

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 678

Study of Performance Improvement Techniques for Code Generation in

Large Language Models

Swapna Shingade1, Pratik Bhilore2, Juie Pachupate2, Sumeet Gaikwad2, Akash Pandit2

1Assistant Professor, Department of Artificial Intelligence and Data Science, PVGCOET, Maharashtra, India.
2Student, PVGCOET, Maharashtra, India

---***--

Abstract - Advancements in AI and Machine Learning
have led to the creation of Large Language Models (LLMs)
capable of generating human-like text and code. Despite
this, generating accurate and efficient code remains a
challenge. The study surveys performance improvement
techniques for LLM code generation, focusing on Fine-
Tuning, Prompt Design, and Context Awareness.

Fine-tuning enhances LLM by adjusting the models on
specific coding datasets, improving adaptability to
different coding tasks. Prompt Design involves clear
crafting and precise prompts to guide LLMs, enhancing the
quality and accuracy of generated code. Context
Awareness equips LLM with the ability to maintain and
utilize context, ensuring coherence and consistency in code
generation.

Through empirical analysis and case studies, the survey
evaluates the techniques' impact on code generation
performance. The findings aim to provide guidelines for
optimizing LLMs, contribute to more reliable and efficient
code generation, and improve software development
processes.

Key Words: Large Language Models (LLMs), Fine-
Tuning, Prompt Designing, Context awareness, Code
Generation

1. INTRODUCTION

The rapid advancements in Artificial Intelligence and
Machine Learning have led to the development of Large
Language Models (LLMs) capable of generating human-
like text. Among their many applications, code
generation has emerged as a particularly promising area,
offering the potential to significantly enhance software
development processes. However, the performance of
these models in generating accurate and efficient code
remains a critical challenge. The survey paper aims to
explore different performance improvement techniques
for code generation in LLM. By examining the latest
research and methodologies, the survey seeks to identify
strategies that can enhance the accuracy, efficiency, and
overall effectiveness of code generation models.

The paper dives into three main techniques: Fine-tuning,
Prompt Design, and Context Awareness. Fine-tuning

involves adapting pre-trained models to specific tasks or
domains, thereby improving their performance on those
tasks. Prompt Design focuses on crafting effective
prompts that guide the model to generate more relevant
and accurate code. Context Awareness emphasizes the
importance of incorporating both in-file and cross-file
contexts to provide the model with a comprehensive
understanding of the codebase. By understanding the
effects of these techniques on the quality of code
generation, the study provides a comprehensive
overview of the current state of the art, highlighting key
techniques and their impact on the performance of LLMs
in code generation tasks.

2. INTRODUCTION TO FINE-TUNING:

Fine-tuning in large language models (LLMs) involves
the process of adapting a pre-trained model by
optimizing its parameters on a task-specific, smaller
dataset. The procedure leverages the pre-existing
knowledge encoded in the model, to allow specialization
in peculiar tasks, such as text classification, translation,
or sentiment analysis. During fine-tuning, the model's
weights are adjusted through gradient descent, refining
its ability to perform the new task while retaining
general language understanding. It typically requires
balancing between preserving the model's generalization
capabilities and adapting it to the specific characteristics
of the new data, ensuring optimal performance on the
target task without overfitting.

Retraining an LLM on task-specific data not only
increases its ability to encode contextual knowledge but
also significantly improves its performance in generating
more relevant content. The minimal human-labeled seed
tasks are used to generate more data. In this way, it is
ensured that the quality and relevance of the tasks in the
dataset are maintained while the manual effort is
minimized. Over time, various traditional fine-tuning
approaches have been utilized, including supervised
fine-tuning on labeled datasets, transfer learning where
pre-trained models are adapted to new tasks, and
domain adaptation techniques aimed at enhancing
model performance in specific contexts. In recent
advances, full fine-tuning and various parameter-
efficient fine-tuning methods have been proposed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 10 | Oct 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 679

2.1. Full fine-tuning:

Full fine-tuning involves adjusting all the parameters of
a pre-trained model to adapt it to a new task or dataset.
The method retrains the entire model, allowing for
extensive modifications to optimize its performance for
specific applications. Even though full fine-tuning can
achieve high levels of accuracy and task relevance, it
demands considerable computational resources and
memory, making it a more resource-intensive process
compared to parameter-efficient techniques.

2.2. Parameter-efficient fine-tuning:

Parameter-efficient fine-tuning (PEFT)[13] refers to
techniques that adapt pre-trained models to new tasks
by updating only a small subset of parameters or
introducing additional structures, thereby reducing
computational and memory requirements while
maintaining the model’s core capabilities.

The method significantly enhances the base model's
performance without demanding extensive
computational power or large training datasets. The
effectiveness of parameter-efficient fine-tuning (PEFT)
techniques has indeed been well-established in prior
works for small language models, demonstrating their
superiority over full fine-tuning[13]. This promising
foundation opens exciting opportunities for further
exploration of PEFT in large language models
(LLMs) (≥1B parameters)[13], which is expected to
yield valuable insights and advancements in the
field[13].

The study examined the application of parameter-
efficient fine-tuning (PEFT) techniques to large
language models (LLMs), focusing on how these
methods can be adapted to enhance performance and
efficiency in code generation. The study incorporates
five parameter-efficient fine tuning (PEFT) techniques
namely – Low-Rank Adaptation(LoRA), IA3(Input-
Aware Adaptation with Attention), Prompt tuning,
Prefix tuning and Quantized Low-Rank Adaptation
(QLoRA)[13].

 2.2.1. LoRA (Low-Rank Adaptation):

The technique consists of freezing the model weights
and injecting low-rank trainable matrices into the
attention layers of the transformer architecture[13],
thereby drastically reducing the number of trainable
parameters. Rather than updating all model parameters,
a set of low-rank matrices is introduced and trained
while the majority of the original model parameters are
kept static. While allowing for task-specific adjustments
with reduced computational overhead focusing on the
adaptation of these low-rank matrices, the core
functionality of the pre-trained model is preserved.

 2.2.2 IA3 (Input-Aware Adaptation):

IA3 (Input-Aware Adaptation with Attention)[13] is an
innovative parameter-efficient fine-tuning method to
increase the adaptability of large language models. IA3
introduces trainable parameters into the attention
mechanism of the model so that the model can adapt
more precisely to task-specific inputs. It changes the
way how input features are processed through
attention layers, which enables better capturing and
leveraging of useful information by the model. As
compared with LoRA which introduces low-rank
matrices for adaptation, IA3 can have better
adaptability since it focuses on input-aware
modification, so these benefits can be particularly
helpful for tasks that require a rich context
understanding. This high-level adaptation eases the
burden and in the meantime does not increase
computation complexity too much, hence, IA3 is an ideal
option for situations with limited resources or when
rapid adaptation is needed.

2.2.3. Prompt tuning:

Prompt tuning involves the process of prepending
virtual tokens to the input tokens of the LLM [13].
During fine-tuning, the virtual tokens which are
differentiable are learned through back propagation,
while the rest of the LLM remains frozen. The approach
introduces a series of learnable prompt tokens that are
prepended to the input data, allowing the model to
leverage its pre-existing knowledge while focusing on
task-specific information conveyed through these
prompts. By optimizing only the prompt tokens, prompt
tuning significantly reduces the computational
resources and memory required compared to full model
fine-tuning. This method is particularly advantageous
for scenarios where rapid adaptation to new tasks is
needed, as it enables efficient and effective model
customization without extensive retraining of the entire
network.

2.2.4. Prefix tuning:

Virtual tokens are inserted by Prefix tuning in all the
layers of target model, so it requires more parameters
to be learned. Prefix tuning uses auxiliary learnable
prefix tokens prepended to the input of a model and
trains the model to generate the target sequence
starting from those prefix tokens. Since model training
happens for a few steps with a small number of
parameters, it is much faster than fine-tuning. The
advantage of the technique is that none or fewer
samples are needed for training – which can be
expensive in many applications – while at the same time
achieving competitive performance. Notably, better
prefix tuning transfer occurs when models are limited
in capacity, as finetuning might lead to forgetting

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 10 | Oct 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 680

previously learned information. Thus, it provides a good
option in scenarios where it involves fine-tuning or
nothing options and if you want to make decisions very
quickly.

 2.2.5. QLoRA (Quantized Low-Rank
Adaptation):

QLoRA combines LoRA with model quantization,
enabling the fine-tuning of LLMs with less GPU memory
by reducing the precision of floating point data types
within the model [13]. By integrating quantization with
low-rank adaptation, the approach compresses the
representation of the model’s trainable parameters,
thus minimizing the storage and processing power
required. Despite the quantization, QLoRA ensures that
the model’s task-specific performance remains robust,
offering a scalable and cost-effective approach for
rapidly adapting large language models to new
applications.

 2.3. Mathematical Equation for loss function in
fine-tuning Large Language Models (LLMs):

During fine-tuning large language models, a standard
autoregressive cross-entropy loss function is minimized
as: [13]

ℒ = ∑ (|)

where :

 {

 Metrics for evaluation:

 The complexity of a code edit task is reflected using the
number of differing lines and their edit ratio in the
input/output pair. The computation is defined as:

n diff = |(I ∪ O) / (I ∩ O) |

r diff= n diff / |I U O |

[12] where I and O are sets of input/output code with
single lines as elements.

The effectiveness of the models is measured through
widely used metrics such as the Exact Match (EM)[13]
and CodeBLEU metrics [13].

To evaluate the effectiveness of the models on a list of 𝑘
∈ [1, 10] candidates, the EM@k is reported, which
computes the average correct predictions among a list of
𝑘 candidates [13].

The hyperparameter value for each PEFT technique[13]
have been used in the initial paper are as follows:

 For LoRA and IA3, the low-rank matrix decomposition is
applied on the attention layers of the models and set 𝑟 =
16 and 𝛼 = 32. For implementing QLoRA, 8-bit and 4-bit
quantization is used. The learning rate is set to 3𝑒 − 4 for
LoRA, IA3 and QLoRA. For Prompt tuning and Prefix
tuning, learning rates of 3𝑒 − 3 and 3𝑒 − 2 are
applied [13].

3. PROMPT DESIGNING:

3.1. Introduction to Prompt Engineering :

Prompt engineering is the process of designing and
refining input prompts to optimize the output of
language models, particularly in the context of tasks such
as code generation. This involves crafting the prompt in
a way that leverages the strengths of the model,
addresses potential limitations, and guides the model to
produce more accurate, relevant, and contextually
appropriate responses.

3.2. Role in Code Generation :

The role of prompts in code generation is crucial, as they
directly influence the quality and accuracy of the
generated code. Based on the papers, the significance of
prompts in code generation can be summarized as
follows:

Guidance and Context:

Prompts serve as the primary means of guiding the
language model on what specific task to perform. In code
generation, a well-crafted prompt can provide clear
instructions, specify the context, and outline the
expected structure of the output, which helps in
generating more accurate and contextually relevant
code.[1]

Performance Enhancement:

The structure and wording of the prompt can
significantly affect the performance of the model.
Different types of prompts, such as task prompts, context
prompts, and processing prompts, can be combined to
optimize the code generation process.[1] The right
combination of prompts has been shown to substantially
improve evaluation metrics like BLEU[1] and
CodeBLEU[1], which measure the accuracy and quality of
the generated code.[1]

Influencing the Model's Output:

Prompts are instrumental in influencing the behavior of
the model. By carefully designing the prompt, developers
can steer the model toward producing code that is
syntactically correct, semantically appropriate, and
aligned with the specific requirements of the task at
hand.[2]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 10 | Oct 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 681

3.3. Designing effective prompts :

Designing effective prompts for code generation involves
a strategic approach to ensure that the language model
produces accurate and relevant code. Based on the
insights from the research papers, the following is the
way how we can design effective prompts:

1. Understand the Task:

Clarity: Be clear about what you want the model to
accomplish. If you're working on a Text-to-Code
(T2C)[1] task, ensure that the prompt clearly
describes the functionality or the outcome you
expect from the code.

Context: Provide sufficient context so that the model
understands the environment in which the code will
operate. For example, specify the programming
language, libraries, or specific functions that need to
be used.[1]

2. Use Specific Instructions:

Task Prompts: Begin with a task prompt that clearly
states the action required. For example, "write a
Java method that + #{NL}"[1]

Processing Prompts: For instance, ensure that both
positive and negative integers are handled by the
function appropriately.

3. Incorporate Contextual Information:

Context Prompts: Include information that provides
background or additional context for the task. For
example, “Remember you have a Java class named
‘#{CN}’, member variables ‘#{MV}’, and member
functions ‘#{MF}’”. [1]

Combining Prompts: Experiment with
combining different types of prompts (e.g., task,
context, and processing prompts) to see how
they interact and influence the model's output.
The right combination can significantly improve
the quality of the generated code.[1]

4. Iterate and Refine:

Multi-step Optimization[1]: The first step to
start with basic prompt and based on output
refine it. Ask the model for suggestions on how
to improve the prompt and iteratively test
different versions.

Testing and Evaluation: Use metrics like BLEU
and CodeBLEU to evaluate the output of your
prompts. Refine the prompt based on these
evaluations to optimize performance.[1]

5. Leverage Existing Code:

Example-based Prompting: Similar code
snippets or reference existing code can be used
as template to help the model generate code that
is more aligned with the expectations.[2]

6. Consider the Model’s Limitations:

Simplicity: As it is important to be specific, avoid
overly complex prompts that might confuse the
model. Keep the instructions clear and
concise.[1]

Avoiding Ambiguity: Make sure the prompt does
not leave room for multiple interpretations.
Ambiguity can lead to unexpected or incorrect
code generation.[1]

3.4. Prompt Variation:

Following are various variations or types of prompt :

1. Direct Instruction Prompts[3]:

Direct instruction prompts provide clear and concise
requests for specific code functionalities. This
straightforward approach often yields good results for
simple tasks. For instance, the prompt given for the
Snake Game was: “Using the Python language to help me
fulfill the requirements of writing a Snake game, please
provide a code example.” [3]

This prompt is direct and specifies the programming
language and the desired functionality, making it easier
for the model to generate accurate code.

2. Contextual Prompts:

Contextual prompts provide additional information or
context that can help the model understand the
requirements better. This approach is particularly useful
for more complex tasks.[3]

Example: “Your task is to use the Python language to
help me complete the requirements in the triple quotes.
Please provide a code example.”[3]

By framing the prompt to include the role of a developer,
the model can tailor its response more effectively.[3]

3. Multi-step Prompts

Multi-step prompts involve breaking down a task into
smaller, manageable parts, allowing the model to
generate code iteratively. This method has been shown
to improve performance in solving complex problems.[1]

Example: ”write a Java method that + #{NL}.”

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 10 | Oct 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 682

“remember you have a Java class named + ‘#{CN}’,
member variables + ‘#{MV}’, member functions +
‘#{MF}’ “.[1]

This approach encourages the model to focus on each
component of the task, leading to more structured and
coherent code.

4. Specification-based Prompts

Specification-based prompts include detailed
requirements or constraints that the code must meet.
This method helps ensure that the generated code
adheres to specific guidelines.[1]

Example: “Move the snake up, down, left, or right using
the arrow keys or WASD keys to make it eat food. Every
time the snake eats food, its length increases and it earns
points. If the snake hits the game border or itself, it dies

and the game ends.”[3] This prompt specifies both the

functionality and error handling requirements, guiding
the model to produce more robust code.

5. Recursive Criticism and Improvement (RCI):

The RCI technique involves prompting the model to
critique its own output and suggest improvements. This
iterative refinement can enhance the quality of the
generated code. This method encourages self-
assessment, leading to potentially more optimized code
solutions.[3]

3.5. Prompt Design :

3.5.1. Prompt Design for Text-to-Code
Generation :

Prompt description:

In text-to-code (T2C) generation tasks, the objective is to
generate code from natural language
descriptions.Consider a basic prompt designed to elicit
the desired code based on a given description. Initially,
the prompt was: "write a Java method that + #{NL}"[1].
Testing this prompt on a sample of 100 instances from
training data yielded a performance with a BLEU score of
5.29 and a CodeBLEU score of 22.76[1].

Multi step optimization :

To enhance prompt effectiveness, we employed a multi-
step optimization approach:

1. Contextual Enhancement: Feedback from the
language model indicated that adding more specific
details of the code's expected behavior and the
programming context will improve results. Thus,
updated the prompt to include information about
the code environment, such as context and
requirements, with the revised prompt: "remember

you have a Java class named: #{CN},member
variables + ‘#{MV}’, member functions + ‘#{MF}’"[1].
This modification improved the performance,
resulting in a BLEU score of 10.42 and a CodeBLEU
score of 25.05[1].

2. Processing Instructions: Further improvements
were made by aligning the output with pre-
processed ground-truth data. This involved
removing comments, method modifiers, and
renaming variables according to a specific pattern. A
processing prompt was added with instructions such
as: "comments should be removed; summary should
be removed; throws should be removed; function
modifiers should be removed; the method name
should be changed to 'function'; argument names
should be changed to 'arg0', 'arg1'...; local variable
names should be changed to 'loc0', 'loc1'...". This
adjustment resulted in better performance,
achieving a BLEU score of 13.11 and CodeBLEU
score of 36.00[1].

3. Behavior Specification: To address specific API and
exception handling requirements, the study utilized
prompts to extract these details from the generated
code and adjusted the prompt accordingly. We
replaced the original task prompt with: "write a Java
method #{that calls ...} with[out] exception handling
to #{NL}"[1]. Depending on whether APIs and
exception handling were required, this prompt was
further refined. The final results showed significant
accuracy improvements, with BLEU scores of 22.14
and 27.48, and CodeBLEU scores of 44.18 and 46.78,
respectively[1].

Iterative refinement of prompts, including the addition
of contextual details, processing instructions, and
behavior specifications, significantly improved the
accuracy of text-to-code generation tasks. This illustrates
the effectiveness of a structured and detailed approach
to prompt design in enhancing model performance.[1]

3.5.2. Prompt Design for Code-to-Code
Generation:

The process for designing prompts for code-to-code
(C2C) generation is similar to text-to-code (T2C)
generation but with key differences. For C2C generation,
consider example to translate a code function from C# to
JavaThe prompt initially used: "translate C# code into
Java code: #{Code}"[1]. Testing with this prompt
resulted in a BLEU score of 9.76 and a CodeBLEU score of
39.37[1].

Multi-Step Optimizations:

Processing Instructions: Unlike T2C, C2C does not
involve class-related context or pre-processed ground-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 10 | Oct 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 683

truth. The generated code often includes annotations
which are not present in the ground-truth. To address
this, a processing prompt was added: "do not provide
annotation"[1]. This improved CodeBLEU to 45.28 but
BLEU only slightly to 8.55[1].

Formatting Adjustments: Updating the prompt to include
markdown syntax (e.g., changing #{Code} to "’#{Code}’")
further enhanced accuracy, achieving BLEU=15.44 and
CodeBLEU=45.00[1].

Behavior Specification: Similar to T2C, requirements for
API usage and exception handling were extracted and
included in the prompt. The updated prompt was:
"translate C# code into Java code: "’#{Code}’" #{that calls
...} with[out] exception handling". This adjustment led to
a slight increase in CodeBLEU (46.17) but a reduction in
BLEU (8.90) [1].

While adding detailed instructions and requirements can
improve certain aspects of code generation, excessive
requests may introduce uncertainty, negatively affecting
overall performance.[1]

3.6. Challenges and solutions

1. Ambiguity in Natural Language Descriptions

Natural language descriptions often lack precision,
leading to potential misunderstandings in code
generation. To address this, provide clear and detailed
prompts with specific instructions and examples. Using
structured formats or templates can help reduce
ambiguity and guide the model more effectively.

2. Code Syntax and Style Differences

Different programming languages have distinct syntax
and conventions, making it challenging to translate or
generate code accurately. Specify the target language’s
syntax and style requirements in the prompt. Providing
examples of properly formatted code can also help guide
the model.

3. Handling Complex Requirements

Complex tasks that involve multiple steps, conditional
logic, or specific APIs can be difficult to encapsulate in a
single prompt. To manage this, break down complex
tasks into smaller, manageable components. Use multi-
step prompts or iterative refinement to address each
part of the task systematically.

Prompt engineering is essential for improving code
generation. Well-designed prompts enhance accuracy by
providing clear guidance and context. Addressing
challenges like ambiguity and syntax differences involves
using specific instructions and examples. By iterating on

prompts and strategically varying details, developers can
significantly boost code quality and relevance.

4. UNDERSTANDING CONTEXT IN LLMS:

Context in large language models (LLMs) refers to the
information that the model uses to generate responses.
This can include task specifications, retrieved
documents, previous conversations, and even model self-
reflections, functioning similarly to episodic memory.
[6]

4.1. In-Context Learning:

In-context learning (ICL) approach allows models to
perform various tasks by conditioning on a few examples
provided in the input context, without any parameter
updates or fine-tuning.
In-context learning is referred to as the ability of a model
to be conditioned on a sequence of input-output pairs
(demonstrations) along with a new query input, and the
corresponding output is generated. ICL has proven to be
helpful in improving the performance of LLMs in many
coding related tasks such as code generation[4], and
code repair[5].

In the paper titled "Large Language Model-Aware In-
Context Learning for Code Generation" (Li et al.,
2023)[7], the authors presented a novel approach based
on in-context learning called LAIL (Large Language
Model-Aware In-Context Learning). LAIL leverages the
inherent capabilities of LLMs to estimate the prediction
probability of ground-truth programs based on given
requirements and example prompts. By evaluating these
probabilities, the framework classifies examples into
positive and negative categories, thereby providing
valuable feedback that informs the selection process.
During the inference stage, LAIL operates by taking a
specific test requirement and selecting a curated set of
examples to serve as prompts for the LLM. [7] This
selection is facilitated by a neural retrieval mechanism
that has been trained on labeled data, which aims to
align closely with the preferences exhibited by LLMs. The
preferences of LLMs are understood and learned from,
allowing examples to be effectively selected by the
retriever from the training set that are most likely to aid
in producing correct outputs.

A key innovation of LAIL is its departure from heuristic
methods traditionally used for example selection.
Instead, it employs a more systematic approach to
choose a limited number of high-quality examples that
yield superior metric scores when matched against a test
requirement.[7] The LAIL approach enhances the
performance of In-Context Learning(ICL) by ensuring
that the selected examples are highly relevant and
conducive to successful code generation.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 10 | Oct 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 684

Another study by Pei et al. (2023)[8], discusses the
problem that traditional code completion models often
lack comprehensive context, limiting their effectiveness,
especially for tasks like function call argument
completion.[8] Function call argument completion is
defined as the task of predicting the arguments for a
given function call based on available context local,
project-level, or beyond. The paper introduces a new
dataset, CALLARGS, and a development environment,
PYENVS, to provide a richer context for code completion
models.

The CALLARGS dataset was constructed specifically for
function call argument completion, providing
comprehensive details about each function call instance.
The dataset includes parsed Python files transformed
into abstract syntax trees (ASTs), enabling the extraction
of crucial elements such as function names, argument
locations, and local contexts surrounding function calls.
[8]

The paper defines two variations of the function call
argument completion task: unidirectional prediction,
which simulates writing code from start to finish with
only local context available, and in-filling prediction,
which Simulates code editing where both preceding and
following code is accessible. [8] Additional context of the
function implementation information and function usage
information is provided for function call argument
completion. The functional implementation context
reveals the format, constraints, and intention of the
current function call. On the other hand, local contexts
surrounding the calls of the same function within the
project are collected by the function usage context. [8]
The usage context offers project-specific examples that
help the model better understand and induce the usage
for the current function call. A similarity-based ranking
criterion was designed to enhance the effectiveness of
function call argument completion. It ensures that only
the top usages are selected to provide the model.

This research underscores the significance of
comprehensive context in improving code language
models, particularly in the domain of function call
argument completion.

4.2. In-file and Cross-file Context:

In-file context refers to the information and code present
within a single file. When a code completion tool uses in-
file context, it relies solely on the contents of the current
file to predict and suggest code completions. Cross-file
context, on the other hand, involves information from
multiple files within the same project. This context is
crucial in modern software development, where projects
are often divided into multiple files and modules, as
discussed in the Modular Programming design approach
[9].

Traditional code generation models primarily rely on in-
file context, neglecting the potential benefits of cross-file
information. To address this limitation, recent research
by Ding et.al. (2023) has explored the incorporation of
cross-file context to enhance code generation accuracy
and efficiency.

The researchers developed the tool called Cross-file
Context Finder (CCFinder) [10] which is designed to
locate and retrieve the most relevant cross-file context.
CCFinder works by parsing the project hierarchy and
code components to extract project information. It builds
a project context graph that represents the details of
each component (entity) and the interactions among
them (relations). The process of building the project
context graph involves creating a root node for the
project and connecting it with all file nodes which
further builds its own sub-graph. Nodes within the file-
level sub-graph link to others based on dependencies or
scope. For context retrieval, the closer a graph neighbor
is to a specific node, the more relevant that neighbor is.

By incorporating the CCFinder tool, researchers
proposed the CoCoMIC framework[10]. The framework
uses an autoregressive LM to encode in-file code snippet
and retrieved cross-file context, and predicts the next
code token conditioning on both. [10] It includes two
main parts in its input representation: the source code
sample (S) and its cross-file context (C). For entity
representation, the framework uses Mean Pooling [SUM]
tokens to learn the summarization of each entity.[10]
When completing code, the model attends to the
representations of these [SUM] tokens for each cross-file
entity. The model fuses the in-file and cross-file context
at each Transformer layer, ensuring that generating the
next token’s hidden state always depends on both
contexts.

By encoding the code sequence of an entity into a single
token, CoCoMIC enables the model to incorporate more
cross-file context while saving input length. Finder can
retrieve most of the cross-file context that helps the
language model complete the input code, increasing
identifier recall by 27.07%. [10]

In the paper titled “Enhancing LLM-Based Coding Tools
through Native Integration of IDE-Derived Static
Context” (Li et al., 2024) researchers proposed
framework, IDE Coder that leverages the native static
contexts available in Integrated Development
Environments (IDEs) for cross-context construction and
utilizes diagnostic results for self-refinement.

One of the primary challenges in dealing with cross-file
contexts is ensuring accuracy and relevance. Accuracy
involves correctly identifying references and definitions
across different files, while relevance pertains to
identifying context that accurately reflects the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 10 | Oct 2024 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 10 | Oct 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 687

