

Wireless Arduino Control via Mobile: Eliminating the Need for a

Dedicated Wireless Communicator, Leveraging Laptop Connectivity

Sumit Chowdhury1

1Student, Department of Electronics & Tele-Communication Engineering, National Institute of Electronics &
Information Technology Agartala, Tripura, India

---***---

Abstract – In this paper we will study how we can establish
wi-fi connectivity with Arduino to control its behavior without
using the dedicated hardware module like (ESP8266, ESP32)
The aim of this project is to create a bridge between the
Arduino and smart phone over wi-fi for triggering the Arduino
pins. The bridge will be the combination of software and
hardware (laptop for this case), the software is a simple
python script acts as a communication bridge between a
mobile device and an Arduino via a laptop, facilitating wireless
control of the Arduino through the mobile device by relaying
commands and responses over a serial connection.

Key Words: Wi-fi, Arduino, Python, Script, Serial
connection

1. INTRODUCTION

also circumvents potential space constraints, making it a
practical and efficient solution for enabling wireless control
in Arduino prototypes. The script's ability to unify software
and hardware components underscores its significance in
simplifying and optimizing the wireless communication
aspect of Arduino projects, particularly in scenarios where a
lightweight and economical solution is desirable.

2. THE PYTHON SCRIPT

The provided Python script orchestrates a comprehensive
communication framework, establishing a bridge between a
mobile device and an Arduino through the intermediary of a
laptop. At its core, the script leverages the `serial` module to
initialize a serial connection with the Arduino, thereby
establishing a conduit for two-way data exchange.
Concurrently, a socket server is instantiated utilizing the
`socket` module, with an assigned IP address and port,
fostering a platform for wireless communication between the
laptop and the mobile device.

The script unfolds within a nested loop structure, with the
outer loop persistently awaiting incoming connections. Upon
connection establishment, the script seamlessly transitions
into an inner loop designed to continuously manage the
exchange of data. Incoming data from the mobile device
undergoes processing within the script before being
dispatched to the Arduino through the established serial
connection. The reciprocal journey of data involves the
Arduino generating a response, which is subsequently
transmitted back to the mobile device.

A pivotal feature of the script lies in its adept management of
connections. The inner loop gracefully terminates when no
further data is received, effectively signaling the completion
of a data exchange cycle. Subsequently, the connection is
closed, and the outer loop recommences its vigilant stance,
anticipating new incoming connections.

In essence, this script embodies a sophisticated yet accessible
framework, enabling seamless and wireless control of the
Arduino from a mobile device through the intermediation of a
laptop. The convergence of serial communication with the
Arduino and socket networking within a Python environment
underscores the script's capacity to harmonize hardware

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

p-ISSN: 2395-0072 Volume: 11 Issue: 02 | Feb 2024 www.irjet.net

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 48

The Arduino Uno, built around the ATmega328P
microcontroller, is a widely adopted open-source platform
recognized for its simplicity, versatility, and robustness.
With an accessible user interface provided by the Arduino
IDE and a rich set of I/O pins, it serves as a foundational tool
for prototyping and developing diverse embedded systems
and IoT applications. Its popularity stems from its ease of
use, making it a cornerstone in microcontroller-based
development for both educational and professional
purposes.

The ESP8266 was introduced in 2014, and the ESP32
followed later in 2016. Despite their advanced features,
these modules may have cost disadvantages and be
unsuitable for simple prototypes due to additional expenses
and space requirements. However, these challenges can be
addressed by utilizing software-based wireless control,
offering a cost-effective and space-efficient alternative for
basic Arduino projects.

Now in order to implement software based wireless control
we used a python script which will plays a pivotal role in
implementing a software-based wireless control system for
Arduino projects. Rather than relying on dedicated wireless
hardware modules such as the ESP8266 or ESP32, the script
leverages the laptop's connectivity to establish a
communication link with a mobile device. Operating as a
bridge, the script facilitates the seamless exchange of
commands and responses between the mobile device and

the Arduino through a serial connection. This approach not
only reduces costs associated with additional hardware but

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

p-ISSN: 2395-0072 Volume: 11 Issue: 02 | Feb 2024 www.irjet.net

interactions and networking functionalities, thereby
encapsulating a versatile and integrative solution.

Figure 1: Python Script Overview

2.1 Serial and Socket modules

In the presented Python script, the `serial` module is utilized
to establish a serial connection with an Arduino
microcontroller, enabling bidirectional communication. This
connection is essential for transmitting data between the
Python script and the Arduino. The code specifies the COM
port (`COM3`) and sets a baud rate (`9600`) to determine the
speed of data exchange.

Concurrently, the `socket` module is employed to create a
socket server, establishing a network communication
channel for wireless interaction. The server is bound to a
specific IP address (`192.168.1.4`) and port (`8080`),
facilitating communication with a mobile device. The server
is configured to listen for incoming connections with a queue
size of 5.

The primary server loop continuously accepts connections,
and upon connection establishment, an inner loop manages
the reception of data from the mobile device. This data is
then processed and sent to the Arduino through the serial
connection. The Arduino's response is subsequently
transmitted back to the mobile device over the established
socket connection. This orchestration of the `serial` and
`socket` modules forms the foundation for wireless control of
the Arduino via a laptop, providing a seamless bridge
between the mobile device and the microcontroller.

2.2 Display of the received data

The Python script creates a connection between a laptop, a
mobile device, and an Arduino. As data flows in from the
mobile device, the script displays it on the command prompt
screen, making it easy to see what the mobile device is
sending. Simultaneously, the script communicates this data

to the Arduino and shows the Arduino's response on the
screen. This real-time display helps monitor the wireless
communication, aiding in understanding and debugging the
process.

Figure 2: Displaying of Data getting received (1-0-1010101).

Figure 3: Sending data (1) from mobile through [Simple
TCP Socket tester App] over wifi.

Figure 4: Sending data (0) from mobile through [Simple
TCP Socket tester App] over wifi.

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 49

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

p-ISSN: 2395-0072 Volume: 11 Issue: 02 | Feb 2024 www.irjet.net

3. INTERFACING ARDUINO WITH MOBILE

Here in this section, we will demonstrate the setup of
Arduino with mobile via laptop we consider connecting
Arduino with a mobile device to control a LED on pin 7
introduces a practical and hands-on dimension to the
interface. This setup allows users to remotely turn the LED on
or off using their mobile device, providing a tangible example
of the wireless control capability.

By leveraging the Arduino and mobile interface, individuals
can manipulate the LED state through a user-friendly mobile
application or a simple communication protocol. This
interaction not only showcases the immediate control of a
physical device but also serves as a foundational step for
more complex projects. The blend of Arduino's hardware
capabilities and mobile device interactivity empowers users
to extend control beyond traditional physical interfaces,
offering a glimpse into the exciting possibilities of combining
microcontrollers with mobile technology.

3.1 Connection of Arduino with Laptop

Connecting an Arduino to a laptop via USB is a
straightforward process. Using a USB cable, we physically
link the Arduino board to one of the laptop's USB ports. This
establishes a direct communication channel between the two
devices, enabling the laptop to send and receive data to and
from the Arduino.

Once connected, the laptop recognizes the Arduino as a USB
device, and we can program the Arduino, upload code, and
even communicate with it using the Arduino IDE or other
programming environments. The USB connection serves as
both a power source for the Arduino and a data link,
facilitating seamless interaction between the laptop and the
microcontroller for various projects and programming tasks.

Figure 6: Setting up Arduino and connecting it with laptop
via USB.

3.2 Setting up the Arduino IDE

Figure 7: Overview of Arduino code in IDE

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 50

Figure 5: Sending data (1010101) from mobile

through [Simple TCP Socket tester App] over wifi.

The Arduino IDE is a user-friendly software tool for
programming Arduino microcontrollers. It includes a code
editor, compiler, and uploader, simplifying the process of
writing and uploading code to Arduino boards. The IDE
supports C and C++ languages, and its features like the Serial
Monitor and Library Manager enhance the development
experience. Its simplicity makes it accessible for beginners,
while its versatility caters to experienced developers for
prototyping various electronic projects.

This Arduino code enables wireless control of an LED
connected to pin 7. It utilizes serial communication to
receive commands. When '1' is received, the LED turns on,
and a corresponding message is sent. Conversely, '0' turns
off the LED, accompanied by a confirmation message. This
simple yet effective code forms the basis for wirelessly
managing the LED, providing a concise solution for remote
control applications.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

p-ISSN: 2395-0072 Volume: 11 Issue: 02 | Feb 2024 www.irjet.net

3.3 Controlling Arduino though mobile APP

Controlling the Arduino with mobile devices involves using
wi-fi and TCP Tester app. For this case we will consider a
LED connected to the Digital pin 7 of Arduino and we will
trigger this using the TCP Tester App wirelessly.
Here, the server is configured to listen on port 8080 for
incoming TCP connections. The choice of port 8080 is a
common practice for custom or alternative web services. In
this context, it serves as the communication gateway
between the Python script and any connecting clients. The
server continuously listens for incoming data on this specific
port, and upon establishing a connection, it processes the
data, communicates with an Arduino microcontroller via a
serial connection, and sends back responses. Port 8080 acts
as the designated channel through which the server interacts
with external clients, facilitating the exchange of information
and control commands in the project. This specific port
assignment aligns with conventions for web services and
ensures a standardized point of access for communication
between devices within the local network.

Integrating a simple TCP socket app with an Arduino for LED
control involves enhancing the Python script to interpret
commands sent from the client. The client, represented by
the TCP socket app, can be designed with a straightforward
interface allowing users to send commands like '0' to turn
the LED off and '1' to turn it on. Upon receiving these
commands, the Python script on the server side processes
the data within its continuous loop. Depending on whether
'0' or '1' is received, the script triggers the corresponding
action to turn the LED off or on, respectively. This
integration establishes a seamless communication channel
between the app and the Arduino, enabling users to
wirelessly control the LED by sending commands through
the TCP socket connection. It provides a tangible example of
how simple user inputs from the app can translate into
physical actions on the Arduino-controlled hardware.

Figure 8: Sending statement 1 to turn on the LED at pin 7.

As it received statement 1 from the mobile app (simple
TCP socket tester) the LED is ON as shown in the figure 9.

Also figure 8 shows the response of Arduino displaying
LED ON state in the red highlighted box.

Figure 10: Sending statement 0 to turn off the led at pin 7

Similarly, as it received statement 0 from the mobile app
(simple TCP socket tester) the LED is OFF as shown in the
figure 11.

Also figure 10 shows the response of Arduino displaying
LED OFF state in the red highlighted box.

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 51

Figure 9: LED is turned ON upon receiving statement 1
from mobile APP.

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

p-ISSN: 2395-0072 Volume: 11 Issue: 02 | Feb 2024 www.irjet.net

Figure 11: LED is turned OFF upon receiving statement 0
from mobile APP

4. CONCLUSIONS

In conclusion, the project "Wireless Arduino Control via
Mobile" presents a streamlined and cost-effective IoT
solution by utilizing laptop connectivity. By eliminating the
need for a dedicated wireless communicator, the project
showcases a practical approach to wireless Arduino control.
The integration of a simple TCP socket app facilitates
seamless communication, making it a versatile and
accessible solution for various IoT applications. This project
not only demonstrates the efficiency of leveraging existing
resources but also underscores the potential for widespread
adoption of such solutions in the evolving landscape of IoT

implementations. As of this paper we have tested the project
with led but we can also extend this and it can be used to
trigger various devices like relay modules , actuators and
various devices as per the requirements.

REFERENCES

[1] Exploring Arduino: Tools and Techniques for
Engineering Wizardry Published by John Wiley & Sons,
Inc. 10475 Crosspoint Boulevard Indiananolis. IN
46956|.

[2] Programming IoT Projects with ESP32 and ESP8266" by
Neil Kolban.

[3] Make: Getting Started WithArduino - The Open
SourceElectronics PrototypingPlatform Massimo
Banziand Michael ShilohShroff/Maker Media; Third
edition (27December 2014).

[4] K Building Smart Homes with Raspberry Pi Zero,
ESP8266, and Arduino" by Marco Schwartz.

BIOGRAPHIES

Sumit Chowdhury is a student of
National Institute of Electronics &
Information Technology Agartala,
Tripura, India. Currently he is
pursuing final year UG Diploma in
Electronics & Tele-communication
Engineering Department. He’s
Research Interests are Electrical
circuit Design, Embedded System
Design & Optimization and
Electronic Device (study).

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 52

