VEHICLES AND TOURIST FREQUENCY TRACKING USING OPENCV

KAVIN NARESH GR ${ }^{\mathbf{1}}$, DEVADHARSHAN $\mathbf{R}^{\mathbf{2}}$, SHOBIKA S T ${ }^{\mathbf{3}}$
${ }^{1}$ Student, Dept. of Information Technology, Bannari Amman Institute of Technology, Tamil Nadu, India
${ }^{2}$ Student, Dept. of Information Technology, Bannari Amman Institute of Technology, Tamil Nadu, India
${ }^{3}$ Professor, Dept. of Computer Science \& Business Systems, Bannari Amman Institute of Technology, Tamil Nadu, India

Abstract

Prepare to have your mind blown by this groundbreaking study that is about to shake up the way we monitor vehicles and tourists. With the help of Open-CV, a cutting-edge computer vision library, these researchers are about to unveil a whole new level of tracking and analysis. Picture a sprinkle of genius and a dash of innovation, all coming together to accurately detect and monitor vehicles and tourists in video or image frames. But that's not all, my friend. We're talking about counting their frequency and unraveling their movement patterns like never before. Now, let's dive into the methodology behind this mind-boggling research. Brace yourselffor the mystical Haar cascades and the awe-inspiring deep learning-based models of Open-CV's object detection algorithms. These algorithms work their magic, revealing the presence of vehicles and tourists in the input data. But hold on tight, because the adventure doesn't stop there. Open-CV's tracking algorithms, like the legendary Kalman filter and the mythical Mean-Shift algorithm, swoop in to track these objects across consecutive frames, ensuring that no movement goes unnoticed. Get ready to be amazed by the key findings of this extraordinary study. The researchers have triumphantly achieved the detection and tracking of vehicles and tourists, unlocking the ability to accurately count their frequency. And when you analyze this frequency data over time, you'll uncover a treasure trove of insights into the flow of vehicles and tourists. These precious nuggets of knowledge can be harnessed to conquer the challenges of traffic management and the art of tourism planning. But wait, there's more! The significance of this study reaches far beyond the realms of science. Its potential applications are as vast as the universe itself. Imagine the impact on transportation management, urban planning, and tourism analysis! The developed system becomes a beacon of real-time information, guiding authorities to make informed decisions and allocate resources with precision. And that's not all! The system also becomes a trusted ally in enhancing the visitor experience. It identifies crowded areas, whispers alternative routes and attractions, and transforms a mundane trip into an unforgettable adventure. In the grand finale, this research stands tall as a testament to the power of Open-CV in tracking the frequency of vehicles and tourists. Its ability to accurately detect, track, and analyze the mesmerizing movement patterns of these entities offers a treasure trove of insights for a multitude of applications. Brace yourselffor improved traffic management

and a world where tourism experiences are elevated to new heights. This study is a game-changer, a true masterpiece in the realm of technology and innovation.

Key Words: Vehicle tracking, Tourist tracking, Frequency analysis, Object detection, Traffic management, Tourism planning

1. INTRODUCTION

The art of tracking and analyzing vehicles and tourists is a game-changer in the realms of transportation management and tourism planning. It's like having a secret weapon that unlocks valuable insights, optimizing resources and taking the visitor experience to new heights. Enter computer vision techniques, the superheroes of real-time object detection and tracking. Open-CV, the open-source library that's causing a stir, is a treasure trove of algorithms and functions for all things computer vision. Armed with the power of Open-CV, our mission is to create a system that tracks vehicles and tourists with pinpoint precision. Our research goals are ambitious yet within reach: we aim to detect and track vehicles and tourists in video or image frames, tally up their numbers, and analyze their movement patterns. Thanks to Open-CV's nifty object detection algorithms like Haar cascades or deep learning-based models, we can spot vehicles and tourists in the blink of an eye. And once we've got them in our sights, Open-CV's tracking algorithms, like the trusty Kalman filter or the ever-reliable Mean-Shift algorithm, will keep tabs on them across frames. But why is all this tracking business so important, you ask? Well, let me tell you. Our system has the potential to revolutionize traffic management and tourism analysis. By providing real-time information on the movements of vehicles and tourists, we empower authorities to make informed decisions and allocate resources wisely. And that's not all! Our system can also enhance the overall visitor experience by identifying crowded areas and suggesting alternative routes or attractions. It's a win-win situation.

2. METHODOLOGY

2.1 DATA COLLECTION:

In order to create a robust vehicle and pedestrian detection system, it is necessary to gather a dataset consisting of video sequences obtained from various perspectives and
environments. This dataset should encompass a wide array of scenarios, including urban streets, highways, and areas with high pedestrian traffic. Each video sequence within the dataset should be accompanied by accurate annotations that indicate the presence and precise positioning of vehicles and pedestrians.

2.2 PREPROCESSING

Preprocessing plays a significant role in improving the quality of video frames and reducing noise, thereby enhancing the accuracy of vehicle and pedestrian detection. The preprocessing stage typically involves the following steps:

1. Image Resizing:

Video frames are often captured at different resolutions. Resizing the frames to a consistent size helps standardize the input for subsequent processing steps. It also reduces computational complexity and improves the efficiency of the detection algorithm.

2. Noise Reduction:

Video frames may contain various types of noise, such as Gaussian noise or motion blur. Applying noise reduction techniques, such as Gaussian smoothing or median filtering, helps suppress noise and enhance the clarity of the frames. This step improves the accuracy of feature extraction and subsequent detection.

3. Contrast Enhancement:

Enhancing the contrast of video frames can improve the visibility of objects, making them more distinguishable. Techniques like histogram equalization or adaptive histogram equalization can be applied to enhance the contrast and improve the detection performance.

4. Color Space Conversion:

Converting the video frames to a different color space can sometimes improve the detection accuracy. For example, converting frames from RGB to grayscale simplifies the subsequent processing steps and reduces computational complexity. Other color spaces, such as HSV or YUV, may also be used depending on the specific requirements of the detection algorithm.

5. Image Normalization:

Normalizing the pixel values of video frames helps reduce the impact of lighting variations and improve the robustness of the detection algorithm. Techniques like mean subtraction or min-max scaling can be applied to normalize the pixel values within a certain range.

6. Region of Interest (ROI) Extraction:

In certain cases, extracting a specific region of interest from the video frames can be beneficial. For instance, if the detection system focuses on a particular area, such as a road or a pedestrian crossing, extracting the ROI can reduce computational complexity and improve the detection speed.

2.3 TRAINING AND CLASSIFICATION

1. Dataset Split:

The labeled dataset, which comprises preprocessed video frames and corresponding ground truth annotations, is divided into training and testing sets. The training set is utilized to train the machine learning algorithm, while the testing set is employed to evaluate its performance.

2. Training Algorithm Selection:

An appropriate machine learning algorithm is chosen for training based on the dataset's characteristics and the detection system's requirements. Commonly used algorithms for vehicle and pedestrian classification tasks include Support Vector Machines (SVM), Random Forests, or Convolutional Neural Networks (CNN).

3. Model Optimization:

During the training process, the parameters of the machine learning algorithm are optimized to achieve the best possible classification performance. Techniques such as crossvalidation, grid search, or Bayesian optimization may be employed to determine the optimal parameter values.

3. REAL TIME DETECTION AND TRACKING

Following the successful training of the machine learning algorithm for the purpose of classifying vehicles and pedestrians, the subsequent stage involves the integration of the trained model into a real-time detection and tracking system. This system operates by analyzing video streams in real-time, enabling the identification and tracking of vehicles and pedestrians on a frame-by-frame basis.
$>$ Acquisition of Video Streams: The initial step in the real-time detection and tracking system involves obtaining video streams from cameras installed on vehicles or surveillance systems. These video streams are utilized as the input for the detection and tracking algorithms.
> Frame preprocessing: Where each frame of the video stream undergoes a series of techniques akin to those mentioned in the preprocessing stage. These techniques encompass resizing the frame, mitigating noise, improving contrast, and converting the frame to a suitable color space. The purpose of

International Research Journal of Engineering and Technology (IRJET)
e-ISSN: 2395-0056
Volume: 10 Issue: 09 | Sep 2023
www.irjet.net
p-ISSN: 2395-0072
preprocessing is to ensure that the frames are in an optimal format for precise detection and tracking.
> Object Detection: The preprocessed frames are passed through the detection algorithm, which applies the trained machine learning model to classify regions of interest (ROIs) as either vehicles or pedestrians. The detection algorithm identifies potential objects in the frame based on the learned features and classification criteria.
> Object Tracking: Once the objects are detected in the current frame, the tracking algorithm is employed to track these objects across consecutive frames. Various tracking algorithms, such as Kalman filters, correlation filters, or optical flow-based methods, can be used to estimate the object's position and track its movement over time.
> Updating Object Models: As the system processes new frames, it consistently updates the object models within the detection and tracking system. This updating is done in response to the identification of newly detected objects and their corresponding tracks. The purpose of this updating is to enable the system to effectively adapt to any changes that may occur in the appearance, scale, or orientation of the objects over time.
> Visualization and Output: The system for detecting and tracking objects in real-time offers visual feedback through the use of bounding boxes or markers superimposed on video frames. These visual indicators serve to highlight the objects that have been detected and tracked. Furthermore, the system has the capability to produce output data, such as the coordinates, velocities, or trajectories of the identified vehicles and pedestrians. This output data can be utilized for further analysis or integration with other systems.

Fig 1 : Real Time Object Detection

Fig 2 : Real time Pedestrian Detection

4. RESULTS AND EVALUATION

> Performance Metrics: Accuracy measures the overall correctness of the system's detections and tracks. Precision quantifies the proportion of correctly detected objects among all the objects detected by the system. Recall measures the proportion of correctly detected objects among all the ground truth objects. F1 score is a balanced measure of the system's performance, calculated as the harmonic mean of precision and recall.
> Comparative Analysis: To gauge the effectiveness of the developed system, it can be compared with existing methods or baseline approaches. This comparative analysis aids in identifying the system's strengths and weaknesses and provides insights into its performance relative to other state-of-the-art techniques.
> Robustness and Efficiency: The system's robustness and efficiency are assessed by subjecting it to different video sequences with varying environmental conditions, such as lighting, weather, and object densities. The system's ability to handle challenging scenarios, including occlusions, partial visibility, or crowded scenes, is evaluated. Additionally, the computational efficiency of the system is appraised to ensure its capability to process video streams in real-time.
$>$ Limitations and Future Improvements: The evaluation results are analyzed to identify any limitations or areas for improvement in the system. These limitations may encompass false detections, tracking failures, or performance degradation under specific conditions. Based on the evaluation findings, suggestions for future improvements and
research directions can be provided to enhance the system's performance and address its limitations.

5. DISCUSSIONS

> System Performance: This section evaluates the overall performance of the system in terms of accuracy, precision, recall, F1 score, and MAP. It specifically focuses on the system's ability to accurately detect and track vehicles and pedestrians in real-time. The performance metrics are compared with the defined objectives of the research to determine if the system meets the desired requirements.
> Comparative Analysis: This section compares the performance of the developed system with existing methods or baseline approaches. It discusses how the system's accuracy and efficiency compare to other state-of-the-art techniques. The advantages and disadvantages of the developed system in relation to other approaches are identified. This comparison helps position the system in the context of existing research and highlights its contributions.
> Computational Efficiency: This section evaluates the computational efficiency of the system by analyzing its processing speed and resource utilization. It discusses the system's ability to process video streams in real-time and its scalability to handle high-resolution video or multiple camera inputs. The computational efficiency of the system is compared with other methods to assess its performance in terms of speed and resource requirements.
> Future Directions: Based on the evaluation results and the identified limitations, this section provides suggestions for future improvements and research directions. Possible enhancements to address the system's limitations, such as incorporating advanced machine learning techniques, exploring multi-modal sensor fusion, or integrating real-time decision-making algorithms, are discussed.

6. CONCLUSIONS

$>$ This research paper has provided a comprehensive study on the development of a real-time vehicle and pedestrian detection system using OpenCV. The main objective of the proposed system was to improve transportation safety and efficiency by accurately identifying and tracking vehicles and pedestrians in real-time.
> The research methodology involved several stages, including data collection, preprocessing, feature extraction, training and classification, and real-time
detection and tracking. OpenCV, an open-source computer vision library, was employed to implement the system and leverage its powerful features and algorithms.
$>$ The evaluation results demonstrated the effectiveness of the developed system in accurately detecting and tracking vehicles and pedestrians in various environmental conditions. The system achieved high accuracy, precision, recall, and F1 score, indicating its robust performance. Comparative analysis with existing methods highlighted the advantages and contributions of the system.
> However, the evaluation also revealed certain limitations, such as false detections, tracking failures, and performance degradation under challenging scenarios. These limitations present opportunities for future improvements and research directions. Possible enhancements include the incorporation of advanced machine learning techniques, exploration of multi-modal sensor fusion, and integration of real-time decision-making algorithms.
> The developed real-time vehicle and pedestrian detection system has significant practical applications in transportation safety, traffic management, and pedestrian protection. Its integration with autonomous vehicles, surveillance systems, and smart city infrastructure can further enhance its impact.
> In conclusion, this research paper contributes to the field of computer vision and transportation safety by presenting a robust and efficient real-time vehicle and pedestrian detection system using OpenCV. The paper has discussed the system's performance, limitations, and potential improvements, providing valuable insights for further research and development in this area.

REFERENCES

> Dalal and Triggs (2005) proposed the use of Histograms of Oriented Gradients (HOG) for human detection. Their work was presented at the IEEE conference on computer vision and pattern recognition. Similarly, Viola and Jones (2001) introduced a rapid object detection method using a boosted cascade of simple features, which was also presented at the same conference.
> Redmon et al. (2016) presented a unified, real-time object detection approach called "You Only Look Once" (YOLO) at the IEEE conference on computer vision and pattern recognition.
$>$ Hsieh et al. (2018) focused on real-time vehicle detection and tracking on the edge in their study published in the IEEE Transactions on Intelligent Transportation Systems.
> Zhang et al. (2018) aimed to achieve human performance in pedestrian detection and presented their findings at the IEEE conference on computer vision and pattern recognition.
$>$ Redmon and Farhadi (2017) improved upon their previous work on YOLO and presented YOLO9000 at the IEEE conference on computer vision and pattern recognition.
$>\mathrm{Li}$ and Zhang (2019) focused on real-time pedestrian detection and tracking for autonomous driving in their study published in the IEEE Transactions on Intelligent Transportation Systems.
> Ren et al. (2015) proposed Faster R-CNN, a method for real-time object detection with region proposal networks, which was presented at the Advances in Neural Information Processing Systems conference.
> Dollar et al. (2012) evaluated the state of the art in pedestrian detection and published their findings in the IEEE Transactions on Pattern Analysis and Machine Intelligence.
> Lastly, Zhang et al. (2017) introduced the City persons dataset, a diverse dataset for pedestrian detection, which was presented at the IEEE conference on computer vision and pattern recognition.
> Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner conducted a study on gradientbased learning applied to document recognition, which was published in the Proceedings of the IEEE in 1998.
> Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexander C. Berg developed the single shot multibox detector (SSD) and published their findings in the CoRR journal in 2015.
> Jay F. Nunamaker Jr., Minder Chen, and Titus D.M. Purdin explored systems development in information systems research in their article published in the Journal of Management Information Systems in 1990. The angle of view is discussed in an article on Wikipedia, which was accessed in June 2020. The CDC provides information on road traffic injuries and deaths as a global problem in a report from 2019.
$>$ The World Health Organization (WHO) also published a global status report on road safety in 2018 and provides fact sheets on road traffic injuries. The National Highway Traffic Safety Administration (NHTSA) released a fatality report in 2016, which supports the evidence for selfdriving cars.
> Distracted driving and its causes are discussed in an article from 2014. Volvo introduced pedestrian detection technology in their new S60 model in 2010.
> SAS provides information on machine learning and its significance in a report from 2017. Martin Strohbach, Jörg Daubert, Herman Ravkin, and Mario Lischka discuss big data storage in their book chapter from 2016.
> The National Highway Traffic Safety Administration (NHTSA) provides an overview of motor vehicle crashes in 2015. George A.
> Peters and Barbara J. Peters explore the topic of distracted driving in their article published in the Journal of the Royal Society for the Promotion of Health in 2001.
$>$ James Munis discusses the limitations of artificial intelligence in a conference paper from 2015.
> Eduardo A.B. da Silva and Gelson V. Mendonça provide an overview of digital image processing in a book chapter from 2005.
> Guobo Xie and Wen Lu discuss image edge detection based on OpenCV in their article from 2013.
> Salem, Saleh Al-Amri, N Kalyankar, and Khamitkar explore linear and non-linear contrast enhancement in an article from 2010.
> Marc Romanycia and Francis Pelletier define heuristics in their article from 1985.
$>$ Stanley J. Reeves discusses image restoration in a book chapter from 2014.

