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Abstract - Fault diagnosis in complex engineering systems is 
a significant activity that affects operational efficiency, safety, 
and maintenance costs. This paper provides a comprehensive 
review of innovative methodology and techniques for a fault 
diagnosis, with a focus on the application of graph-based 
representations and sophisticated machine learning 
algorithms. The assessment emphasizes the difficulties 
associated with standard data-driven methodologies for 
properly leveraging the correlation and geometric structure 
present in vast amounts of unlabeled industrial data. To 
address these problems, the review investigates novel 
technologies such as hypergraphs for representing equipment 
structure, deep hypergraph autoencoder embedding (DHAEE) 
for defect detection, and multiresolution hypergraph neural 
networks for discovering higher-order correlations in data. 
Furthermore, the study investigates the combination of model-
based and data-driven approaches, as demonstrated by the 
series configuration approach, which combines Bayesian 
Networks with adaptive gas path analysis. While these 
approaches present intriguing opportunities for enhancing 
fault detection accuracy and efficacy, issues like as algorithm 
complexity, data availability, and result interpretability 
remain relevant. The survey results highlight the need of using 
integrated and creative approaches to problem diagnosis, 
which have the potential to improve operational reliability, 
minimize downtime, and optimize maintenance procedures in 
complex engineering systems. 

Key Words:  Graph Convolution Neural network, Knowledge 
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1.INTRODUCTION 

In the landscape of industrial operations, the concept of 
maintenance has undergone a profound evolution. 
Historically, maintenance methods have predominantly 
followed a reactive strategy, responding to equipment 
failures or malfunctions with repairs or replacements. The 
reactive paradigm, which has been widespread for many 
years, has notable disadvantages, including unforeseen 
periods of inactivity, decreased production, and increased 
expenses for upkeep [1,2]. Furthermore, it frequently 
neglects to tackle fundamental problems that cause 
recurring failures, leading to subpar asset performance and a 
shortened lifespan. Acknowledging these constraints, the 
industrial sector has shifted towards more proactive 
maintenance practices, with predictive maintenance 

emerging as a promising model. Predictive maintenance 
seeks to anticipate equipment malfunctions in advance, 
allowing for timely interventions and preventive actions to 
minimize potential hazards. Predictive maintenance systems 
utilize data analytics, sensor technology, and machine 
learning algorithms to analyse previous performance data. 
This analysis helps detect patterns and anomalies that 
indicate potential breakdowns in the future. This proactive 
strategy not only reduces the amount of time that systems 
are not functioning, and the expenses associated with 
maintenance, but also improves the effectiveness of 
operations and the dependability of assets [3]. Figure 1 
illustrates the distinct approaches of reactive maintenance, 
preventive maintenance, and predictive maintenance within 
the context of industrial operations. 

 

Fig- 1: Maintenance Strategies 

However, the reliance on pre-established rules or statistical 
models, which may overlook intricate interconnections and 
dynamic interactions within industrial systems, often limits 
the effectiveness of conventional predictive maintenance 
methods. Furthermore, as industrial infrastructures grow 
more interconnected and reliant on large amounts of data, 
traditional approaches have challenges dealing with the size 
and intricacy of modern operational settings. In order to 
tackle these difficulties and capitalize on fresh possibilities 
for predictive maintenance, there has been a rising 
fascination with incorporating cognitive technologies like 
artificial intelligence (AI), machine learning (ML), and 
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sophisticated analytics [4]. Cognitive predictive maintenance 
signifies a fundamental change towards maintenance 
systems that are more intelligent, adaptable, and reliant on 
data. Through the utilization of cognitive computing, 
predictive maintenance systems may acquire knowledge 
from previous occurrences, adjust to evolving circumstances, 
and make proactive determinations instantaneously [5]. 
Graph-based techniques have become a potential foundation 
for modelling and analyzing complicated relationships inside 
industrial systems in the field of cognitive predictive 
maintenance [6]. Graph theory is a mathematical discipline 
that focuses on studying the characteristics and dynamics of 
networks, or graphs. It offers a robust set of techniques for 
encoding, visualizing, and analyzing interconnected data 
structures. Graphs are used in predictive maintenance to 
represent different elements of industrial systems, such as 
equipment interconnections, operational processes, and the 
spread of faults. 

The motivation for investigating graph-based methods for 
predictive maintenance is their intrinsic ability to represent 
the complex characteristics of industrial systems, including 
both physical and logical interconnections. Graph-based 
methodologies allow for comprehensive modelling of 
interconnected assets, subsystems, and processes, in 
contrast to traditional methods that typically consider 
equipment as separate entities. Graph-based models can 
effectively capture intricate interconnections, cascading 
impacts, and emergent phenomena that may not be easily 
discernible using conventional analytical approaches [7]. We 
achieve this by describing these relationships as a network 
of nodes and edges. Graph-based approaches provide a 
flexible framework for combining diverse data sources, such 
as sensor data, maintenance records, environmental 
conditions, and operating parameters. Predictive 
maintenance systems may effectively identify important 
failure modes, prioritize maintenance tasks, and find hidden 
trends by creating a unified graph representation of the 
underlying system and utilizing the rich data environment. 

Graph-based techniques have a wide range of possible 
applications in predictive maintenance, which can be utilized 
in diverse industries such as manufacturing, energy, 
transportation, healthcare, and utilities [8]. Graph-based 
models in manufacturing environments can enhance 
production workflows, efficiently schedule maintenance 
tasks, and effectively prevent expensive equipment 
breakdowns [9]. Within the energy industry, these strategies 
can improve the dependability of the power grid, optimize 
the performance of assets, and reduce the likelihood of 
power failures. Graph-based strategies can enhance safety, 
efficiency, and passenger pleasure in transportation systems 
like rail networks or aviation fleets [10]. This is achieved by 
identifying possible failure areas and optimizing 
maintenance schedules. Although graph-based techniques 
promise benefits, there are several obstacles and research 
gaps that require attention. These obstacles encompass 

scalability problems in managing extensive industrial 
networks, difficulties in ensuring data quality and 
integration, the ability to interpret graph-based models, and 
the necessity for collaboration between humans and 
machines in decision-making processes. To tackle these 
issues, it is necessary to do interdisciplinary research that 
integrates knowledge from several fields, such as computer 
science, engineering, operations research, and industrial 
management. 

This paper seeks to offer an extensive examination of graph-
based methodologies within the framework of cognitive 
predictive maintenance. Using innovative computational 
methods, this survey enhances the ongoing discussion on 
improving asset management and industrial reliability. It 
achieves this by analyzing existing literature, exploring 
practical applications, and identifying future research areas. 

2. COGNITIVE INTELLIGENCE 

Numerous fields have shown significant interest in cognitive 
intelligence, also known as cognitive computation, due to its 
exceptional abilities in perception, prediction, and 
explanation [11]. Cognitive intelligence, which is based on 
neuroscience, is motivated by the organization and 
operations of the human brain. This theory posits that the 
human brain comprises two fundamental components. The 
initial component is responsible for perception, discernment, 
and decision-making, while the subsequent component links 
to more complex cognitive processes such as explanation 
and reasoning (see Figure 2). Cognitive intelligence is 
fundamentally characterized by its capacity to grasp 
intricate information, differentiate subtle contextual details, 
and extract valuable insights via the processes of correlation 
analysis and causal inference. Cognitive computing systems 
strive to recreate the cognitive capacities of the human brain 
in the interpretation and processing of enormous quantities 
of data by imitating cognitive processes that are discernible 
in human cognition [12]. Cognitive Predictive Maintenance 
(PdM) is an innovative approach that integrates 
conventional predictive maintenance methodologies with 
cognitive intelligence. By utilizing cognitive computing 
methods, predictive maintenance strategies are improved 
through the ability of systems to comprehend the 
information provided, deduce meaning from context, and 
form conclusions through advanced analysis [13]. 
Traditional predictive maintenance methods only use 
historical data and statistical models. Cognitive PdM, on the 
other hand, uses cognitive intelligence to find hidden 
patterns, predict what will happen next, and give reasons for 
maintenance suggestions 
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Fig-2: Fundamental Components of human Brain 

2.1. Graph-based Methods for cognitive Predictive 
Maintenance 

Graph-based methods (GbM) offer a promising approach to 
attaining cognitive intelligence by leveraging the semantic 
associations that establish connections between events, 
features, samples, and equipment components. Unlike 
traditional methods that treat data points as separate 
entities, GbM models consider the complex 
interdependencies that exist within complex systems. This 
makes it easier to understand the underlying data 
environment on a deeper level [14]. One of the key benefits 
of GbM is its capacity to visualize and analyse information in 
the form of networks or graphs. Through the utilization of 
nodes (which symbolize entities or variables) and edges 
(which symbolize relationships or connections), GbM offers 
a flexible framework that effectively captures complex 
interdependencies and interactions present in the data [15]. 
The utilization of this graph-based depiction enables the 
investigation of intricate connections, enabling the retrieval 
of significant observations that might not be evident using 
traditional methodologies. GbM demonstrates exceptional 
capability in aggregating information from various data 
sources through the utilization of semantic associations. By 
encoding the meanings of relationships between entities, 
GbM makes it possible to combine different types of data, 
such as structured and unstructured data, sensor readings, 
maintenance records, and operational parameters. By 
integrating all relevant data, this system becomes more 
holistic, facilitating the generation of more precise 
predictions and practical insights. 

Furthermore, GbM enables the implementation of 
sophisticated machine learning and analytics functionalities, 
facilitating the construction of predictive models and 
algorithms for detecting anomalies. The utilization of graph-
based algorithms, including random walk algorithms and 
graph neural networks (GNNs), enables GbM to accurately 
forecast future outcomes, detect critical failure modes, and 
unveil latent patterns [16]. The ability to foresee future 
events facilitates proactive decision-making and 
preventative maintenance measures, ultimately improving 
the dependability of assets and the efficiency of operations. 

GNNs are a subset of deep learning architectures designed to 
process data in the form of graphs. They have garnered 
considerable attention due to their ability to generate high-
level representations by aggregating information from 
adjacent nodes in a graph (as depicted in Figure 3). GNNs can 
capture intricate interdependencies and interactions within 
the graph using this aggregation procedure. This enriches 
the representations to include both local and global 
information. One can implement the highly adaptable 
embeddings, which are representations derived from GNNs, 
in a variety of subsequent tasks with varying degrees of 
specificity. At the node level, GNN embeddings encode 
information about specific entities within the graph. This 
enables tasks such as node classification, node clustering, 
and node-level prediction to be executed. GNN embeddings 
offer comprehensive feature representations that are highly 
suitable for node-centric tasks due to their ability to capture 
the spatial neighbourhood structure surrounding each node. 
GNNs facilitate efficient information aggregation and 
representation learning by capitalizing on the tenets of deep 
learning and graph theory. This has far-reaching 
implications for various domains, including scientific 
research and industrial applications [17,18]. 

 

Fig-3: GNN graph 

A knowledge graph is a robust framework that uses a 
graphical structure to integrate and manage data, 
information, and knowledge in a seamless manner [19]. 
Fundamentally, a knowledge graph serves as a semantic 
representation of interrelated entities, including concepts, 
events, and objects, encapsulating their complex 
interrelationships and interdependencies. As illustrated in 
Figure 4, the formation of a knowledge graph generally 
commences with the acquisition of knowledge from various 
disparate data sources. Databases, documents, web pages, 
sensor data, and other repositories containing structured 
and unstructured information may be among these sources. 
By employing methodologies such as data mining, 
information retrieval, natural language processing, and 
information retrieval, pertinent knowledge is retrieved from 
these heterogeneous sources and organized in a structured 
fashion that is appropriate for incorporation into the 
knowledge graph [20]. 
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The establishment of a standardized knowledge 
representation is critical to guarantee consistency and 
interoperability across the knowledge graph. Ontology 
schemas, which establish the formal semantics and 
interconnections among various concepts and entities within 
the domain of knowledge, accomplish this [21]. The 
knowledge graph facilitates efficient data integration, 
querying, and reasoning by establishing a shared 
comprehension of the underlying domain and an agreed-
upon vocabulary through the utilization of an ontology 
schema. With a graphical framework and semantic 
depictions, knowledge graphs empower institutions to 
exploit the abundance of data dispersed among diverse 
sources (Fig-4). This facilitates the discovery of invaluable 
insights and promotes well-informed decision-making 
across a wide range of domains and applications [22].  

 

Fig-4: Block chain of decision making 

After identifying an anomaly in a system, it is critical to 
conduct a comprehensive diagnosis in order to determine 
whether it has the capability to progress into further damage 
or a complete malfunction in the future. The primary 
function of diagnosis is to determine the existence of a 
genuine defect and, subsequently, identify its precise nature 
and fundamental origin. A systematic examination of the 
anomalous behaviour detected in the system constitutes 
diagnosis. Generally, this procedure commences with a 
comprehensive examination of the symptoms displayed by 
the system. These symptoms may consist of anomalous 
sensor readings, deviations from anticipated performance 
metrics, or atypical patterns in operational data. Through a 
combination of contextual information regarding the 
system's operational conditions and historical data, analysts 
endeavour to identify the underlying cause of the anomaly 
by analyzing these symptoms. 

One type of neural network architecture that excels at 
processing graph-structured data is the Graph Convolutional 
Network, or GCN. The capacity to do convolutional 
operations directly inside the graph structure is a defining 
characteristic of GCNs, allowing them to take use of the 
intrinsic similarity of features recorded in the network [23]. 
By using integrated objective functions, semi-supervised 
GCNs can use both labelled and unlabeled data for a fault 
diagnosis. This integration improves the model's capacity to 
learn from both labelled and unlabeled instances [24]. 

Labelled instances give unambiguous fault labels, while 
unlabeled cases provide vital information about the 
distribution and structure of the underlying data. 
Considering the weight of distinct samples is vital for 
effectively representing relationships within the data. To 
capture the dynamic features and interdependencies 
between samples, weighted horizontal visibility graphs 
(WHVG) provide a way to convert temporal signal data into a 
graph format [25]. A WHVG plot shows the horizontal 
visibility between samples, where the weight of the edges 
indicates the importance or strength of the association 
between the samples. To extract discriminative 
characteristics for fault diagnosis, the authors of reference 
[26] investigated deep learning models that integrated 
embedded graph regularization. The goal of this method was 
to improve fault detection performance by making use of the 
graph's inherent structure and linkages. By using feature 
engineering approaches to reduce the dimensionality of the 
feature space, the defect diagnostic procedure was further 
optimized. To extract meaningful features, the suggested 
discriminant graph embedding method combined the data's 
geometric structure with label information, as mentioned in 
reference [27]. Researchers aimed to find features that were 
both representative of the data distribution and highly 
discriminative for different fault classes by inserting the data 
into a discriminant graph space, which takes into 
consideration both the structural properties of the data and 
the class labels. 

An alternative to data-driven GNN, Knowledge Graphs (KG) 
use correlation analysis to find systemic flaws. In addition, 
KGs can explain the cause of errors in a way that no other 
type of data can. When KGs are standardized connected with 
real-time heterogeneous industrial data, diagnosis 
procedures can be applied more effectively in practical 
manufacturing settings. They also work in tandem with 
SWRL, or Semantic Web Rule Language, to allow for the early 
identification of errors [28]. The process of correlation 
analysis in KGs entails scrutinizing the interconnections and 
associations between various entities and events that are 
inscribed within the graph. KGs can detect potential defects 
or deviations from normal operating conditions through the 
identification of patterns, trends, and anomalies through the 
analysis of correlations among multiple data points. 
Researchers established a rule library in reference [29] with 
the purpose of associating temporal signal patterns with 
rules that can be queried within the context of a KG. The 
operational principle of this mechanism is that dynamic 
temporal data can be translated or connected to nodes 
within the KG structure in an efficient manner. The rule 
library functions as a collection of pre-established 
regulations that enable the conversion of temporal signal 
patterns into KG framework-compatible queries. Hidden 
Markov Models (HMM) were initially proposed as a 
technique to identify signal patterns for use as querying 
elements in a KG, as described in reference [30]. Commonly 
used to model sequential data, HMMs are probabilistic 
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models in which it is presumed that the underlying system is 
a Markov process in which observed signals are influenced 
by hidden states. As a framework for generating simulation 
results, a KG-based qualitative mechanics theory was 
introduced in reference [31]. By utilizing the structured 
knowledge representation offered by knowledge graphs, this 
methodology simulates, and models intricate mechanical 
systems. The generation of virtual data that closely 
resembles real-world observations is made possible by the 
KG-based mechanics theory through the encoding of 
qualitative relationships among various system components, 
behaviours, and interactions. An important benefit of this 
methodology is its capacity to quantify the disparity between 
empirical data obtained from tangible systems and 
simulated data. The authors of reference [32] utilized a 
Knowledge Graph (KG) to depict the hierarchical 
connections between apparatus components. This KG was 
intentionally developed to encompass a wider array of 
domains and integrate operational factors, in contrast to 
previous methodologies. Consequently, it furnished an all-
encompassing depiction of the equipment ecosystem, 
encompassing operational dependencies as well as 
structural relationships. 

3.1. Summary of GbM for Fault Diagnosis 

The diagnostic procedure is enhanced by the availability of a 
considerable amount of data, which enables the 
implementation of effective performance by a range of GNN 
models, including Graph Attention Networks and Fast GCN. 
The KG provides access to extensive data, which enables the 
implementation of sophisticated algorithms that go beyond 
the scope of semantic searching alone. By capitalizing on an 
abundance of data, GNN models are capable of accurately 
representing the complex interconnections and reliances 
that exist within the system being diagnosed. For example, 
Graph Attention Networks have the capability to concentrate 
on pertinent nodes and edges within the graph, utilizing 
attention mechanisms to give priority to critical information 
while performing the diagnosis procedure. In the same way, 
Fast GCN algorithms have the capability to propagate 
information across the graph in an efficient manner, 
enabling the prompt and precise deduction of malfunction 
conditions or anomalies. In addition, the extensive 
knowledge base generated from copious amounts of data 
serves as a valuable resource for informing and enhancing 
diagnostic models. Through the integration of various forms 
of data—such as structured data, unstructured text, sensor 
readings, and historical records—diagnostic algorithms can 
acquire resilient representations that intimately 
comprehend the intricate dynamics of the system. This 
permits the identification of prospective root causes and 
contributing factors, in addition to more precise and 
nuanced fault diagnosis. 

 

 

4. Hyper-graph for Diagnosis 

Within the realm of hybrid modes, the series configuration 
denotes a situation in which two discrete methodologies are 
implemented consecutively, with one methodology 
influencing and being influenced by the other. An effective 
justification for utilizing the series configuration is the 
complementary nature of model-based and data-driven 
approaches, which capitalize on one another's respective 
advantages. An exemplary instance of this series 
configuration occurs when a data-driven approach, such as 
Bayesian Networks (BN), is integrated with a model-based 
approach, specifically adaptive gas path analysis [33]. 
Furthermore, model-based residuals are utilized as inputs 
for a Random Forest algorithm, augmenting the capability to 
identify defects that were previously unknown [34], in 
addition to conventional methods. This methodology takes 
advantage of the residual errors or inconsistencies that arise 
from model-based techniques when comparing observed 
and predicted values. By inputting these residuals into a 
Random Forest model, an algorithm known for its robust 
ensemble learning capabilities, the system can efficiently 
detect anomalies or deviations from anticipated patterns of 
operation that could potentially signify the existence of 
unidentified defects. Furthermore, information already 
possessed regarding the apparatus can be utilized to analyse 
the results of black-box models generated by data-driven 
methodologies [35]. Although black-box models, including 
support vector machines and neural networks, frequently 
generate precise predictions, they are difficult to interpret. 
An effectively trained Bayesian classifier that is data-driven 
utilizes a model-based methodology to compute the 
posterior probability of distinct classes or categories, 
utilizing the data that has been observed. Following this, the 
classifier model is revised through the integration of 
distinguishing samples, thereby enhancing its capacity to 
generate precise predictions [36]. Furthermore, a hybrid 
methodology integrates components from data-driven and 
model-based approaches, where the initial model 
configuration is regarded as a theoretical deduction 
supported by empirical evidence. Subsequently, this 
configuration is revised iteratively through the incorporation 
of new data-driven observations into the classifier [37]. 

The utilization of a graph structure to depict the 
arrangement of equipment is influenced by the idea of 
representing interrelated components and mechanisms in 
intricate engineering systems. Each node in the graph 
corresponds to a specific equipment component, and the 
edges reflect the relationships or interactions between these 
components. Nevertheless, it is crucial to acknowledge that 
intricate engineering equipment typically entails systems or 
reactions that frequently encompass more than a mere pair 
of components. Modelling complex interactions effectively in 
a limited setting can be difficult, unlike in standard graph 
architectures where edges usually connect two nodes. To 
tackle this difficulty, it may be necessary to utilize more 
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advanced graph representations. Hypergraphs, which enable 
edges to connect several nodes simultaneously, provide a 
more expressive framework for representing intricate 
relationships inside engineering systems [38]. Hypergraphs 
provide a more comprehensive and precise representation 
of the connections and relationships between components in 
the equipment structure by incorporating hyperedges that 
can link multiple nodes. Traditional data-driven intelligent 
fault diagnosis methods frequently encounter constraints in 
their ability to completely exploit the correlation and 
geometric structure information that are intrinsic in large 
volumes of unlabeled industrial data. Consequently, it may 
be difficult for these methods to produce adequate fault 
diagnosis results. In response to this difficulty, scholars have 
suggested a streamlined method for defect diagnosis called 
deep hypergraph autoencoder embedding (DHAEE), which is 
elaborated upon in reference [39]. By capitalizing on the 
capabilities of deep learning and hypergraph embedding 
methods, this approach surpasses the constraints of 
conventional methodologies and attains superior precision 
in defect diagnosis outcomes. A novel algorithm called a 
multiresolution hypergraph neural network is presented in 
reference [40]. Its objective is to extract latent structures 
from data and reveal higher-order complex relationships 
between samples. By establishing and integrating 
hypergraph structures at multiple resolutions, this algorithm 
enables an exhaustive investigation of the underlying data 
topology. Table 1 gives the analysis of this literature survey. 

Refer
ence 

Contribu
tion 

Techniqu
e used 

Advantages Challenges 

[23] GCNs for 
fault 

diagnosis
. 

Graph 
Convolutio

nal 
Networks 

(GCNs), 
semi-

supervised 
learning. 

Ability to 
leverage 

both labelled 
and 

unlabeled 
data. 

Improved 
learning 
capacity. 

Reliance on 
availability of 
labelled data. 
Complexity of 

GCN 
architecture. 

[24] Integrati
on of 

objective 
functions 

Semi-
supervised 

GCNs 

-Enhanced 
learning 

from both 
labelled and 

unlabeled 
instances 

Potential bias in 
labelled data. 
Complexity of 

integrated 
objective 
functions 

[25] WHVG 
for 

capturing 
dynamic 
features 

Weighted 
Horizontal 
Visibility 
Graphs 

(WHVGs) 

Effective 
representati

on of 
temporal 

signal data 
as graphs 

Interpretability 
of WHVG plots. 
Sensitivity to 

noise in signal 
data 

[26] Deep 
learning 

with 
embedde
d graph 

regulariz
ation 

Graph 
regularizat

ion, 
feature 

engineerin
g 

Improved 
fault 

detection 
performance 

Complexity of 
deep learning 

models. Need for 
extensive tuning 
and optimization 

[27] Discrimi
nant 

graph 
embeddi

ng for 
feature 

extractio
n 

Discrimina
nt graph 

embedding 

Extraction of 
meaningful 

features 
representati

ve of data 
distribution 

Potential 
overfitting. 

Sensitivity to 
choose of graph 

embedding 
method 

[28] Utilizatio
n of 

Knowled
ge 

Graphs 
for fault 

diagnosis 

Correlatio
n analysis, 
Semantic 
Web Rule 
Language 
(SWRL) 

Ability to 
explain 
errors 

effectively. 
Effective 

integration 
with real-

time 
industrial 

data 

Complexity of KG 
construction and 
standardization. 

Limited 
scalability with 
large datasets 

[29] Establish
ment of 

rule 
library 

for 
temporal 

signal 
patterns 

Rule-based 
association

, 
Knowledge 

Graphs 

Efficient 
translation 
of dynamic 
temporal 

data to KG 
queries 

Dependency on 
pre-established 
rules. Limited 
flexibility in 

querying 
dynamic data 

[30] Applicati
on of 

Hidden 
Markov 
Models 
(HMM) 

for signal 
pattern 

identifica
tion 

Hidden 
Markov 
Models 
(HMM), 

probabilist
ic 

modeling 

Effective 
modeling of 
sequential 

data. 
Capture of 

hidden 
states 

influencing 
observed 

signals 

Complexity of 
HMM training 
and inference. 
Sensitivity to 

model 
assumptions and 

parameter 
settings 

[31] Introduct
ion of 

KG-based 
qualitativ

e 
mechanic
s theory 

Qualitative 
mechanics 

theory, 
Knowledge 

Graphs 

Simulation 
and 

modeling of 
intricate 

mechanical 
systems. 

Generation 
of virtual 

data 
resembling 
real-world 

observations 

Complexity of 
qualitative 
mechanics 

theory. 
Challenges in 
quantifying 

disparity 
between 

empirical and 
simulated data 

[33] Integrati
on of 

Bayesian 
Network

s with 
adaptive 
gas path 
analysis 

Bayesian 
Networks 

(BN), 
adaptive 
gas path 
analysis 

Complement
ary nature of 
model-based 

and data-
driven 

approaches. 
Augmented 

defect 
identificatio

n 
capabilities 

Complexity of 
integrating 
disparate 

methodologies. 
Potential 

challenges in 
model 

calibration and 
validation 

[36] Training 
of 

Bayesian 
classifier 

using 
model-
based 

methodol

Bayesian 
classifier, 

model-
based 

methodolo
gy 

Utilization of 
model-based 
methodology 

for 
computing 
posterior 

probabilities
. Revision of 

Dependency on 
accurate model-

based 
information. 

Potential 
overfitting or 

underfitting of 
classifier. 
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ogy classifier 
model for 
improved 
precision 

[38] Introduct
ion of 

hypergra
phs for 

equipme
nt 

structure 
represen

tation 

Hypergrap
hs 

More 
expressive 
framework 

for 
representing 

complex 
interactions. 
Comprehens

ive 
representati

on of 
connections 

between 
components 

Complexity of 
hypergraph 

construction. 
Limited 

familiarity and 
adoption in 
engineering 
applications 

[40] Introduct
ion of 

multireso
lution 

hypergra
ph neural 
network 

Multiresol
ution 

analysis, 
Hypergrap

hs 

Extraction of 
latent 

structures 
and higher-

order 
relationships
. Exhaustive 

investigation 
of data 

topology 

Complexity of 
algorithm 

implementation. 
Potential 

scalability issues 
with large 
datasets 

 
Table 1: Analysis of literature survey. 

5. Conclusion 

Evidently, fault diagnosis in complex engineering systems is 
a multifaceted challenge requiring novel approaches to 
effectively leverage available data and reveal concealed 
patterns and relationships, as demonstrated by the literature 
review that was presented. By employing graph-based 
representations, such as hypergraphs, it is possible to model 
with precision the complex interconnections and 
configurations of equipment components within these 
systems. By incorporating sophisticated methodologies like 
deep learning and hypergraph embedding, it becomes 
possible to extract latent structures and higher-order 
relationships from data. This enhancement significantly 
improves the accuracy and efficiency of defect diagnosis. 
Methods such as multiresolution hypergraph neural 
networks and deep hypergraph autoencoder embedding 
(DHAEE) illustrate the potential of integrating deep learning 
techniques with hypergraph-based representations to 
surpass the drawbacks of conventional data-driven 
approaches and attain enhanced fault diagnosis results. 
Furthermore, by leveraging the complementary qualities of 
model-based and data-driven approaches, the investigation 
of hybrid methodologies that combine the two improves 
diagnostic capabilities even further. The series configuration, 
which integrates adaptive gas path analysis and Bayesian 
Networks, serves as an illustration of the synergistic 
advantages that can be obtained by combining various 
methodologies to improve the reliability of fault diagnosis. 
Recognizing the difficulties linked to these methods is 
crucial, such as the intricate process of implementing 

algorithms, the requirement for abundant training data, and 
the possibility of encountering scalability problems when 
dealing with huge datasets. Furthermore, the understanding 
and incorporation of outcomes from black-box models 
produced by data-driven approaches present difficulties in 
terms of comprehensibility and dependability. 
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