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Abstract 

Inthis work we review Kullback-Leibler divergence and Jeffery’s distance divergence measures for the flexible family of 

multivariate R-norm.we use jefferys divergence measure to compare the multivariate R-norm. A J-divergence Measuredbased on 

Renyi’s-Tsallis Entropy much like kullback-Leibler divergence is related to Shannon’s entropy .in this paper ,we have characterized 

the sum of two general measures associated with two distribution with discrete random variables.one of these measures is 

logarithmic ,while other contains the power of variable named as J-divergencebased on Renyi’s –Tsallis entropy measures. Some 

illustrative examples are given to support the finding and further exhibit and adequacy of measure. 
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1.INTRODUTION 

1.1 KULLBACK-LEIBLER DIVERGENCE (KL- DIVERGENCE) 

The relative entropy  from Q to P for discrete probability distributions P and Q specified on the same sample space is defined 

as in [12,13,15] 

   (   )=  ∑  ( )       
 ( )

 ( )
     (   ) =   ∑  ( )       

 ( )

 ( )
 

This study has developed several new generalized measures of relevant relative information and examined their specific cases. 

These metrics have also yielded novel and useful information measures, as well as their relationship with various entropy 

measurements. 

Relative entropy Entropy is only defined in this  following way 

(1) If, for all x, Q(x) = 0   ( )    (absolutely continuity) 

(2) If Q(x)    ( ) = +  

For distribution P and Q of continuous random variable ,relative entropy is defined to be the integral 

   (   ) = ∫  ( )
  

  
   
 ( )

 ( )
 dx 

P, q are probability densities of  P and Q. 

It has the following properties: 

1) If P and Q probability measures on a measurable space     and P is absolutely continuous with respect to Q, the  relative 

entropy from Q to P is defined as 

2)    (   ) = ∫    .
 (  )

 (  )
/ P(dx),where

 (  )

 (  )
 is the Random-Nikodymderivative of Q with respective to Q.  
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3) By the chain rule this can be written as 

   (   ) = ∫
 (  )

 (  )
   
 ( )

 ( )
 Q(dx) 

Which is the x  ,entropy of P relative to Q. 

 

4) If    is any measure on  for which  

P(  )   ( )  ( ) and 

Q(dx) =  ( )  ( ) 

Meaning that P and Q both absolutely continuous with respect to    Relative entropy from Q to  P is given by  

   (   ) = ∫ ( )    .
 ( )

 ( )
/   (  ) 

1.2 Entropy type measure and KL -divergence  

1.3 Definition  

Let  P=*(              )+,  0         be a discrete probability distribution of aSet of events E = {              } on 

the basis of an experiment whose predicted probability distribution  Q = *              + , 0       , in information 

theory ,the following measures are well known: 

 
H( ) =  ∑        

 
    

1.3 Definition  

In order to understand how the KL divergence works ,remember the formula for the expected value of a function .given a 

function f with x being a discrete variable, the expected value of  ( ) is defined as 

 , ( )-   ∑ ( )  ( )

 

 

Where  ( ) is the probability density function of the variable x. for the continuous case we have 

 , ( )-   ∫  ( )  ( )
 

  
dx 

1.4 Definition  

Ratio of 
 ( )

 ( )
 

It is evident from a review of the definitions of the anticipated value and the KL divergence that they are fairly comparable. 

while deciding ( )   .   
 ( )

 ( )
/ 

We can see that: 

 , ( )-       ( ) 4   
 ( )

 ( )
5 

= ∫  ( )    .
 ( )

 ( )
/

 

  
   

 =    (F   G) 

 

Let us examine the quantity 
 ( )

 ( )
 first .We can compare two probability density functions, let's say f and g, by calculating their 

ratio. 
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                Ratio = 
 ( )

 ( )
 

1.5 Definition  

1.6 Ratio for entire dataset 

Using the product of the individual ratio and the full dataset                 , we can calculate the ratio of the entire set. 

Be aware that this is only true if examples          unrelated to one another 

Ratio = ∏
 (  )

 (  )

 
    

1.7 Definition  

1.8 RatioVS. KL-divergence 

The log-ratio proved to be a useful tool for comparing two probability densities, f and g. The predicted value of the log-ratio is 

what the KL-divergence is Setting f(x)= log.
 ( )

 ( )
/ results in 

 

 , ( )-      ( ) 64   
 ( )

 ( )
57 

 

 ∫  ( )    4
 ( )

 ( )
5

 

  

   

     (   ) 

1.9 THEOREM 

What makes the KL divergence consistently positive? 

Animportant property of the KL-divergence is that its always non-negative,that is    (     )    for any valid FG .we can 

prove this using Jensen's inequality. 

Jensen’s inequality states that, if a function  ( )is convex ,then 

 , ( )-   ( , -) 

 

To show that     (     )    we first make use of the expected value: 

   (   )    ∫  ( )
 

  

   (4
 ( )

 ( )
5) 

               =    ( ) 0.   
 ( )

 ( )
/1 

        ( ) 64   
 ( )

 ( )
57 

Because        is a convex function we can apply jensen’s inequality: 
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      ( ) 64   
 ( )

 ( )
57        4    ( ) 6

 ( )

 ( )
75 

      ∫  ( )
 

  

 ( )

 ( )
   

   =    ∫  ( )
 

  
   

       

                       = 0 

1.10 R-Norm Measures 

Some new generalized R-norm measures of useful relative information have been defined and their particular cases have been 

studied.from these measure new useful R-norm information measure have been derived. we have obtained j- divergence 

corresponding to each measure of useful relative R-norm information  

We consider the function 

  (     )  
 

   
[ ( )   4

∑      
   
   

 
   

∑     
 
   

5

 

 

] 

1.11 J-divergence Measure  

Let   = {  (           )                      ∑   
 
     },k   be set of k-complete probability distribution for 

any probability distribution   (           )        

Shannon [2] defined an entropy as 

       H( )     ∑ (  )    (  )
 
    

For any          ,Kullback  and Leibler[6,12] defined a divergence measure as 

    (   )  ∑ (  )    (
  

  
) 

   ………………(1) 

It is well known that     (   ) is nonnegative, additive but not symmetric.To obtain symmetric measure, one can define 

J(   )       (   )       (   )  ∑ (     )
 
      (

  

  
)………………………..( ) 

This is referred to as the J-divergence. It is evident that      and J-divergence share the majority of their features.It is evident 

that if w=0 and v=0,     is undefined.this suggests that in order to construct     , distribution E must be completely 

continuous with respect to distribution f. 

Litegebe and satish [25]define a new information measure as 

     
 ( )  

  2
 

   
(  ∑   

 
   )  ∑ (  )   (  )   

    

         (   ∑   
  

   )  

                                                                              ∑         
 
   3……………………..(1) 

A combination formulation of Havrda-charvat and Tsallis entropy of order ” a” was introduced in amount (1). 
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A generalized usable relative information measure of order ” a” that Bhaker and Hooda examined given below 

  (     )    
 

   
   4
∑    
 
     

   
   

∑     
 
   

5 

1.12 Useful measure of j-divergence of type     

Kullback and Leilbler[20] and Jeffrey’s[6] introduced a symmetric divergence called J-divergence of type “a” is given by 

  (     )    (     )    (     ) 

 
 

   
   (

∑    
 
     

   
   

∑     
 
   

),     

In case utilities are ignored i.e.      for each i 

Equation reduced to       

  (   )   
 

   
   4
∑   

   
    

   

∑   
 
   

5 

2. Our Claims: 

Claim I 

 

   
   (

∑    
 
     

   
   

∑     
 
   

)is a convex function of Q. 

The steps that follow demonstrate this. 

Step1: For
 

   
       is a convex function of Q 

Let        (
∑    
 
     

   
   

∑     
 
   

) if we differentiate   partially w.r.t.    taking all     and     fixed then ∑        
 
    

Thus,    ∑         ∑     
 
   

 
    is constant 

Hence       (∑    
 
     

   
   ) 

                                                Where 
 

 
  ,    ∑         ∑     

 
   

 
      

It implies 
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.
  

   
/ 



          International Research Journal of Engineering and Technology (IRJET)            e-ISSN: 2395-0056 

         Volume: 11 Issue: 10 | Oct 2024                 www.irjet.net                                                                         p-ISSN: 2395-0072 

  

© 2024, IRJET       |       Impact Factor value: 8.315       |       ISO 9001:2008 Certified Journal       |     Page 116 
 

   
 

   
(  
     

  ) 

   ,(   )  
       

      
   (  )  

    - 
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Hence,    (
∑    
 
     

   
   

∑     
 
   

) is a convex function of Q. 

Step2: For     
 

    
    is a Monotonic increasing convex function of Q 

Since 
 

    
            is a convex function of Q. 

Therefore 
 

   
   (

∑    
 
     

   
   

∑     
 
   

) is a convex function of Q for all      

Provided, ∑   
       ∑       

    
   

 
    ,   . Since  ( )is monotonic increasing function of x. Then      gives 

   4
∑    
 
     

   
   

∑     
 
   

5    

        6   4
∑    
 
     

   
   

∑     
 
   

57    ( ) 

Thus   (     )   . Since an increasing convex function of a convex function is a convex function and  ( ) is a is 

monotonic increasing convex function. 

Therefore    (     ) is a convex function of Q. 

Claim II 

2.1 Relation between J-divergence and  J-shannon 

J-divergence [6,7,8] 

J(p;q) = 
 

 
 D(   )  

 

 
  (   ) 

  = 
 

 
∑        

  

  
 +  
 

 
∑        

  

  
 

and the Jensen-Shannon divergence [9,8,10] 

JS-divergence (p; q) =  
 

 
 D(  

 

 
(   ))  

 

 
  (   

 

 
(   )) 

JS(   )   
 

 
∑      

  
 

 
(     )

  
 

 
∑      

  
 

 
(     )

   ……………..(1) 
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Are related by the inequality 

          JS(   )      2
   

 
  (   )    

 

     (   )
3                 ………………..(2) 

The inequalityis described by Lin [9] 

 JS(   )   
 

 
  (   ) 

The first part of equation [1] is described by Taneja [10] 

JS(   )   
 

 
  (   ) 

We note that many interesting measures between probability distribution  can be written as an f-divergence [23,24,25] 

  (   )  ∑    (
  
  
)

 

 

 〈  (
  
  
)〉 

   

The relation   (   )    follows from an application of Jensen’s inequality [24] for convex function 

〈 ( )〉    ( ) 

Now suppose that we can write 

  ( )    ( )     ( ),where        are all convex and normalized and k is constant. 

Then, 

            

Equivalently         

The desired inequality given 

        ( )  
 

 
( )   ( )  

 

 
  ( ) 

    
 

 
  
 

   
 + 
 

 
   

 

     
 

  ( )          ( )      ( ) 

This inequality has the same form as the asymptotic scaling between Jensen-shannon and Symeterized  KL-divergencefor 

infinitely different distributions. 

     Jensen’s inequality 〈 ( )〉    ( ) implies that 

〈  
 

    
〉     

 

    
 

Therefore   JS(   )   
 

 
∑      

  
 

 
(     )

  
 

 
∑      
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   (from 1) 
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     *  (   )+
 

    
 

     *       (   )+
 

i.e. JS(   )     
 

     *       (   )+
 

Therefore  JS(   ) = Jeffery(p; q) = 0 (if       ) 

andJS(   ) = Jeffery(p; q) =   (          ) 

since the J-divergence range between zero and positive infinity, whereas the Jensen-shannon divergence ranges between zero 

and     ,this inequality has the correct limit and identical and orthogonal. 

Conclusions 

The KL-divergence is a widely used metric to assess how well the R-norm fits the data. It was demonstrated that generalized 

relative entropies, whether Renyi or Tsallies, in the discrete situation can be readily extended to the measure-theoretic 

context, much as in the case of kullback-Leibler relative entropy. The definition of new generalized R-norm measures of 

meaningful relative information has been completed, and their specific cases have been examined. For any measure of 

valuable R-norm information, we have a corresponding J-divergence. The metrics described in this study can be applied to 

further information theory results and we also find theJ-divergence and the Jensen-Shannon divergence are shown to be 

related by an inequality that involves a transcendental function of the J-divergence. 

REFERENCES: 

[1] Arizono,I.,&Ohta,H.(1989):A test for normality based on Kullback-Leibler information. 

[2] Shannon C. E.(1948): A mathematical theory of communication”, Bell System Technical Journal,27, 379-423, 623-659 

[3] Hooda, D. S. and Bhaker U.S.(1997): A generalized useful information measure and coding theorems, SoochowJournal of 

Mathematics, Vol 23(1), 53-62. 

[4] Havrda, J. F. and Charvat, F. (1967): Quantification method of classification Processes, the concept of structural α –entropy, 

Kybernetika, Vol. 3, no. 1, pp. 30-35. 

[5] Hooda, D. S. (1986):On generalized measure of relative useful information, Soochow Journal of Mathematics, Vol. 12, 23-32. 

[6] Jeffreys. H.(1948):Theory of probability” Clarendon Press,Oxford, 2nd edition, 1. 

[7] Kullback, Sand  Leibler, R. A. (1951):“On information and sufàciency”. Ann. Math. Statist., 22:79–86. 

[8] Crooks.G.E.(2016):On measures of entropy and information, 2016. Tech.  

[9] Lin, J.(1991): Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory, 37:145–151. 

[10] Topsøe, F (2000): Some inequalities for information diver-gence and related measures of discrimination”. IEEE Trans. Inf. 

Theory, 46(4):1602–1609. 

[11] Fuglede, B. and Topsøe, F.(2003): Jensen-Shannon di-vergence and Hilbert space embedding”. In IEEE 



          International Research Journal of Engineering and Technology (IRJET)            e-ISSN: 2395-0056 

         Volume: 11 Issue: 10 | Oct 2024                 www.irjet.net                                                                         p-ISSN: 2395-0072 

  

© 2024, IRJET       |       Impact Factor value: 8.315       |       ISO 9001:2008 Certified Journal       |     Page 119 
 

[12] Taneja, I. J. (2005):Refinement inequalities among symmetric divergence measure. Aust. J. Math. Anal.Appl. 

[13]Bouhlel, N and Dziri, A. (2019):Kullback–Leibler divergence between multivariate generalized gaussian distributions, IEEE 
Signal Processing Letters, 26(7):1021–1025. 

[14] Tim, van Erven and Peter,Harremos(2014):Rényi divergence and Kullback-Leiblerdivergence. IEEE.Transactions on 
Information Theory, 60(7):3797–3820. 

[15] Rui, F. Vigelis, Luiza, H. F. Andrade,De and Charles, C. Cavalcante(2020): Properties of a generalized divergence related to 
Tsallis generalized divergence”. IEEE Transactions on Information Theory,66(5):2891–2897. 

[16] Pengfei, Yang and Biao, Chen (2019):RobustKullback-Leibler divergence and universal hypothesistesting for continuous 
distributions”. IEEE Transactions on Information Theory, 65(4):23602373. 

[17] Yufeng, Zhang;Jialu, Pan;Wanwei, Liu;Zhenbang, Chen;Kenli, Li; Wang,Ji;Zhiming, Liu and Hongmei, Wei (2023):Kullback-
leibler divergence-based out-of-distribution detection with flow-based generative models, IEEE Transactions on Knowledge 
and Data Engineering, pages 1–14. 

[18] ZiadRached, FadyAlajaji, and Campbell, L Lorne(2004): The Kullback-Leibler divergence rate between markov sources, 
IEEE Transactions on Information Theory, 50(5):917–921. 

[19] Nielsen, Frank(2021): On the Kullback-Leibler divergence between discrete normal distributions, Journal of the Indian 

Institute of Science,arXiv preprint arXiv:2109.14920. 

[20] Kullback, Solomon(1997):Information theory and statistics, Courier Corporation. 

[21] Hershey,John R and Olsen,Peder A.(2007): Approximating Kullback-Leibler divergence between Gaussian mixture 

models, IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, volume 4, pages IV–317. 

[22] Thomas M Cover and Joy A Thomas(2012): Elements of information theory. John Wiley & Sons. 

[23] Karim T Abou-Moustafa and Frank P Ferrie(2012):A note on metric properties for some divergence measures“ .The 

gaussian case. In Asian Conference on Machine Learning, pages 1–15. PMLR. 

[24] Ali, S. M. and Silvey, S. D. (1966): “A general class of coefàcients of divergence of one distribution from another”.J. Roy. 

Statist. Soc. B, 28(1):131–142. 

[25] Csiszar, I (1967): Information-type measures of difference of probability distributions and indirect observation.”Studia 

Sci. Math. Hungar., 2:299–318. 

[26] J. L. W. V. Jensen. “Sur les functions convex set les ineqalities entre les valeursmoyennes. Act a Mathematical, 30(1):175–

193. 

[27] Litegebe and Satish(2016):Some inequalities in information theory using Tsallis entropy, International Journal of 

Mathematics and Mathematical sciences, Hindawai, pages 1-4, April. 

 

 

 

 

 


