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ABSTRACT 

Artificial intelligence (AI) techniques such as machine learning and deep learning are transforming IT operations 
while enhancing entire stack observability. AI delivers additional capabilities such as automated anomaly detection, 
predictive analytics, intelligent alerting, and more to improve monitoring. The article looks at how AI is improving 
important features of full-stack observability. 
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I. INTRODUCTION 

Observability is the ability to measure and understand a system's internal state using exterior outputs. Robust 
observability is essential for managing the complexity of today's IT settings. As systems grow in size and complexity, 
manual approaches fail. Teams become overloaded by billions of monitoring data points spread across thousands of 
servers and struggle to keep up. Despite enormous investments in monitoring techniques, outages can persist hours 
or even days. The high volume of notifications generated by legacy threshold-based alerting systems causes alert 
fatigue. Traditional methods for identifying root causes across interconnected microservices are time-consuming and 
slow. 
 

 
 

Figure 1: A picture depicting the Impact of AI 
 
Artificial intelligence (AI) is the solution to these challenges. Modern AI capabilities such as machine learning, neural 
networks, and deep learning are ideal for IT operations (AIOps) application cases. AI  improves complete stack 
observability by automatically learning patterns in big datasets, detecting abnormalities, and codifying tricky 
troubleshooting methods. Instead of simply collecting, displaying, and alerting on time series metrics, current 
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observability uses AI to transform raw monitoring data into valuable insights. This allows for intelligent anomaly 
detection, improved forecasting, automated remediation, and other capabilities. 
 
The article investigates how artificial intelligence (AI) is improving important components of whole-stack 
observability such as automated anomaly detection, predictive analytics, root cause analysis, user experience 
monitoring, real-time processing, intelligent alerting, self-healing systems, optimization, and security. Real-world 
examples and results demonstrate a strong need for AI to manage IT complexity. 
 

II. AUTOMATED ANOMALY DETECTION 

Anomaly detection is the process of discovering events or metric values that differ from expected patterns. This could 
indicate emerging performance issues, network intrusions, fraud attempts, and so on. Anomalies are the earliest 
possible symptoms of issues. The dynamic variation of modern systems, along with complex multipart correlations 
between indicators, makes detection using traditional threshold-based monitoring difficult. 
 
"Recent benchmark comparisons specified in below table 1 reveal the significant limitations in traditional rule-based 
systems when it comes to detecting anomalies." 
 

Metric Rule-based AI-based Description 

Detection 
Accuracy 

83% 99.7% Percentage of true anomalies that are 
correctly reported 

False Positive 
Rate 

8.3% 0.05% Percentage of incorrectly triggered false 
anomalies 

Detection Latency 8 mins 32 secs Delay between system change and anomaly 
alert 

Anomalies 
Detected 

68,200 102,490 Total anomalies identified in analysis period 

Operator Effort 720 hrs/month 160 hrs/month Monthly human hours spent on validation 
tasks 

Cost per Anomaly $8,372 $1,210 The cost to the business of each anomaly that 
goes unnoticed and causes an incident 

 
The benchmark quantifications reveal that traditional systems have serious flaws in terms of accuracy, 
responsiveness, and scalability measures for effectively detecting abnormalities [1]. On the other hand, AI-driven 
solutions on highly multivariate metrics generate over 50% higher detection rates at 4X reduced latency [2]. 
 
Hundreds of charts from domains such as hosts, containers, networks, and user experience must be manually 
interpreted, which is an unfeasible effort given the magnitude and complexity. Static thresholds suffer from alert 
fatigue as a result of the high number of messages sent, even for normal ecological variability. 
 
Modern AI anomaly detection is quite different, relying on techniques like exclusion forests [1], PCA [2], and 
autoencoders [3] to automatically learn the normal multivariate metric distribution throughout the entire stack. 
Minor deviations are discovered early and identified as anomalies before they grow. DigitalOcean, a cloud provider, 
revealed reducing anomaly detection time from hours to one minute while increasing accuracy from 60% to 99% with 
AI [4]. Automated anomaly detection can identify faults 90% faster [5], allowing for speedier repair. AI finds 50% 
more abnormalities with 99% accuracy than conventional rule-based systems, which are vulnerable to false positives 
[6]. As a result, anomaly detection dramatically improves the visibility of early warning indications across systems. 
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III. PREDICTIVE ANALYTICS 

Anomaly detection is used to identify emerging issues whereas predictive analytics is used to estimate future metric 
values. This forecasting offers significant situational awareness for capacity planning, traffic optimization, and other 
purposes.  
However, traditional time series forecasting methods such as ARIMA encounter difficulties when dealing with various 
seasonal patterns and complex residual patterns that are present in dynamic serverless setups. 
 
A comparative evaluation finds that traditional procedures are substantially less accurate and responsive, making 
them unsuitable for modern complexities (Figure 2). The clustered column analysis assesses capability limitations in 
three key areas: overall precision, rectifying for cyclical seasonal impacts, and adapting to nonlinear interactions 
between variables. Advanced deep learning architectures outperform traditional ones by efficiently extracting 
complicated latent patterns and interdependencies. Traditional tools lag behind artificial intelligence when it comes to 
cloud-based workloads, which create compounding variations. 
 

 
 

Figure 2: Predictive Capability Comparison of Forecasting Methods 
 
A brief description for each predictive analytics methodology: 
ARIMA: The auto-regressive model uses historical values to forecast future time series points.  
Exponential Smoothing: Provides historical data weights that are exponentially lower for projections based on older 
and more recent data.  
LSTM Neural Network: A deep learning model for improved sequence forecasting that uses unique memory cells to 
retain long-term temporal contexts.  
Recurrent Neural Network (RNN): Feedforward deep neural network architecture with cyclic connections enables 
context persistence and order-sensitive prediction over time steps. 
  
Artificial intelligence advancements in recurrent neural networks (RNNs) and long short-term memory (LSTM) neural 
networks have shown great efficiency in solving complex forecasting issues including multiple variables and non-
linear patterns, which are often encountered in cloud native workloads [3]. 
 
The predictive capabilities of AI enable proactive resolution of issues before they escalate into outages. Uber employs 
gradient enhanced tree-based forecasting to anticipate ride demand during significant events [7]. This enables the 
efficient distribution of drivers in advance. Using AI, the prediction of future load and capacity needs has shown an 
accuracy of up to 93%, even for challenging measures such as daily website traffic with significant fluctuations [8]. 
Through proactive planning and optimization, difficulties can be completely avoided by forecasting future system, 
traffic, business, and usage metrics. AI is significantly enhancing the complexity of predictive analytics for cloud-
native full-stack observability. 
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IV. ROOT CAUSE ANALYSIS 

When anomalies or events occur, quickly determining the root cause is essential for recovery and learning. However, 
due to current systems' interconnected microservices architecture, even simple user-facing faults can include dozens 
of components. Manually tracing through topology and event data to determine root cause is simply not scalable. 
 
Determining the causes of anomalies is essential for modern businesses, but it is also quite difficult. The comparison 
study in below table 2 shows how the deficiencies of traditional techniques deteriorate in complex cloud 
infrastructure topologies: 
 

Method Accuracy Attribution Rate Alert Noise 
Reduction 

Mean Time to 
Resolution 

Manual 
Troubleshooting 

63% 42% 11% 4.2 hours 

Rule-based 
Correlation 

74% 51% 23% 3.3 hours 

AI Causality 
Mapping 

92% 81% 62% 1.4 hours 

 
A brief description of various approaches taken to determine the root cause behind anomalies: 
 
Manual Troubleshooting: Response engineers are conducting manual investigations by studying logs and topologies 
in order to determine the origins of the issue. 
Rule-based Correlation: Programmatic correlation rule engines use auto-tagging of related events and metrics to 
infer causal relationships between anomalies. 
AI Causality Mapping: Using artificial intelligence techniques that effectively map multidimensional relationships in 
order to identify the causes of fundamental failures in complex infrastructure. 
 
Outages that last hours or days can occur despite significant resources spent on firefighting rather than proactively 
optimizing. 
 
AI has also become crucial for autonomously exploring cross-domain topology, metrics, log, and event data to identify 
the root cause of performance issues in cloud native ecosystems. Algorithms codify effective practices for 
troubleshooting that were previously only known to human responders. Linked temporal and topological studies use 
pattern mining [9], mutation testing [10], and counterfactual evaluation [11] to determine causality between 
occurrences across domains. For example, a regression in API latency may be traced back to a configuration change 
introduced in a downstream cache layer minutes earlier and identified as the primary cause. This eliminates the need 
for time-consuming manual event inquiry and significantly reduces the average resolution time. Leading companies 
that use AIOps have experienced 30-60% faster root cause identification [12]. AI for observability thus gives essential 
contextual information. 
 

V. ENHANCED USER EXPERIENCE MONITORING 

While backend metrics provide vital system visibility, the client experience should be the primary guiding principle. 
However, directly quantifying how real users interact with software creates monitoring issues. Passive techniques 
that rely on infrequent feedback fail to identify issues until they have a large impact. Legacy synthetic monitoring 
solutions that rely on scripted interactions fall short of accurately representing the variety of real-world user journeys 
and device usage. This creates blind spots in understanding genuine production experiences. 
 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 11 Issue: 02 | Feb 2024              www.irjet.net                                                                         p-ISSN: 2395-0072 

  

© 2024, IRJET       |       Impact Factor value: 8.226       |       ISO 9001:2008 Certified Journal       |     Page 491 
 

Breakthrough AI innovations are solving these issues by automatically crawling, replaying, and analyzing real session 
recordings to extract important user flows. Aggregate analytics display usability difficulties, feature adoption, and 
optimization opportunities that are not obvious with typical web page and synthetic monitoring [13]. Platforms such 
as Testim.io, Mabl, and others now provide AI-powered autonomous testing that responds to changes in application 
content and behavior over time. By constantly emulating and learning from real users at scale, AI allows next-
generation experience monitoring, providing unique insight into how systems offer value to customers [14]. This 
shows a significant increase in observability, from technical measures to business impact. 
 

VI. REAL-TIME DATA PROCESSING 

The huge volume of monitoring data generated in today's IT settings overwhelms traditional analytics platforms 
constituted for simpler workloads. However, in order to support real-time anomaly detection, predictive analytics, 
and other approaches required for strong observability, complicated analysis must run across streaming data at 
tremendous volume and scale. 
 
The 3D chart below contrasts legacy reporting tools, Apache Spark, and AWS Lambda-centric solutions based on four 
critical dimensions: volume scalability, algorithmic support, responsiveness, and accuracy—all of which are required 
for real-time observability. Legacy technologies have demonstrable constraints on time-critical analytics due to batch-
centric design limitations. Stream-optimized architectures, on the other hand, significantly increase capabilities across 
the indexed categories, allowing for advanced decisioning while keeping up with soaring data streams thanks to AI 
acceleration. 
 

 
 

Figure 3: Streaming Analytics Platform against key dimensions 
 
A brief description of each real-time analytics platform. 
Legacy Reporting Tools: Conventional business intelligence tools for creating reports and dashboards from 
operational data sources. 
Apache Spark Streaming: Distributed open-source platform that enables scalable streaming data pipelines for 
AI/ML model development and deployment. 
AWS Lambda based: Serverless cloud architecture built around Lambda functions enables event-driven data analysis 
execution in containers by abstracting infrastructure. 
 
Modern distributed data stacks developed for this paradigm, such as Apache Kafka [15], Spark [16], and Flink [17], 
use AI accelerators like Tensorflow, PyTorch, and MXNet to perform complex algorithms in real time on telemetry 
streams across thousands of servers [18]. Hybrid cloud services such as AWS Lambda and Azure Stream Analytics 
increase access to massively parallel stream processing. The result is continuous large-scale machine learning 
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pipelines that transform raw metrics into operational insights in seconds, enabling true real-time full stack 
observability. 
 
VII. INTELLIGENT ALERTING 

Legacy threshold-based static alerting systems generate an excessive number of notifications as complexity increases. 
This results in 96% of warnings being false positives, and responders experience alert fatigue [19]. Noise blocks out 
important signals. AI-powered alert correlation investigates linked events across domains to eliminate unnecessary 
warnings and automatically prioritize the most urgent issues. Natural language generation provides contextual 
notification messages that guide research and response. Leading organizations reported a 90% reduction in 
notifications and a 10x faster recognition of major situations after deploying AI intelligent alerting [20]. Alert 
storming gives way to smart, actionable, low-volume alerts that cut through the chaos. AI is therefore necessary for 
this aspect of observability in order to maximize responder efficiency. 
 
VIII. SELF-HEALING SYSTEMS 

With IT complexity reaching billions of metrics every second across worldwide infrastructures, manually responding 
to every issue is no longer feasible. Automated remediation and self-healing systems are becoming requirements. 
Rule-based techniques convert well-known troubleshooting techniques into machine-executable logic that 
consistently resolves recurring problems. This allows auto-remediation of reoccurring issues such as scalability 
bottlenecks and connects to anomaly detection and diagnostics. These days, cloud service providers like as Amazon 
AWS [21] give pre-configured AI-powered features including load balancer self-healing, auto-scaling groups, and 
other features.By automating time-consuming but pointless tasks that now consume responder resources that could 
be better employed for higher value projects, using this concept throughout the stack greatly improves efficiency. 
Thus, AI infusion has enabled tier zero autonomous operations. 
 

IX. OPTIMIZATION OF IT OPERATIONS 

Continuously altering architectures and configurations over time to balance cost, performance, scalability, and 
resilience objectives is a major challenge. However, falling short of operational excellence has serious business 
implications. Manual experimentation fails to keep up with ecological change in today's dynamic environments.  
 
The quantifiable business impact deltas, as shown in Figure 4, provide justification for the revolutionary use of AI 
augmentation in operational optimization. This results in amplified improvements in terms of costs, resilience, 
scalability, and service level compared to manual tuning. Intelligent evolutionary computation definitively eliminates 
limitations caused by complicated configurations, resulting in expert-guided enhancements. 
 

 
 

Figure 4: Comparative Analysis of Optimization Outputs across Methods 
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A brief description of each method. 
Manual: Architecture and configuration changes led by the engineering team. 
ML Rules Based: Guided optimization using learned models. 
Evolutionary Algorithms: Adaptive search for the ideal parameters.  
 
AI-powered multi-objective recommendations use intuitive searches to navigate enormous parameter spaces and 
automatically locate Pareto optimal solutions, even for extremely complicated scenarios involving a dozen or more 
nonlinear elements [22]. Evolutionary algorithms eliminate uncertainty by empirically discovering the best cloud 
instance types, container orchestration configurations, dispatch policies, redundancy implementations, and more [23]. 
This results in 10-100x more efficiency gains than fragmented human tuning and provides vital intelligent oversight, 
enforcing best practices at scale. AI optimization automates expert-level systems engineering, alleviating operational 
constraints. 
 

X. SECURITY ENHANCEMENTS 

Finally, AI is transforming IT security, an operational space in which staying ahead of risks is critical. Through user 
behavior analytics, traffic analysis, vulnerability prediction, micro-segmentation, and other techniques, supervised, 
semi-supervised, unsupervised, and reinforcement learning work together to harden cloud native attack surfaces. 
Natural language processing identifies dangers in textual data. Federated learning offers collaborative protection 
while preserving sensitive telemetry data [24]. Edge inference acceleration enables real-time threat detection while 
comfortably processing thousands of queries per second, ensuring a current pace. AI situational awareness increases 
defenses against bad actors across the full stack. This keeps security from becoming an operational bottleneck as 
environments rise. 
 

XI. CONCLUSION 

This study has examined how artificial intelligence (AI) improves full-stack observability in all its forms, from 
predictive capacity planning to automated anomaly detection. Following the implementation of AI-powered systems, 
real-world results verify significant increases in detection accuracy [26], mean time to detection [12], alarm noise 
reduction [20], operational efficiency [4], and business value delivery [27]. After implementing AIOps-focused 
solutions, top businesses have reported 30–60% faster root cause identification, 10x faster recognition of priority 
problems, 90% fewer false positive alerts, and automation rates exceeding 80% for tier 1 fix processes [12]. 
 
By 2025, more than 40% of large businesses worldwide, according to analyst firm Gartner, will have advanced AIOps 
capabilities incorporated into core operations procedures, making them "continuous next practitioners" [28]. IDC 
predicts that global spending on AIOps hardware, software, and services will increase from $9.5 billion in 2021 to $30 
billion by 2025 [29], indicating that there will be significant growth soon. The path of the future is widespread AI 
automation to handle low-level problems, freeing up individuals to concentrate on high-value innovation. For real-
time resilience, edge analytics will decentralize parts of self-healing and monitoring closer to infrastructure sources 
[30]. Promethean AI and other generative AI techniques promise to automate the full pipeline development for 
monitoring, from the description of abnormalities to the auto-remediation processes needed for autonomous 
operations [31]. Architectures for multi-agent systems will enable AI collaboration on a global scale [10]. 
 
In conclusion, artificial intelligence (AI) is the only way to handle the increasing complexity of today's IT 
infrastructures. All signs point to next-generation full-stack observability becoming required over the next ten years 
through careful AI infusion. Leaders embracing this future will reap significant cost savings, increased efficiency, and 
strategic advantages. There has never been a better chance to alter operations and monitoring using AI power. 
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