time Body Pose Tracking with

MediaPipe BlazePose :Posted by Valentin Bazarevsky
and Ivan Grishchenko, Research Engineers, Google
Research

[2] Alzahrani, N.M. Augmented Reality: A Systematic Review
of Its Benefits and Challenges in E-learning Contexts.
Appl. Sci. 2020, 10, 5660.
https://doi.org/10.3390/app10165660

[3] Yunqiang Chen et al 2019 J. Phys.: Conf. Ser. 1237
022082

[4] React.Js: www.reactjs.org

[5] React Three Fiber: https://docs.pmnd.rs/react-three-
fiber/getting-started/introduction

[6] Tensorflow.Js: https://www.tensorflow.org/js

https://doi.org/10.3390/app10165660

