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Abstract - We present a novel approach for 
hyperspectral image classification, utilizing a dual-branch 
architecture for concurrent spatial and spectral feature 
extraction. Prior to feature extraction, we employ principal 
component analysis (PCA) to reduce data dimensionality, 
with varying degrees of downsampling across the two 
branches. Spatial information is captured through a 
multiregion piecewise Gaussian pyramid downsampling 
method, generating multiscale and multiresolution image 
data. Enhanced ResNet networks are then employed to 
extract spatial features, enabling the extraction of 
contextually specific features inherent to hyperspectral 
images. Meanwhile, spectral information is processed using 
a unique imaging spectral data technique, involving initial 
PCA-based dimensionality reduction followed by expansion 
into N×N images. A dedicated ResNet network, tailored with 
a distinct number of layers, is utilized for spectral feature 
extraction, addressing the challenge of variations in 
spectral data. Subsequently, the spatial and spectral 
features extracted from the dual-branch network are 
integrated and fed into a fully connected network for 
classification, resulting in significantly enhanced 
classification accuracy. Experimental validation on two 
benchmark datasets demonstrates the effectiveness of our 
proposed method, showcasing substantial improvements in 
classifier accuracy compared to existing approaches. 

1. INTRODUCTION 

 
With the continuous advancements in science and 

technology, hyperspectral imaging, also referred to as 
imaging spectroscopy, has experienced rapid progress. 
This technology involves remote sensing satellites 
capturing tens of thousands of narrow spectral bands 
emitted or reflected from a given area. This capability 
enables the acquisition of more detailed spatial and 
spectral information compared totraditional panchromatic 
and multispectral remote sensing images, allowing for 

improved differentiation between various materials. Due 
to its advantages in attribute recognition, hyperspectral 

image (HSI) processing technology has seen significant 
development and widespread application in various 
domains as rural planning, environmental monitoring, 
urban planning, vegetation coverage assessment, mineral 
extraction, national defense infrastructure and precision 
agriculture. 

Consequently,classification techniques in the realm of 
hyperspectral imagery have also advanced rapidly, playing 
a crucial role in remote sensing applications. HSI 
classification, a focal point of recent research, entails 
assigning specific class labels to individual pixels based on 
their spatial and spectral characteristics. However, the 
complexity of HSIs, characterized by numerous spectral 
bands with high correlation information redundancy, 
poses computational challenges. Moreover, distinguishing 
between different materials with similar or identical 
spectra further complicates classification tasks. 

Currently, methods for hyperspectral image (HSI) 
classification can be broadly categorized into those 
leveraging spectral information alone and those 
incorporating joint spatial–spectral features. Spectral 
information-based classification methods rely solely on the 
spectral dimension of HSIs, disregarding spatial pixel 
correlations. Examples include support vector machine, 
random forest, sparse representation, and similar 
techniques. In contrast, approaches integrating joint 
spatial–spectral features have shown improved 
classification performance, utilizing methods such as edge- 
preserving filtering, multiscale adaptive strategies, low- 
rank Gabor filtering, and hierarchical guided filtering with 
nearest-neighbor regularization subspaces. However, these 
methods heavily rely on manually crafted features, leading 
to limited classification performance as they may not fully 
capture the complex content within HSIs. In comparison to 
traditional shallow methods, deep learning techniques offer 
enhanced representation and generalization capabilities, 
capable of extracting deeper image features and achieving 
more discriminative representations. Consequently, deep 
learning methods have gained significant traction in HSI 
classification, including convolutional neural networks 
(CNNs), two-channel networks, spectral spatial attention 
networks,  and  related  approaches.  Despite  their 
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effectiveness, CNN-based models often suffer from 
redundancy in spatial dimension information, affecting 
performance. To address this, some researchers have 
proposed innovative solutions like the octave convolution 
network for preprocessing hyperspectral data, followed by 
spectral and spatial attention networks for feature 
extraction, fusion, and softmax classification. Additionally, 
efforts such as the spectral–spatial unified network (SSUN) 
combine deep and shallow convolutional layers to mitigate 
information loss, while techniques like the deformable HSI 
classification network (DHCNet) introduce adaptively 
adjustable deformable convolution sampling positions. 
Other methodologies like the contextual deep CNN (CD- 
CNN) optimize local contextual information exploration, 
and methods like R-PCA and CNN-PPF incorporate CNNs for 
spectral and spatial information encoding and classification 
tasks. Meanwhile, approaches such as multiscale CNN (MS- 
CNN) and those employing support vector machines (SVMs) 
and random feature selection (RFS) aim to synergize high- 
dimensional data and multimodal classes. These methods 
encompass both unsupervised and supervised learning 
paradigms, with deep neural networks witnessing rapid 
advancements, especially in feature extraction and 
classification tasks within HSI analysis. 

Following the introduction of convolutional neural 
networks (CNNs), neural networks have experienced 
remarkable progress in image processing, giving rise to a 
multitude of CNN-based image classification models. This 
surge in deep learning has significantly advanced image 
classification capabilities and has inspired the exploration 
of intelligent and efficient hyperspectral classification 
methods discussed in this paper. Unlike traditional machine 
learning algorithms, which typically focus on learning low- 
level features such as object outlines or textures, deep 
learning excels in capturing complex, high-dimensional 
features essential for hyperspectral classification tasks. As 
such, deep learning emerges as the optimal choice for 
addressing the intricate demands of hyperspectral 
classification, where precise recognition of numerous 
features is paramount. Deep learning not only encompasses 
the learning of low-level features but also extends to 
capturing subtle nuances of target objects, presenting a 
robust foundation for hyperspectral classification tasks. 
Moreover, hyperspectral imaging (HSI) data exhibit high- 
dimensional spectral characteristics with distinct 
waveband responses. Leveraging the residual network 
architecture, which effectively addresses the challenge of 
network degradation as networks deepen, allows for the 
extraction of profound features. This makes residual 
networks  particularly  well-suited  for  capturing  the 

 

In recent years, the widespread adoption of deep 
learning methods,  facilitated by rapid advancements in 
hardware, has revolutionized various fields. 

intricate features present across various hyperspectral

bands. Additionally, the residual network's inherent 
capacity to handle increasingly complex data 
representations enables it to effectively navigate the rich 
and diverse spectral information inherent in HSI datasets. 
This capability enhances the model's ability to discern 
subtle differences among spectral signatures, consequently 
bolstering the accuracy and reliability of hyperspectral 
classification outcomes.In addition to its prowess in 
capturing subtle features of target objects, deep learning's 
application in hyperspectral classification benefits from the 
unique characteristics of spectral data within 
hyperspectral images (HSIs). These datasets are 
distinguished by their high dimensionality, often 
comprising hundreds of narrow spectral bands, each 
exhibiting distinct waveband response features. The 
residual network architecture, known for its ability to 
mitigate the challenge of degradation in deep networks, 
proves highly advantageous in this context. By leveraging 
residual connections, which enable the direct propagation 
of information across network layers, residual networks 
excel in extracting deep-level features from hyperspectral 
bands. This capability is particularly valuable in 
hyperspectral analysis, where discerning nuanced 
variations in spectral signatures is crucial for accurate 
classification. Furthermore, the adaptability of residual 
networks to intricate data representations facilitates the 
exploration of complex hyperspectral datasets, 
empowering the model to uncover subtle patterns and 
distinctions across spectral bands. As a result, the 
integration of deep learning techniques, especially through 
architectures like residual networks, offers a promising 
avenue for enhancing the precision and robustness of 
hyperspectral classification methodologies.The extensive 
array of spectral bands, characterized by their narrowness 
and multitude, poses challenges in hyperspectral imaging 
(HSI). 

Fig. 1. Diverse regions of a pixel of interest. (a) Global 
region. (b) Upper-left region. (c) Upper-right region. (d) 

Bottom-left region. (e) Bottom-right region. 
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These challenges include the high correlation among 
adjacent bands, resulting in information redundancy, as 
well as the substantial volume of HSI data necessitating 
computationally intensive operations. Employing data 
dimensionality reduction techniques becomes imperative 
in mitigating these challenges. Notably, such techniques 
not only alleviate data redundancy but also curtail the 
computational burden associated with processing large- 
scaleHSIdatasets. 

 

Fig. 3.  Overall flowchart of the proposed DRB-ResNet. 

 

 

Additionally, hyperspectral imaging (HSI) presents 
numerous challenging issues, including band redundancy 
and significant noise interference. To address these 
challenges, various dimensionality reduction techniques 
have been developed to extract pertinent information from 
images while simultaneously reducing computational 
complexity. These methods encompass linear principle 
analysis, probabilistic principal component analysis 
(PPCA), kernel principal component analysis (KPCA),and 
neighbor-independent component analysis (ICA). In this 
study, we opted for the PCA method, a widely utilized 
dimensionality reduction approach. PCA transforms a set 
of potentially correlated variables into a set of linearly 
uncorrelated variables through orthogonal transformation, 
with the resulting variables termed principal components. 
Notably, PCA stands out as one of the simplest and most 
efficient dimensionality reduction methods available. 
Hence, this paper employs the PCA algorithm to achieve 
dimensionality reduction in HSI processing. 

Furthermore, there exists a significant correlation 
between adjacent pixels in an image, encompassing both 
texture and grayscale levels. Objects with small sizes or 
low contrasts often necessitate higher resolutions for 
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Fig. 2.  Gaussian pyramid structure. 
 

Fig. 4. DRB-ResNet structure and residual block 

structure. (a) DRB-ResNet(11). (b) DRB-Resnet (7). (c) 

Residual block 1. (d) Residual block 2. 
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accurate observation, whereas larger objects or those 
with high contrasts may suffice with lower resolutions. 
Such variations are commonplace in hyperspectral 
images (HSIs), necessitating multiresolution processing 
strategies. Gaussian pyramids, a type of multiscale 
representation in images, offer an effective and 
intuitively simple framework for analyzing images across 
multiple resolutions. Initially employed in machine 
vision and image compression, an image pyramid 
comprises a series of images arranged in a hierarchical 
structure with progressively decreasing resolutions, all 
derived from the same original image collection. This 
hierarchical structure is achieved through iterative 
downsampling until a predefined termination condition 
is met. At the base of the pyramid lies a high-resolution 
representation of the image, while the apex corresponds 
to a low-resolution approximation. Analogously, each 
layer of the pyramid can be likened to a tier, with a 
higher number of layers yielding smaller images and 
lower resolutions. Gaussian pyramids facilitate the 
scaling of images to obtain multiscale representations, 
enabling subsequent multiscale analyses.To address the 
high-dimensional nature of features in hyperspectral 
images (HSIs), we can employ the PCA technique to 
reduce the dimensionality of the data before engaging 
Gaussian pyramids for multiscale processing of HSI data. 

 

 

Fig. 5. For experimental datasets. (a) False-color image 

of the Houston data. (b) Ground truth of the Houston data. 

We employ Gaussian pyramids and multiregion pixel 
segmentation to preprocess the original data. Initially, a small 
rectangular area traverses the original image, ensuring that 
points for classification reside at the center of each rectangular 

2. METHODOLOGY 
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area.  By  moving  the  rectangulararea  to  positionthe  points  at  the 
corners,  five  rectangular  images  are  generated.  Subsequently, 
Gaussian  pyramid  processing  is  applied  to  the  segmented 
regions to yield multiscale image data across different regions. For 
spectral  data,  we  utilize  the  PCA  algorithm  to  reduce  data 
dimensionality to a predefined level before expanding it intoa 2- D 
image  format.  Notably,  we  introduce  spectral  imaging 
methodology  for  the  first  time  to  represent  spectral  data  as 
image  data,  followed  by  spectral  feature  extraction  via 
convolutional  networks.  Moreover,  employing  multiregion 
segmentation and Gaussian pyramids allows for the extraction of 
spatial information from pixels, facilitating the fusion of local and 
global  spatial  features  to  capture  more  nuanced  spatial 
characteristics.  The  classification  of  HSIs  using  this  approach 
demonstrates  outstanding  performance.  The  primary 
contributions of this studycan besummarizedas follows: Firstly, we 
partition the data into multiple regions to capture diverse spatial 
information corresponding to the same pixel across these regions. 
Subsequently,we apply the Gaussian pyramid downsampling
 method  to  the  segmented  data,  enabling  the  extraction  of 
multiscale data and spatial  information across different scales. 
For  spectral  data  processing,  we  introduce  a  novel  spectral 
imaging technique, transforming spectral data into image format, 
and  utilize  a  feature  extraction  network  to  extract  intricate 
spectral  details  effectively.  Secondly,  we  introduce  a 
dual-branch  feature  extraction  network  architecture, 
leveraging  two  separate  branches  to  extract  spectral  and 
spatial  features,  respectively.  This  dual-branch  approach 
enhances the classification accuracyand robustness of the network 
by enabling the extraction of  distinct  features through parallel 
pathways.The above part is combined with the extracted features 
of the below part and made as the fully connected layer and 
give n to the classifier to enhance the classification accuracy of 
theclassifier. 

Our  hyperspectral  image  (HSI)  classification  method 
comprises  two  key  components.  The  first  component 
employs the PCA algorithm to reduce the dimensionality of 
the original data and subsequently divides the resulting 
data into five regions. Pixels designated for classification 
are  positioned  at  the  center  of  rectangular  areas,  while 
additional pixels for classification are placed at the four 
corners  of  each  rectangular  area  upon  movement. 
Gaussian pyramid downsampling is then applied to the 
resulting  image  data  from  the  five  rectangular  areas, 
yielding  multiscale  and  multiresolution  image  data.The 
second  component  begins  with  PCA  dimensionality 
reduction on the original data. Subsequently, spectral data 
for  each  pixel  slated  for  classification  is  extracted  and 
expanded into an image format. Distinct ResNet networks
 with  varying  structures  are utilized to  extract  spatial 
and spectral features, respectively. Finally, the spatial and
 spectral feature extraction networks are combined, and 
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We employ the PCA algorithm to reduce the dimensionality 
of hyperspectral image (HSI) data. PCA extracts the 
primary feature components from the data while 
discarding redundant information, thereby reducing data 
dimensionality. This process is essential for mitigating the 
curse of dimensionality and enhancing data density. 

 

Fig. 6. For experimental datasets. (a) False-color image 
of the University of Pavia data. (b) Ground truth of the 

University of Pavia data. 

Particularly in the presence of noise,PCA identifies 
eigenvectors associated with smallest eigenvalues which 
often corresponds to noise components.By discarding 
these eigen vectors,PCA effectively reduces the noise levels 
in the data.Furthermore,PCA not only compress the data 
into lower dimensions but also ensures that the features of 
the data,post dimensionalityreduction mutually 
independent.Dimensionality reduction serves to preserve 
the most essential features within high-dimensional data 
while filtering out noise and irrelevant features, leading to 
enhanced data processing efficiency. In practical 
applications, reducing the dimensionality of data within an 
acceptable range of information loss can significantly 
reduce storage costs and processing time. Following PCA 

dimensionality reduction, each pixel designated for 
classification undergoes segmentation, wherein a small 
area of 11×11 centered around the pixel is extracted. 
Subsequently, these segments are repositioned within a 
square bounding box, ensuring that the pixels to be 
classified occupy the upper-left, upper-right, lower-left, 
and lower-right corners of the box, along with the 
inclusion of the initially extracted global block. This 
approach facilitates the extraction of spatial information 
from hyperspectral imaging (HSI) data.For regional blocks 
in different directions, more detailed spatial relationships 
can be obtained, and even the dissimilarities or similarities 
between different categories shown in the Fig. 1(a) 
indicates the global segmentation area of the pixels to be 
classified, Fig. 1(b) indicates that the pixels to be classified 
are in the upper-left corner of the segmentation area, Fig. 
1(c) indicates that the pixels to be classified are placed in the 
upper-right of the segmentation area corner, Fig. 1(d) 
indicates that the pixels to be classified are placed in the 
lower-left corner, and Fig. 1(e) indicates that the pixels to 
be classified are placed in the lower-right corner of the 
segmentation area. 

 

 

Fig. 7. Classification accuracy (%) of different window 
size. 

 
 

© 2024, IRJET | Impact Factor value: 8.226 | ISO 9001:2008 Certified Journal | Page 779 

the resultant  features  are fed into  a  fully  connected 
network  to  obtain  the  final  classification  result.The 
proposed  DRB-ResNet  model  leverages  the 
aforementioned  five  regions  as  input,  extracting  spatial 
and  spectral  features  via  the  "multiscale"  module 
within  a  meticulously  designed  ResNet  network  and  the 
"spectral  imaging"  module.  This  innovative  approach 
enhances  feature  extraction  capabilities,  ultimately 
improving  classification  accuracy  and  robustness 
Details are described in the following Section II-A–C. 

2.1. Multiscale Feature Extraction of Multiregion
 Gaussian Pyramid. 

Fig. 8. Classification accuracy (%) of three datasets at 
different spectral imaging sizes. 
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By situating the feature extraction network in this 
manner, it can acquire heightened spatial intricacies 
around individual pixels, particularly those residing at 
the interface of two distinct classes. Pixels belonging to 
different categories at these boundaries often exhibit 
high similarity. However, through the implementation of 
multiregion segmentation, disparities between pixels 
within various regions are accentuated, thereby 
facilitating the network's ability to discern differences 
between the two categories. Although multiregion 
segmentation does impose an increased computational 
load, it concurrently enhances classification 
accuracy.Gaussian pyramid decomposition entails 
generating a sequence of images using a low-pass 
sampling filter, resulting in progressively lower sampling 
densities compared to the preceding image. In this 
context, Gaussian filtering and downsampling are 
applied to the data derived from the PCA algorithm to 
diminish dimensionality and segment the initial 
hyperspectral imaging (HSI) data. Initially, the base 
image is convolved with a Gaussian kernel, followed by 
downsampling to produce the subsequent higher-level 
image. Subsequently, this image serves as input for 
further iterations of convolution and downsampling 
operations, yielding successive higher-level images. 

The Guassian pyramid is formed through repeated 
iterations. As shown in the Fig. 2, it is a Gaussian pyramid 
structure.The overall structure of the image is obtained 
by performing the same steps for downsampling to obtain 
the processed image. The same processing is applied to 
the HSI so that the HSI can be analyzed at multiple scales, 
and different spatial features can be available at different 
scales.It classifies with different layers of the ResNet 
Network. Each layer of the pyramid is produced by the 
following formula L1 represents the upper layer that has 
to be generated and Ll-1 is the lower part of the pyramid 
is calculated by the F function to obtain the upper layer 
representation.Iteratively calculate the value of the 
image pixel by the following formula: 

 

The * is the convolution operation. x ∈ {1, 2, 3, ·· ·,X}, 
X is the total amount of layers of the Gaussian pyramid. 
F (b, v) is (2d + 1)×(2d + 1) Gaussian window, which can 
be defined 

 

where Υ is the variance of the Gaussian filter in the 
Gaussian pyramid operation. The Gaussian pyramid is 
formed by stacking one picture of different scales {L1, L2, 
L3, ·· ·, Ll}, which is generated by the above equation. 

Spectral feature changes cannot reflect the similarity 
between features or distinguish the boundaries of features, 
and multiscale feature analysis can effectively solve this 
problem and improve the accuracy of HSI classification. 
The Gaussian pyramid can effectively transform the HSI 
into a multiscale structure, which can extract features at 
multiple scales by stepwise sampling or downsampling. 
We obtain multiscale images by performing Gaussian 
pyramid processing on each segmented area, and then 
arrange the images of the same scale into a new dataset, 
and finally put them into the feature extraction network for 
multiscale feature extraction. 

 

Fig. 9. Classification accuracy (%) of different methods in 
the Houston dataset over different numbers of training 

samples 

may vary. For this kind of problem, this article divides each 
pixel in the dataset into 1×1×L (L represents the number of 
bands)  and  then  performs  the  dimensionality 
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2.2. Spectral Feature Extraction 
 
Each material exhibits distinct spectral characteristics in 
terms of absorption, reflection, and radiation. Objects 
within the same spectral region manifest varying degrees 
of reflection and absorption of radiation spectra, and even 
identical objects exhibit noticeable differences in 
reflection across different spectra. Furthermore, 
environmental conditions such as sunlight angles 
contribute to variations in reflection and absorption 
spectra for the same object at different times and 
locations. During satellite sensor imaging processes, 
practical factors such as uncompensated atmospheric 
effects, sensor errors, and solar zenith angles can induce 
alterations in hyperspectral imaging (HSI) spectra . 
Additionally, biological dynamics represent another 
significant factor. For instance, benthic organisms 
inhabiting underwater environments may display 
differing reflectance spectra in water . Moreover, the 
presence of pests and diseases can also cause distinct 
spectral variations in otherwise similar crops. In these 
cases, even when the sensor is utilized to image 
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reduction. Expand the reduced image into a picture. By 
unfolding it into a picture, discrete spectra of similar crops 
due to anomalies in certain spectral bands can be avoided. 
And by unfolding it into a picture, the network model can 
ignore some features that are unique in the spectrum of 
similar crops owing to spectral anomalies, which can 
improve its robustness and accuracy. Expand it into a 
picture, make each band value the value of a pixel on the 
picture, and then extract features through a feature 
extraction network. Feature extraction in multiple regions 
can reduce the incidence of abnormal spectral segments on 
classification, thereby improving classification accuracy. 

2.3. Proposed Model DRB-ResNet 

This study utilizes a residual network model augmented 
with batch normalization. This technique standardizes 
batch data distribution, averting gradient vanishing and 
expediting calculations. It adjusts activation means 
towards 0 and standard deviations towards 1. The 
formula is as follows: 

 

Among them, Z represents the output after batch 
normaliza- tion, E (Z) and Var (Z) represent the 
expectation and variance of Z, respectively, and γ and β 
are the hyperparameters that need to be learned to get 
the best. For HSI data with different window sizes, DRB-
ResNet networks with different structures are used. 
After multiscale processing of the data in a Gaussian 
pyramid, images of different sizes are generated. In order 
to prevent the use of the same network structure, the 
obtained features cannot be changed due to the small 
size of the picture, and different network structures are 
used for pictures of different sizes. For large-sized images, 
a deeper network is used to extract features, while for 
small-sized images, a shallower network is used to 
extract features to prevent the network from overfitting. 

This article mainly uses two networks of different 
depths. The overall network structure is shown in Fig. 3. 
The upper part performs PCA dimensionality reduction 
on selected parts of the original data and then divides the 
data into regions. The pixels that need to be classified are 
placed in the four corners and the center of the selected 
size area, and finally, a multiscale image is obtained 
through Gaussian filtering and downsampling. Images of 
the same size are sequentially arranged into a DRB- 
ResNet network with a specified depth for training, the 
feature extrac- tion data of each region are added, and 
finally, the results are output through the fully connected 
network. This article uses a four-layer Gaussian pyramid 
for multiscale analysis. The first and second layers use a 
deep network, such as Fig. 4(a), the third layer uses a 
shallow network, such as Fig. 4(b), the last layer is 
directly connected to the output because the image size is 
too small. The lower half of the entire network is used to 
extract spectral features. First, the spectral information 
of each pixel to be classified is dimensionally reduced, 
and then expanded into N×N pictures, and then put into 
the deep DRB-ResNet network for feature extraction, and 
finally combined The feature extraction results of the 
upper half and the lower half is used to obtain the final 
classification result using the fully connected network. Fig. 
4(a) and (b) are deep and shallow feature extraction 
networks used to extract features, consisting of two 
residuals in Fig. 4, which are combined from (c) and (d). 
In practical scenarios, orientation-based regions exhibit 
minimal cancellation owing to the existence of positional 
anisotropy properties. Nonetheless, it's evident that 
classification outcomes vary significantly across different 
block types, suggesting diverse contextual distributions 
possess varying generalization capabilities for 
classification tasks. The experimental findings on fusion 
strategies undeniably highlight potential for 
improvement. Thus, the proposed DRB-ResNet model can 
enhance accuracy by providing a more resilient feature 
representation, considering multiple potential 
distributions. 

3. EXPERIMENTAL RESULTS 

In this section, we validate the effectiveness of our 
pro- posed DRB-ResNet on two generic datasets and 
compare it with contemporary state-of-the-art HSI 
classification methods. The experiments in our study 
utilize Python for programming, with network models 
constructed using the PyTorch deep learning framework 
within the Python environment. PyTorch is a widely used 
open-source machine learning library known for its 
flexibility and efficiency in customizing deep learning 
models. 
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Fig. 10. Classification accuracy (%) of three data sets at 
different n_components of PCA. 
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TABLE 1-NUMBER OF TRAINING AND TESTING SAMPLES FOR THE 

HOUSTON DATASET 
 
 
 
 
 
 
 

 
 

 
 
 

 
TABLE 2-NUMBER OF TRAINING AND TESTING SAMPLES FOR THE 

PAVIA DATASET 

 

 

 

 

 

 

 

 

3.1. Datasets 

To validate the effectiveness of our proposed 
method, we verified the classification performance of 
our proposed DRB- RESNET on three generic datasets 
(the Houston dataset, Uni- versity of Pavia dataset, and), 
as shown in Figs. 5 and 6. The pseudocolor maps, label 
maps, and their category representation colors for the 
two datasets. For these two datasets. the Houston 
dataset consists of 349 × 1905 pixels. Houston dataset, 
provided by the 2013 IEEE GRSS Data Fusion 

Competition, was acquired on the University of 
Houston campus and adjacent areas with a compact 
airborne spectral imager (manufactured by ITRE 
Canada). It collects a dataset of 144 spectral channels 
covering 0.364–1.046 μm. For the 15 different classes in 
the Houston dataset, the sample sizes for the training 
and test sets are shown in Table I. 

The second dataset (University of Pavia) was acquired 
by the ROSIS sensor. It has 610×340 pixels and the 
sensor has a total of 115 bands. after processing, the 
University of Pavia dataset contains 103 bands with a 
coverage of 0.43–0.86 μm and a spatial resolution of 1.3 m. 

About 42 76 pixels in the dataset have been labeled and 
divided into nine categories, as shown in Table II. 

 

Fig. 11. Classification maps from the proposed DRB- 
RESNET and the baselines on the Houston Data. (c) SSUN: 

97.21%. (d) DRB-RESNET: 99.34%. 
 

3.2. Learning the Proposed DRB-ResNet 

For the pixels used for training and testing, we take a 
range of rectangular regions around them. The training 
and testing pixels are placed in the center of the rectangle, 
and on this basis, the rectangular area is moved to place 
the training and testing pixels in the four corners of the 
rectangle, to extract the spatial features around the 
pixels, and finally, the multi- region image is put into the 
convolutional layer for feature extraction, and the size 
of the region will affect the final classification 
performance of our proposed DRB-ResNet, so we 
empirically set in this article, we empirically set the 
region size to 11×11, and finally discuss the effect of 
different size rectangles on the performance of DRB- 
ResNet, as shown in Fig.7. 

 

(a) (b) 
 

Fig. 12.Classification maps from the proposed DRB- 
RESNET and the baselines on the University of Pavia Data 

(a)SSUN: 99.45%. and (b)DRB-RESNET: 99.63%. 

In addition, the optimizer in this article uses Adam, 
which combines the updated ideas of adaptive learning 
strategies Ada- grad and Momentum. The Adam algorithm 
is derived from traditional gradient descent. All weights 
are updated at a single learning rate. The rate does not 
change during the training process, and Adam designs 
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independent adaptive learning al- gorithms for different 
parameters by combining the first-order moment 
estimation with the second-order moment estimation of the 
gradient. The author of the Adam algorithm defines it as two 
kinds of gradient descent. An extended collection of 
advantages. In this article, we set the initial learning rate to 
0.001 and different batch sizes. Fig. 7 shows the 
classification performance of the rectangular area under 
different window sizes.That is from 3×3 to 15×15. 

When the window size is 11×11, the performance 
tends to be satisfactory. When the window size is 11×11, 
it is not the best window size for all experimental datasets. 
For example, the red curve indicates that the square area 
11×11 is the best window size of the University of Pavia 
dataset, and the blue curve indicates that the best window 
size of the Houston dataset is 11×11, and When converting 
spectral data into pictures, the best picture size of the 
Houston dataset is 11×11, and the best picture size of the 
University of Pavia dataset is 9×9. The number of bands in 
the two datasets in this article is different, the expansion 
size and the classification effect of different sizes are also 
different. For example, the Pavia dataset can only be 
expanded to 9×9, and the Houston dataset can only be 
expanded to 11×11, as shown in Fig. 8. Therefore, we 
choose a relatively large size (for example, 11×11, while the 
Pavia dataset expands to 9×9) among the allowed 
hardware resources to prevent the waste of hardware 
resources and beyond the scope of hardware use. 

TABLE 3-COMPARISON OF THE CLASSIFICATION ACCURACY(%) 
AMONG THE PROPOSED METHOD AND THE BASELINES USING THE 

HOUSTON DATA 
 

TABLE 4-COMPARISON OF THE CLASSIFICATION ACCURACY(%) 
AMONG THE PROPOSED METHOD AND THE BASELINES USING THE 

UNIVERSITY OF PAVIA DATA  

We tested different initial learning rates on the 
Houston dataset for the trained hyperparametric learning 
rates, as shown in Table X, we can see the performance of 
different initial learn- ing rates for OA, AA, and Kappa 
Coefficient. We can conclude that the size of the initial 
learning rate has quite a big impact on the final results, 
and too large a learning rate will reduce the final 
classification results. In this article, the learning rate is set 
to 0.001 for the best classification performance. 
Therefore, in the subsequent experiments, our proposed 
DRB-ResNet will use 0.001 as learning rate. 

The experimental results of the four methods based on 
the Houston dataset are shown in Fig. 9 The number of 
initial training samples for each class ranges from 50 
to 300, with a pairwise interval of 50. We can get that, 
for all methods compared, the classification accuracy 
increases as the number of training samples increases. 
When the number of training samples is in the range of 
150–300, our method can always maintain the best 
classification performance. 

We conducted experiments on the parameter 
n_components (dimension reduction) of the PCA 
algorithm in three datasets, as shown in Fig. 10, we 
found that as the data dimension increased from 10 to 
20, the data classification accuracy also increased, but 
when the data dimension increased from 20 to 60, 
the data classification accuracy begins to decrease. 
Therefore, when reducing the dimensionality of the 
dataset, set the n_components parameter to 20. 

Tables VII–IX list the overall accuracy (OA), average 
accu- racy (AA), and Kappa coefficients using different 
regions and the proposed fusion strategy. RUR 

represents the region of upper right, RUL represents 
the region of upper left, RBR represents the region of 
bottom right, RBL represents the region of bottom left, 
and RG represents the region of global. The results show 
that due to the existence of positional anisotropy, the 
performance of single-region-based classification is 
very limited, and it is obvious that the classification 
results have great differences in different regions, 
which indicates that various context distribu- tions have 
different generalization capabilities for classification. As 
to which region classification works better, it largely 
depends on the actual distribution of the data, and our 
experimental results using the fusion strategy can 
definitely be improved. Therefore, the proposed DRB- 
ResNet achieves the best accuracy as it has a more 
robust feature representation considering multiple 
possible distributions. 

3.3. Classification performance 

Our proposed DRB-RESNET method is compared with 
cur- rent advanced HSI classification method, such as 
SSUN OA, and AA indicate the classification performance 
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of different methods on several datasets. Among them, 
the “Proposed (NS)” represents that the data without 
spectral imaging is input into a two-branch feature 
extraction network.And the “Proposed” represents that we 
spectral and spatial features.And selection method for 
dataset segmentation,for each category of data we 
randomly select different data for training and remaining 
data for testing.The experimental results we obtained 
show that the classification accuracy based on joint 

TABLE 5-CLASSIFICATION PERFORMANCE OF DIVERSE REGIONS FOR 
THE HOUSTON DATA 

 

l 
 

TABLE 6-CLASSIFICATION PERFORMANCE OF DIVERSE REGIONS 

FOR THE UNIVERSITY OF PAVIA DATA 
 

 
TABLE 7-CLASSIFICATION PERFORMANCE (%) OF DIFFERENT 

INITIAL LEARNING RATE FOR DRB-RESNET ON THE HOUSTON 

DATA 
 

 

And selection method for dataset segmentation,for each 
category of data we randomly select different data for 
training and remaining data for testing.The experimental 
results we obtained show that the classification accuracy 
based on joint spatial and spectral features is higher than 
that using only one of these features,and our proposed 
DRB-Resnet model out performs other classifiers in 
terms of classification accuracy. we can obtain the 
accuracy of our proposed DRB-ResNet as 99.76%, which 
is about 2.13% higher compared to SSUN (97.21%). A 
similar performance also exists for experiments 
conducted on other datasets. The classification 
performance of our proposed method on the University 
of Pavia dataset, Houston, is approximately 2%, 1% 
better than the other classification methods compared to 
the other methods.Figs. 4–5 show the graphs of the 
classification results for each classifier, and the graphs 
show that the classification results are consistent with 
the classification results in Tables IV and V. By the 
presentation of the images, we can visually see that 
compared with SSUN our proposed DRB-ResNet 
classification result graph has significantly fewer 
points of classification errors in many regions, so we 
can conclude that our DRB - ResNet classification 
method performs better than other classification 
methods. 

4. CONCLUSION 

This article proposes a innovative dual-branch network 
utilizing multiscale multiregion Gaussian pyramid and 
spectral information imaging for hyperspectral image 
(HSI) classification. Initially, the image undergoes 
multiregion segmentation, followed by Gaussian 
pyramid processing on the graph to extract features 
across multiple scales. Subsequently, the 
dimensionality of each spectral data type is reduced to 
a predefined level and then expanded into an image. 
This process helps mitigate the influence of anomalous 
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spatial and spectral features is higher than that using only one 
of  these  features,and  our  proposed  DRB-Resnet  model  out 
performs other classifiers in terms of classification accuracy. 

spectral data on classification outcomes. The dual- 
branch network is adept at extracting both spatial and 
spectral information effectively. Experimental findings 
demonstrate superior performance of the proposed 
dual-branch method, leveraging multiscale multiregion
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