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Abstract - Advancements in AI and Machine Learning 
have led to the creation of Large Language Models (LLMs) 
capable of generating human-like text and code. Despite 
this, generating accurate and efficient code remains a 
challenge. The study surveys performance improvement 
techniques for LLM code generation, focusing on Fine-
Tuning, Prompt Design, and Context Awareness. 

Fine-tuning enhances LLM by adjusting the models on 
specific coding datasets, improving adaptability to 
different coding tasks. Prompt Design involves clear 
crafting and precise prompts to guide LLMs, enhancing the 
quality and accuracy of generated code. Context 
Awareness equips LLM with the ability to maintain and 
utilize context, ensuring coherence and consistency in code 
generation. 

Through empirical analysis and case studies, the survey 
evaluates the techniques' impact on code generation 
performance. The findings aim to provide guidelines for 
optimizing LLMs, contribute to more reliable and efficient 
code generation, and improve software development 
processes. 

Key Words: Large Language Models (LLMs), Fine-
Tuning, Prompt Designing, Context awareness, Code 
Generation  

1. INTRODUCTION 

The rapid advancements in Artificial Intelligence and 
Machine Learning have led to the development of Large 
Language Models (LLMs) capable of generating human-
like text. Among their many applications, code 
generation has emerged as a particularly promising area, 
offering the potential to significantly enhance software 
development processes. However, the performance of 
these models in generating accurate and efficient code 
remains a critical challenge. The survey paper aims to 
explore different performance improvement techniques 
for code generation in LLM. By examining the latest 
research and methodologies, the survey seeks to identify 
strategies that can enhance the accuracy, efficiency, and 
overall effectiveness of code generation models.  

The paper dives into three main techniques: Fine-tuning, 
Prompt Design, and Context Awareness. Fine-tuning 

involves adapting pre-trained models to specific tasks or 
domains, thereby improving their performance on those 
tasks. Prompt Design focuses on crafting effective 
prompts that guide the model to generate more relevant 
and accurate code. Context Awareness emphasizes the 
importance of incorporating both in-file and cross-file 
contexts to provide the model with a comprehensive 
understanding of the codebase. By understanding the 
effects of these techniques on the quality of code 
generation, the study provides a comprehensive 
overview of the current state of the art, highlighting key 
techniques and their impact on the performance of LLMs 
in code generation tasks. 

2. INTRODUCTION TO FINE-TUNING: 

Fine-tuning in large language models (LLMs) involves 
the process of adapting a pre-trained model by 
optimizing its parameters on a task-specific, smaller 
dataset. The procedure leverages the pre-existing 
knowledge encoded in the model, to allow specialization 
in peculiar tasks, such as text classification, translation, 
or sentiment analysis. During fine-tuning, the model's 
weights are adjusted through gradient descent, refining 
its ability to perform the new task while retaining 
general language understanding. It typically requires 
balancing between preserving the model's generalization 
capabilities and adapting it to the specific characteristics 
of the new data, ensuring optimal performance on the 
target task without overfitting. 

Retraining an LLM on task-specific data not only 
increases its ability to encode contextual knowledge but 
also significantly improves its performance in generating 
more relevant content. The minimal human-labeled seed 
tasks are used to generate more data. In this way, it is 
ensured that the quality and relevance of the tasks in the 
dataset are maintained while the manual effort is 
minimized. Over time, various traditional fine-tuning 
approaches have been utilized, including supervised 
fine-tuning on labeled datasets, transfer learning where 
pre-trained models are adapted to new tasks, and 
domain adaptation techniques aimed at enhancing 
model performance in specific contexts. In recent 
advances, full fine-tuning and various parameter-
efficient fine-tuning methods have been proposed. 
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2.1. Full fine-tuning:  

Full fine-tuning involves adjusting all the parameters of 
a pre-trained model to adapt it to a new task or dataset. 
The method retrains the entire model, allowing for 
extensive modifications to optimize its performance for 
specific applications. Even though full fine-tuning can 
achieve high levels of accuracy and task relevance, it 
demands considerable computational resources and 
memory, making it a more resource-intensive process 
compared to parameter-efficient techniques. 

2.2. Parameter-efficient fine-tuning:  

Parameter-efficient fine-tuning (PEFT)[13] refers to 
techniques that adapt pre-trained models to new tasks 
by updating only a small subset of parameters or 
introducing additional structures, thereby reducing 
computational and memory requirements while 
maintaining the model’s core capabilities. 

The method significantly enhances the base model's 
performance without demanding extensive 
computational power or large training datasets. The 
effectiveness of parameter-efficient fine-tuning (PEFT) 
techniques has indeed been well-established in prior 
works for small language models, demonstrating their 
superiority over full fine-tuning[13]. This promising 
foundation opens exciting opportunities for further 
exploration of PEFT in large language models 
(LLMs)  (≥1B parameters)[13], which is expected to 
yield valuable insights and advancements in the 
field[13]. 

The study examined the application of parameter-
efficient fine-tuning (PEFT) techniques to large 
language models (LLMs), focusing on how these 
methods can be adapted to enhance performance and 
efficiency in code generation. The study incorporates 
five parameter-efficient fine tuning (PEFT) techniques 
namely – Low-Rank Adaptation(LoRA), IA3(Input-
Aware Adaptation with Attention), Prompt tuning, 
Prefix tuning and Quantized Low-Rank Adaptation 
(QLoRA)[13]. 

 2.2.1. LoRA (Low-Rank Adaptation): 

The technique consists of freezing the model weights 
and injecting low-rank trainable matrices into the 
attention layers of the transformer architecture[13], 
thereby drastically reducing the number of trainable 
parameters. Rather than updating all model parameters, 
a set of low-rank matrices is introduced and trained 
while the majority of the original model parameters are 
kept static. While allowing for task-specific adjustments 
with reduced computational overhead focusing on the 
adaptation of these low-rank matrices, the core 
functionality of the pre-trained model is preserved. 

 2.2.2 IA3 (Input-Aware Adaptation): 

IA3 (Input-Aware Adaptation with Attention)[13] is an 
innovative parameter-efficient fine-tuning method to 
increase the adaptability of large language models. IA3 
introduces trainable parameters into the attention 
mechanism of the model so that the model can adapt 
more precisely to task-specific inputs. It changes the 
way how input features are processed through 
attention layers, which enables better capturing and 
leveraging of useful information by the model. As 
compared with LoRA which introduces low-rank 
matrices for adaptation, IA3 can have better 
adaptability since it focuses on input-aware 
modification, so these benefits can be particularly 
helpful for tasks that require a rich context 
understanding. This high-level adaptation eases the 
burden and in the meantime does not increase 
computation complexity too much, hence, IA3 is an ideal 
option for situations with limited resources or when 
rapid adaptation is needed.  

2.2.3. Prompt tuning: 

Prompt tuning involves the process of prepending 
virtual tokens to the input tokens of the LLM [13]. 
During fine-tuning, the virtual tokens which are 
differentiable are learned through back propagation, 
while the rest of the LLM remains frozen. The approach 
introduces a series of learnable prompt tokens that are 
prepended to the input data, allowing the model to 
leverage its pre-existing knowledge while focusing on 
task-specific information conveyed through these 
prompts. By optimizing only the prompt tokens, prompt 
tuning significantly reduces the computational 
resources and memory required compared to full model 
fine-tuning. This method is particularly advantageous 
for scenarios where rapid adaptation to new tasks is 
needed, as it enables efficient and effective model 
customization without extensive retraining of the entire 
network. 

2.2.4. Prefix tuning: 

Virtual tokens are inserted by Prefix tuning in all the 
layers of target model, so it requires more parameters 
to be learned. Prefix tuning uses auxiliary learnable 
prefix tokens prepended to the input of a model and 
trains the model to generate the target sequence 
starting from those prefix tokens. Since model training 
happens for a few steps with a small number of 
parameters, it is much faster than fine-tuning. The 
advantage of the technique is that none or fewer 
samples are needed for training – which can be 
expensive in many applications – while at the same time 
achieving competitive performance. Notably, better 
prefix tuning transfer occurs when models are limited 
in capacity, as finetuning might lead to forgetting 
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previously learned information. Thus, it provides a good 
option in scenarios where it involves fine-tuning or 
nothing options and if you want to make decisions very 
quickly. 

 2.2.5. QLoRA (Quantized Low-Rank     
Adaptation): 

QLoRA combines LoRA with model quantization, 
enabling the fine-tuning of LLMs with less GPU memory 
by reducing the precision of floating point data types 
within the model [13]. By integrating quantization with 
low-rank adaptation, the approach compresses the 
representation of the model’s trainable parameters, 
thus minimizing the storage and processing power 
required. Despite the quantization, QLoRA ensures that 
the model’s task-specific performance remains robust, 
offering a scalable and cost-effective approach for 
rapidly adapting large language models to new 
applications. 

 2.3. Mathematical Equation for loss function in 
fine-tuning Large Language Models (LLMs): 

During fine-tuning large language models, a standard 
autoregressive cross-entropy loss function is minimized 
as: [13] 

ℒ = ∑           (   |   )    
    

where :  

   {
               
            

 

  Metrics for evaluation: 

 The complexity of a code edit task is reflected using the 
number of differing lines and their edit ratio in the 
input/output pair. The computation is defined as:  

n diff = |(I ∪ O) / ( I ∩ O) | 

r diff= n diff / |I U O | 

[12] where I and O are sets of input/output code with 
single lines as elements. 

The effectiveness of the models is measured through 
widely used metrics such as the Exact Match (EM)[13] 
and CodeBLEU metrics [13]. 

To evaluate the effectiveness of the models on a list of 𝑘 
∈ [1, 10] candidates, the EM@k is reported, which 
computes the average correct predictions among a list of 
𝑘 candidates [13]. 

The hyperparameter value for each PEFT technique[13] 
have been used in the initial paper are as follows: 

 For LoRA and IA3, the low-rank matrix decomposition is 
applied on the attention layers of the models and set 𝑟 = 
16 and 𝛼 = 32. For implementing QLoRA,  8-bit and 4-bit 
quantization is used.  The learning rate is set to 3𝑒 − 4 for 
LoRA, IA3 and QLoRA. For Prompt tuning and Prefix 
tuning, learning rates of 3𝑒 − 3 and 3𝑒 − 2 are 
applied  [13]. 

3. PROMPT DESIGNING:  

3.1. Introduction to Prompt Engineering : 

Prompt engineering is the process of designing and 
refining input prompts to optimize the output of 
language models, particularly in the context of tasks such 
as code generation. This involves crafting the prompt in 
a way that leverages the strengths of the model, 
addresses potential limitations, and guides the model to 
produce more accurate, relevant, and contextually 
appropriate responses. 

3.2. Role in Code Generation : 

The role of prompts in code generation is crucial, as they 
directly influence the quality and accuracy of the 
generated code. Based on the papers, the significance of 
prompts in code generation can be summarized as 
follows: 

Guidance and Context: 

Prompts serve as the primary means of guiding the 
language model on what specific task to perform. In code 
generation, a well-crafted prompt can provide clear 
instructions, specify the context, and outline the 
expected structure of the output, which helps in 
generating more accurate and contextually relevant 
code.[1] 

Performance Enhancement: 

The structure and wording of the prompt can 
significantly affect the performance of the model. 
Different types of prompts, such as task prompts, context 
prompts, and processing prompts, can be combined to 
optimize the code generation process.[1] The right 
combination of prompts has been shown to substantially 
improve evaluation metrics like BLEU[1] and 
CodeBLEU[1], which measure the accuracy and quality of 
the generated code.[1] 

Influencing the Model's Output: 

Prompts are instrumental in influencing the behavior of 
the model. By carefully designing the prompt, developers 
can steer the model toward producing code that is 
syntactically correct, semantically appropriate, and 
aligned with the specific requirements of the task at 
hand.[2] 
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3.3. Designing effective prompts : 

Designing effective prompts for code generation involves 
a strategic approach to ensure that the language model 
produces accurate and relevant code. Based on the 
insights from the research papers, the following is the 
way how we can design effective prompts: 

1. Understand the Task: 

Clarity: Be clear about what you want the model to 
accomplish. If you're working on a Text-to-Code 
(T2C)[1] task, ensure that the prompt clearly 
describes the functionality or the outcome you 
expect from the code. 

Context: Provide sufficient context so that the model 
understands the environment in which the code will 
operate. For example, specify the programming 
language, libraries, or specific functions that need to 
be used.[1] 

2. Use Specific Instructions: 

Task Prompts: Begin with a task prompt that clearly 
states the action required. For example, "write a 
Java method that + #{NL}"[1] 

Processing Prompts: For instance, ensure that both 
positive and negative integers are handled by the 
function appropriately. 

3. Incorporate Contextual Information: 

Context Prompts: Include information that provides 
background or additional context for the task. For 
example, “Remember you have a Java class named 
‘#{CN}’, member variables ‘#{MV}’, and member 
functions ‘#{MF}’”. [1] 

Combining Prompts: Experiment with 
combining different types of prompts (e.g., task, 
context, and processing prompts) to see how 
they interact and influence the model's output. 
The right combination can significantly improve 
the quality of the generated code.[1] 

4. Iterate and Refine: 

Multi-step Optimization[1]: The first step to 
start with basic prompt and based on output 
refine it. Ask the model for suggestions on how 
to improve the prompt and iteratively test 
different versions. 

Testing and Evaluation: Use metrics like BLEU 
and CodeBLEU to evaluate the output of your 
prompts. Refine the prompt based on these 
evaluations to optimize performance.[1] 

5. Leverage Existing Code: 

Example-based Prompting: Similar code 
snippets or reference existing code can be used 
as template to help the model generate code that 
is more aligned with the expectations.[2] 

6. Consider the Model’s Limitations: 

Simplicity: As it is important to be specific, avoid 
overly complex prompts that might confuse the 
model. Keep the instructions clear and 
concise.[1] 

Avoiding Ambiguity: Make sure the prompt does 
not leave room for multiple interpretations. 
Ambiguity can lead to unexpected or incorrect 
code generation.[1] 

3.4. Prompt Variation:  

Following are various variations or types of prompt : 

1. Direct Instruction Prompts[3]: 

Direct instruction prompts provide clear and concise 
requests for specific code functionalities. This 
straightforward approach often yields good results for 
simple tasks. For instance, the prompt given for the 
Snake Game was: “Using the Python language to help me 
fulfill the requirements of writing a Snake game, please 
provide a code example.” [3] 

This prompt is direct and specifies the programming 
language and the desired functionality, making it easier 
for the model to generate accurate code. 

2. Contextual Prompts: 

Contextual prompts provide additional information or 
context that can help the model understand the 
requirements better. This approach is particularly useful 
for more complex tasks.[3] 

Example: “Your task is to use the Python language to 
help me complete the requirements in the triple quotes. 
Please provide a code example.”[3] 

By framing the prompt to include the role of a developer, 
the model can tailor its response more effectively.[3] 

3. Multi-step Prompts 

Multi-step prompts involve breaking down a task into 
smaller, manageable parts, allowing the model to 
generate code iteratively. This method has been shown 
to improve performance in solving complex problems.[1] 

Example: ”write a Java method that + #{NL}.” 
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“remember you have a Java class named + ‘#{CN}’, 
member variables + ‘#{MV}’, member functions + 
‘#{MF}’ “.[1] 

This approach encourages the model to focus on each 
component of the task, leading to more structured and 
coherent code. 

4. Specification-based Prompts 

Specification-based prompts include detailed 
requirements or constraints that the code must meet. 
This method helps ensure that the generated code 
adheres to specific guidelines.[1] 

Example: “Move the snake up, down, left, or right using 
the arrow keys or WASD keys to make it eat food. Every 
time the snake eats food, its length increases and it earns 
points. If the snake hits the game border or itself, it dies 

and the game ends.”[3] This prompt specifies both the 

functionality and error handling requirements, guiding 
the model to produce more robust code. 

5. Recursive Criticism and Improvement (RCI): 

The RCI technique involves prompting the model to 
critique its own output and suggest improvements. This 
iterative refinement can enhance the quality of the 
generated code. This method encourages self-
assessment, leading to potentially more optimized code 
solutions.[3] 

3.5. Prompt Design :  

3.5.1. Prompt Design for Text-to-Code 
Generation : 

Prompt description: 

In text-to-code (T2C) generation tasks, the objective is to 
generate code from natural language 
descriptions.Consider a basic prompt designed to elicit 
the desired code based on a given description. Initially, 
the prompt was: "write a Java method that + #{NL}"[1]. 
Testing this prompt on a sample of 100 instances from 
training data yielded a performance with a BLEU score of 
5.29 and a CodeBLEU score of 22.76[1].  

Multi step optimization :  

To enhance prompt effectiveness, we employed a multi-
step optimization approach: 

1. Contextual Enhancement: Feedback from the 
language model indicated that adding more specific 
details of the code's expected behavior and the 
programming context will improve results. Thus, 
updated the prompt to include information about 
the code environment, such as context and 
requirements, with the revised prompt: "remember 

you have a Java class named: #{CN},member 
variables + ‘#{MV}’, member functions + ‘#{MF}’"[1]. 
This modification improved the performance, 
resulting in a BLEU score of 10.42 and a CodeBLEU 
score of 25.05[1]. 

2. Processing Instructions: Further improvements 
were made by aligning the output with pre-
processed ground-truth data. This involved 
removing comments, method modifiers, and 
renaming variables according to a specific pattern. A 
processing prompt was added with instructions such 
as: "comments should be removed; summary should 
be removed; throws should be removed; function 
modifiers should be removed; the method name 
should be changed to 'function'; argument names 
should be changed to 'arg0', 'arg1'...; local variable 
names should be changed to 'loc0', 'loc1'...". This 
adjustment resulted in better performance, 
achieving a BLEU score of 13.11 and CodeBLEU 
score of 36.00[1]. 

3. Behavior Specification: To address specific API and 
exception handling requirements, the study utilized 
prompts to extract these details from the generated 
code and adjusted the prompt accordingly. We 
replaced the original task prompt with: "write a Java 
method #{that calls ...} with[out] exception handling 
to #{NL}"[1]. Depending on whether APIs and 
exception handling were required, this prompt was 
further refined. The final results showed significant 
accuracy improvements, with BLEU scores of 22.14 
and 27.48, and CodeBLEU scores of 44.18 and 46.78, 
respectively[1]. 

Iterative refinement of prompts, including the addition 
of contextual details, processing instructions, and 
behavior specifications, significantly improved the 
accuracy of text-to-code generation tasks. This illustrates 
the effectiveness of a structured and detailed approach 
to prompt design in enhancing model performance.[1] 

3.5.2. Prompt Design for Code-to-Code 
Generation: 

The process for designing prompts for code-to-code 
(C2C) generation is similar to text-to-code (T2C) 
generation but with key differences. For C2C generation, 
consider example to translate a code function from C# to 
JavaThe prompt initially used: "translate C# code into 
Java code: #{Code}"[1]. Testing with this prompt 
resulted in a BLEU score of 9.76 and a CodeBLEU score of 
39.37[1]. 

Multi-Step Optimizations: 

Processing Instructions: Unlike T2C, C2C does not 
involve class-related context or pre-processed ground-
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truth. The generated code often includes annotations 
which are not present in the ground-truth. To address 
this, a processing prompt was added: "do not provide 
annotation"[1]. This improved CodeBLEU to 45.28 but 
BLEU only slightly to 8.55[1]. 

Formatting Adjustments: Updating the prompt to include 
markdown syntax (e.g., changing #{Code} to "’#{Code}’") 
further enhanced accuracy, achieving BLEU=15.44 and 
CodeBLEU=45.00[1]. 

Behavior Specification: Similar to T2C, requirements for 
API usage and exception handling were extracted and 
included in the prompt. The updated prompt was: 
"translate C# code into Java code: "’#{Code}’" #{that calls 
...} with[out] exception handling". This adjustment led to 
a slight increase in CodeBLEU (46.17) but a reduction in 
BLEU (8.90) [1]. 

While adding detailed instructions and requirements can 
improve certain aspects of code generation, excessive 
requests may introduce uncertainty, negatively affecting 
overall performance.[1] 

3.6. Challenges and solutions 

1. Ambiguity in Natural Language Descriptions 

Natural language descriptions often lack precision, 
leading to potential misunderstandings in code 
generation. To address this, provide clear and detailed 
prompts with specific instructions and examples. Using 
structured formats or templates can help reduce 
ambiguity and guide the model more effectively. 

2. Code Syntax and Style Differences 

Different programming languages have distinct syntax 
and conventions, making it challenging to translate or 
generate code accurately. Specify the target language’s 
syntax and style requirements in the prompt. Providing 
examples of properly formatted code can also help guide 
the model. 

3. Handling Complex Requirements 

Complex tasks that involve multiple steps, conditional 
logic, or specific APIs can be difficult to encapsulate in a 
single prompt. To manage this, break down complex 
tasks into smaller, manageable components. Use multi-
step prompts or iterative refinement to address each 
part of the task systematically. 

Prompt engineering is essential for improving code 
generation. Well-designed prompts enhance accuracy by 
providing clear guidance and context. Addressing 
challenges like ambiguity and syntax differences involves 
using specific instructions and examples. By iterating on 

prompts and strategically varying details, developers can 
significantly boost code quality and relevance. 

4. UNDERSTANDING CONTEXT IN LLMS: 

Context in large language models (LLMs) refers to the 
information that the model uses to generate responses. 
This can include task specifications, retrieved 
documents, previous conversations, and even model self-
reflections, functioning similarly to episodic memory. 
[6]  

4.1. In-Context Learning:  

In-context learning (ICL) approach allows models to 
perform various tasks by conditioning on a few examples 
provided in the input context, without any parameter 
updates or fine-tuning. 
In-context learning is referred to as the ability of a model 
to be conditioned on a sequence of input-output pairs 
(demonstrations) along with a new query input, and the 
corresponding output is generated. ICL has proven to be 
helpful in improving the performance of LLMs in many 
coding related tasks such as code generation[4], and 
code repair[5]. 

In the paper titled "Large Language Model-Aware In-
Context Learning for Code Generation" (Li et al., 
2023)[7], the authors presented a novel approach based 
on in-context learning called LAIL (Large Language 
Model-Aware In-Context Learning). LAIL leverages the 
inherent capabilities of LLMs to estimate the prediction 
probability of ground-truth programs based on given 
requirements and example prompts. By evaluating these 
probabilities, the framework classifies examples into 
positive and negative categories, thereby providing 
valuable feedback that informs the selection process. 
During the inference stage, LAIL operates by taking a 
specific test requirement and selecting a curated set of 
examples to serve as prompts for the LLM. [7] This 
selection is facilitated by a neural retrieval mechanism 
that has been trained on labeled data, which aims to 
align closely with the preferences exhibited by LLMs. The 
preferences of LLMs are understood and learned from, 
allowing examples to be effectively selected by the 
retriever from the training set that are most likely to aid 
in producing correct outputs. 

A key innovation of LAIL is its departure from heuristic 
methods traditionally used for example selection. 
Instead, it employs a more systematic approach to 
choose a limited number of high-quality examples that 
yield superior metric scores when matched against a test 
requirement.[7] The LAIL approach enhances the 
performance of In-Context Learning(ICL) by ensuring 
that the selected examples are highly relevant and 
conducive to successful code generation. 
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Another study by Pei et al. (2023)[8], discusses the 
problem that traditional code completion models often 
lack comprehensive context, limiting their effectiveness, 
especially for tasks like function call argument 
completion.[8] Function call argument completion is 
defined as the task of predicting the arguments for a 
given function call based on available context local, 
project-level, or beyond. The paper introduces a new 
dataset, CALLARGS, and a development environment, 
PYENVS, to provide a richer context for code completion 
models. 

The CALLARGS dataset was constructed specifically for 
function call argument completion, providing 
comprehensive details about each function call instance. 
The dataset includes parsed Python files transformed 
into abstract syntax trees (ASTs), enabling the extraction 
of crucial elements such as function names, argument 
locations, and local contexts surrounding function calls. 
[8] 

The paper defines two variations of the function call 
argument completion task: unidirectional prediction, 
which simulates writing code from start to finish with 
only local context available, and in-filling prediction, 
which Simulates code editing where both preceding and 
following code is accessible. [8] Additional context of the 
function implementation information and function usage 
information is provided for function call argument 
completion. The functional implementation context 
reveals the format, constraints, and intention of the 
current function call. On the other hand, local contexts 
surrounding the calls of the same function within the 
project are collected by the function usage context. [8] 
The usage context offers project-specific examples that 
help the model better understand and induce the usage 
for the current function call. A similarity-based ranking 
criterion was designed to enhance the effectiveness of 
function call argument completion. It ensures that only 
the top usages are selected to provide the model. 

This research underscores the significance of 
comprehensive context in improving code language 
models, particularly in the domain of function call 
argument completion. 

4.2. In-file and Cross-file Context: 

In-file context refers to the information and code present 
within a single file. When a code completion tool uses in-
file context, it relies solely on the contents of the current 
file to predict and suggest code completions. Cross-file 
context, on the other hand, involves information from 
multiple files within the same project. This context is 
crucial in modern software development, where projects 
are often divided into multiple files and modules, as 
discussed in the Modular Programming design approach 
[9]. 

Traditional code generation models primarily rely on in-
file context, neglecting the potential benefits of cross-file 
information. To address this limitation, recent research 
by Ding et.al. (2023) has explored the incorporation of 
cross-file context to enhance code generation accuracy 
and efficiency. 

The researchers developed the tool called Cross-file 
Context Finder (CCFinder) [10] which is designed to 
locate and retrieve the most relevant cross-file context. 
CCFinder works by parsing the project hierarchy and 
code components to extract project information. It builds 
a project context graph that represents the details of 
each component (entity) and the interactions among 
them (relations). The process of building the project 
context graph involves creating a root node for the 
project and connecting it with all file nodes which 
further builds its own sub-graph. Nodes within the file-
level sub-graph link to others based on dependencies or 
scope. For context retrieval, the closer a graph neighbor 
is to a specific node, the more relevant that neighbor is. 

By incorporating the CCFinder tool, researchers 
proposed the CoCoMIC framework[10]. The framework 
uses an autoregressive LM to encode in-file code snippet 
and retrieved cross-file context, and predicts the next 
code token conditioning on both. [10] It includes two 
main parts in its input representation: the source code 
sample (S) and its cross-file context (C). For entity 
representation, the framework uses Mean Pooling [SUM] 
tokens to learn the summarization of each entity.[10] 
When completing code, the model attends to the 
representations of these [SUM] tokens for each cross-file 
entity. The model fuses the in-file and cross-file context 
at each Transformer layer, ensuring that generating the 
next token’s hidden state always depends on both 
contexts. 

By encoding the code sequence of an entity into a single 
token, CoCoMIC enables the model to incorporate more 
cross-file context while saving input length. Finder can 
retrieve most of the cross-file context that helps the 
language model complete the input code, increasing 
identifier recall by 27.07%. [10] 

In the paper titled “Enhancing LLM-Based Coding Tools 
through Native Integration of IDE-Derived Static 
Context” (Li et al., 2024) researchers proposed 
framework, IDE Coder that leverages the native static 
contexts available in Integrated Development 
Environments (IDEs) for cross-context construction and 
utilizes diagnostic results for self-refinement. 

One of the primary challenges in dealing with cross-file 
contexts is ensuring accuracy and relevance. Accuracy 
involves correctly identifying references and definitions 
across different files, while relevance pertains to 
identifying context that accurately reflects the 
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