

Structural Health Monitoring Various Structure By Using Non-Destructive Test.

Prof.Farhat Asadali Sayyad¹,Fattesing Ashok Patil²,Pratik Anandrao Nikam³

¹Assistant Professor, Department of civil engineering, D.Y.Patil Technical Campus Talsande, Kolhapur ^{2,3} UG Students, Department of civil engineering, D.Y.Patil Technical Campus Talsande, Kolhapur Corresponding Author address: ¹²³ DYPTC, Talsande, Kolhapur

_____***______

Abstract

Structural health monitoring (SHM) is important when it comes evaluating various structures and infrastructure. This involves the inspection, monitoring, and maintenance to sustain economics, enhance quality of, and promote sustainability in civil engineering. Some buildings have also failed due to faulty design or construction. The various causes of structural failure along with the principles of rehabilitation of structures will be discussed in the following content.

The concept of nondestructive testing (NDT) is to receive material properties of in place specimens without destroying specimen nor the structure from which it is taken. However, the one issue that has been prevalent in the concrete industry for years is that the true properties of an in-place specimen have never been tested without leaving a certain degree of damage on the structure.

The use of the ultrasonic pulse velocity tester is introduced as a tool to monitor basic initial cracking of concrete structures and hence to introduce a threshold limit for a possible failure of the structures. Experiments using ultrasonic pulse velocity tester have been carried out, under laboratory conditions, on various concrete specimens loaded in compression until failure.

Key Words: (NDT- Structural health monitoring, Ultrasonic pulse velocity)

1. INTRODUCTION

Ever so since the start of the 20th century, concrete has become the primary building material used in most constructions. After examining numerous structures constructed with concrete, it has been observed that concrete can be vulnerable to deterioration in varying circumstances, making the assessment and rehabilitation of concrete buildings an important issue. Assessment can be extremely beneficial for identifying potential damage to structures and determining the causes of its likelihood. This investigation, based on non-destructive testing (NDT), aims to access information and structural health monitoring for concrete structures, particularly in the context of historic structures. The benefit of this NDT investigation, which prevents structural damage, is a crucial aspect of this study. The ultrasonic pulse velocity and Schmidt rebound hammer were used for this investigation; these methods have been employed for a considerable period to analyze damage, cracks, voids, and other deterioration in concrete structures. Nevertheless, in an extreme environment with high humidity levels in the atmosphere, significant pollution, the presence of CO2 and chloride contents in the atmosphere, NDT using ultrasonic pulse velocity or rebound hammer can be effectively utilized to predict the service life of the structure, in addition to quality control for both new and old structures, as well as structural health monitoring.

1.1 The generic features of NDT methods are discussed:

- 1. Rebound Hammer
- 2. Ultrasonic Pulse Velocity Test
- 3. Profoscope

1.1.2 REBOUND HAMMER

The rebound hammer test is a quite common method used in the construction field to assess the strength compressing of concrete structures. It operates by striking the surface of the concrete with a spring-loaded hammer, subsequently measuring the rebound distance. This particular test provides very valuable information about concrete integrity and durability, helping engineers alongside builders ensure the good quality of their constructions

Table 1: Quality of Concrete for different values of rebound number

Average rebound number	Quality of concrete
>40	Very good hard layer
30 to 40	Good layer
20 to 30	Fair
<20	Poor
0	Delaminated

1.1.3 ULTRASONIC PULSE VELOCITY

Ultrasonic pulse velocity testing is a technique that's like, used for evaluating the quality and integrity of concrete structures. It involves sending these high-frequency sound waves through the concrete; like, I mean, measuring the time it takes for the waves, you know, to like, travel through the material. By,, analyzing the velocity these waves, engineers can assess the uniformity, homogeneity, and potential defects within the concrete, you know, helping ensure the safety and durability of buildings and infrastructure

Ultrasonic Pulse Velocity Test is performed on concrete to assess the quality of concrete by passing ultrasonic pulse velocity through it as per IS: 516(Part 5/Sec 1) – 2018 (Amendment)

Table -2 : Quality of concrete for different values of UPVT

Sr.no	Average value of Pulse Velocity by cross probing	Concrete quality grading
	(Km/s)	
A)For concrete (<m25)< td=""><td></td><td></td></m25)<>		
1)	Below 3.5	Doubtful
2)	3.5 - 4.5	Good
3)	Above 4.5	Excellent
B) For concrete (>M25)		
1)	Below 3.75	Doubtful
2)	3.75 - 4.50	Good
3)	above 4.50	Excellent

1.1.4 PROFOSCOPE

The Profoscope is a portable, non-destructive tool used in construction to detecting rebar and metal objects embedded in concrete structures. It works by emitting electromagnetic pulses and analyzing the reflecting signals to pinpointing the location, depth, and spacing of reinforcement bars within the concrete. This helping engineers and inspectors assess the structural integrity and safety of buildings and infrastructure without needing for invasive testing.

The Profoscope, a super handy device, is used in construction to identify the metal reinforcement bars, or rebar, inside concrete structures. By sending out electromagnetic signals and analyzing their reflections, it helps determine the precise location, depth, and spacing of the rebar. This non-destructive and super effective method aids engineers and inspectors big time in assessing the strength and integrity of buildings and infrastructure without causing any damage to the concrete.

2. OBJECTIVE OF PROJECT -

- 1. Early Detection of damages.
- 2. Evaluation of material properties.
- 3. Prediction of service life.
- 4. Monitoring structural behaviour.
- 5. The location of reinforcement and diameter of rebar by using profoscope test.
- 6. Detection of discontinuity or cracks, voids in concrete by using ultrasonic test.
- 7. Strength of the concrete by using rebound hammer test.

3. METHODOLOGY

- 1. Selection Of Structures
- 2. Preliminary Inspection
- 3. Identify Of Problems
- 4. Preliminary Inspection Report
- 5. Visual Inspection
- 6. Detail Inspection
- 7. Field Testing
- 8. Structural Analysis Of Based On Testing Result

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net

p-ISSN: 2395-0072

• CASE STUDY

Fig -1: OLD RCC BUILDING (G+2)

4. RESULT

REBOUND HAMMER TEST READING •

Table 3: REBOUND HAMMER TESTING IN COLUMN

Name and location of column	Average rebound number	Compressive strength N/mm ²	Quality of concrete
C1	31	26	Good layer
C2	28	21	Fair
С3	30	23	Good layer
C4	28	21	Fair
C5	31	26	Good layer
C6	31	26	Good layer
C7	29	22	Fair
C8	30	23	Good layer
С9	29	22	Good layer
C10	31	26	Good layer
C11	27	19	Fair
C12	28	21	Fair
C13	27	19	Fair
C14	25	15	Fair
C15	27	19	Fair
C16	28	21	Fair
C17	30	23	Good layer
C18	29	22	Fair
C19	26	17	Fair

C20	23	14	Fair
C21	25	16	Fair
C22	22	13	Fair
C23	26	17	Fair
C24	30	23	Good layer
C25	24	15	Fair

Table 4 : REBOUND HAMMER TESTING ON BEAM

Name and location of beam	Average rebound number	Compressive strength in (N/mm ²)	Quality of concrete
B1	27	18	Fair
B2	29.5	22	Fair
B3	30	23	Good
B4	25	16	Fair
B5	27	19	Fair
B6	30	23	Good
B7	30	23	Good
B8	25	16	Fair
B9	27	19	Fair
B10	28	21	Fair
B11	30	23	Good
B12	20	12	Poor
B13	25	16	Fair
B14	30	23	Good
B15	25	16	Fair

Table 5 : REBOUND HAMMER TESTING ON SLAB

Name and location of slab	Average rebound number	Compressive strength in N/mm ²	Quality of concrete
S1	30	23	Good
S2	28	21	Fair
S3	26	17	Fair
S4	31	26	Good
S5	29	22	Fair
Stair	27	19	Fair

IRJET

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 11 Issue: 04 | Apr 2024 www.irjet.net

p-ISSN: 2395-0072

UPVT READINGS •

TABLE 6: UPVT ON COLUMN

Column no	Travel length mm	Velocity (km/sec)	Probing method	Quality of concrete
C1	300	3.85	3.85 Direct method	
C2	301	3.8	Direct method	Good
С3	300	3.86	Direct method	Good
C4	230	3.4	Direct method	Doubtful
C5	235	3.43	Direct method	Doubtful
C6	230	3.0	Direct method	Doubtful
C7	230	3.8	Direct method	Good
C8	238	3.4	Direct method	Doubtful
С9	233	3.4	Direct method	Doubtful
C10	230	3.9	Direct method	Good
C11	233	3.3	Direct method	Doubtful
C12	285	3.8	Direct method	Good
C13	233	3.8	Direct method	Good
C14	230	3.22	Direct method	Doubtful
C15	233	3.3	Direct method	Doubtful
C16	235	3.1	Direct method	Doubtful
C17	231	3.9	Direct Good method	
C18	232	3.77	Direct Good method	
C19	232	3.4	Direct method	Doubtful
C20	232	3.9	Direct method	Good

C21	239	3.1	Direct method	Doubtful
C22	285	3.1	Direct method	Doubtful
C23	232	3.9	Direct method	Good
C24	233	3.8	Direct method	Good
C25	230	3.2	Direct method	Doubtful

Table 7: UPVT ON BEAM

Beam no	Travel length	Velocity (km/sec)	Probing method	Quality of concrete
B1	230	3.2	Indirect method	Doubtful
B2	233	3.1	Indirect method	Doubtful
В3	230	3.88	Indirect method	Good
B4	232	3.27	Indirect method	Doubtful
B5	230	3.19	Indirect method	Doubtful
B6	230	3.95	Indirect method	Good
Β7	235	3.87	Indirect method	Good
B8	232	3.3	Indirect method	Doubtfull
В9	230	3.45	Indirect method	Doubtful
B10	233	3.22	Indirect method	Doubtful
B11	235	3.9	Indirect method	Good
B12	230	3.35	Indirect method	Doubtful
B13	230	3.32	Indirect method	Doubtful
B14	230	3.89 Indirect method		Good
B15	237	3.0	Indirect method	Doubtful

© 2024, IRJET

ISO 9001:2008 Certified Journal

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 11 Issue: 04 | Apr 2024www.irjet.netp-ISSN: 2395-0072

Table 8: UPVT ON SLAB							
Slab	b Travel Velocity F length in in(km/sec) r (mm)		Probing method	Quality of concrete			
S1	230	3.8	Direct method	Good			
S2	230	3.96	Direct method	Good			
S3	230	3.4	Direct method	Doubtful			
S4	230	3.78	Direct method	Good			
S5	230	3.2	Direct method	Doubtful			
Stair	230	3.9	Direct method	Good			

PROFOSCOPE READING .

Table 9: PROFOSCOPE ON COLUMN

Column	Siz	Main	Stirrups	Cover	Mean
	6	R/F	ourrapo	(mm)	cover
	C	(mm)		(mm)	cover
	22.0*	(mm)	6 0155	45	
C1	230*	16mm	6mm@15/m	45	10
	380	16mm	mc/c	43	49
		16mm		52	
		16mm		56	
C2	230*	16mm	6mm@143m	47	
	380	20mm	m c/c	48	51.5
		16mm		52	
		20mm		59	
C3	230*	16mm	8mm@159m	41	
	380	22mm	mc/c	45	45
		20mm		43	
		16mm		51	
C4	230*	16mm	8mm@159m	58	
	380	16mm	mc/c	63	60.25
		16mm		58	
		20mm		62	
C5	230*	16mm	6mm@159m	53	
	380	20mm	mc/c	60	52
		16mm		58	
		16mm		56	
C6	230*	16mm	6mm@159m	48	
	380	16mm	mc/c	51	52
		16mm		53	
		20mm		56	
67	220*	16	(mm@140	F 2	
U/	230*	1011111	omm@140m	52	FC
	380	16mm	mc/c	53	56
		16mm		60	
		20mm		63	
C8	230*	16mm	6mm@142m	61	
	380	16mm	mc/c	67	65
		16mm		66	
		20mm		68	

С9	230*	16mm	6mm@	48	
	380	16mm	130mm c/c	52	49
		16mm		50	
21.0	000*	16mm	(01 F 1	46	
C10	230*	16mm	6mm@151m	47	16
	380	12mm	mc/c	49	46
		16mm		32	
C11	220*	20mm	6mm@147m	50	
CII	230	2011111 20mm	omm@14/m	59	55 75
	300	20mm	me/c	56	55.75
		16mm		53	
C12	230*	20mm	6mm@145m	61	
012	380	22mm	mc/c	62	61
	500	20mm		61	01
		22mm		60	
C13	230*	20mm	6mm@135m	59	
	380	22mm	mc/c	60	59
		20mm	,	58	
		20mm		59	
C14	230*	20mm	6mm@145m	54	
	380	20mm	mc/c	57	52.25
		22mm		52	
		22mm		46	
C15	230*	20mm	6mm@145m	54	
	380	16mm	mc/c	57	52.25
		20mm		52	
	0.0.0.1	16mm		46	
C16	230*	16mm	6mm@134m	49	
	380	20mm	mc/c	64	58
		20mm		60 50	
C17	220*	16000	(59	
C17	230*	22mm	6mm@158m	60	50
	300	2011111 22mm	mc/c	60	39
		2211111 20mm		58	
C18	230*	20mm	6mm@144m	57	
010	380	20mm	mc/c	58	565
	500	22mm	inc/c	55	50.5
		20mm		56	
C19	230*	12mm	6mm@160m	57	
	380	12mm	mc/c	56	53
		16mm	,	51	
		16mm		48	
C20	230*	20mm	6mm@135m	40	
	380	25mm	mc/c	38	37.25
		20mm		33	
		16mm		38	
C21	230*	25mm	6mm@134m	44	
	380	20mm	mc/c	43	45.25
		20mm		45	
000	000*	18mm	<	49	
C22	230*	25mm	6mm@145m	46	45.25
	380	25mm	mc/c	48	45.25
		22111111 22mm		40	
C23	230*	20mm	6mm@143m	52	
623	380	22mm	mc/c	45	455
	500	16mm	inc/ c	44	13.5
		20mm		41	
C24	230*	20mm	6mm@143m	42	
	380	16mm	mc/c	38	40.5
		16mm		40	
		16mm		42	
C25	230*	16mm	6mm@156m	45	
	380	20mm	mc/c	36	50
		16mm		42	
		Tomm		45	

Table 10 : PROFOSCOPE ON BEAM

Beam	Size	Top bar	Cover	Bottom bar	Cover
B1	230*450	20mm	49	12mm	26
B2	230*450	16mm	41	16mm	36
B3	230*450	16mm	52	16mm	39
B4	230*450	16mm	44	16mm	35
B5	230*530	20mm	57	16mm	52
B6	230*450	16mm	51	12mm	49
B7	230*450	20mm	53	16mm	38
B8	230*450	20mm	52	16mm	42
B9	230*530	16mm	48	16mm	39
B10	230*450	16mm	45	16mm	45
B11	230*530	16mm	54	22mm	37
B12	230*450	20mm	50	20mm	52
B13	230*450	20mm	45	16mm	44
B14	230*450	20mm	42	16mm 39	
B15	230*450	12mm	32	12mm 34	

Table 11:PROFOSCOPE ON SLAB

Slab	Main bar short span	Main bar long span	Thick . of slab	Reinforcem ent
S1	10mmm @ 240mm c/c	10mm@185 mm c/c	100m m	Both way
S2	10mm@24 0mm c/c	10mm@ 157mm c/c	100m m	Both way
S3	10mm@ 240mm c/c	6mm@ 183mm c/c	100m m	One way
S4	10mm@ 240mm c/c	10mm @ 210 mm c/c	100m m	Both way
S5	10mm@ 230mm c/c	6mm @ 210 mm c/c	100m m	One way
Stair	12mm@ 110mmc/c	10mm @ 245 mm c/c	175	1:2:4

3. CONCLUSIONS

Considerable engineering judgment is necessary for accurately evaluating measurements, particularly when poor contact is involved. In certain instances, identifying severely corroded reinforcing bars within low-quality concrete can be challenging. However, detecting poor quality concrete, which often leads to reinforcing bar issues, is feasible. Poor quality concrete permits moisture and oxygen ingress to the reinforcing bars, resulting in corrosion. When concrete property variations impact test outcomes, especially in conflicting directions, relying on a single method may not suffice for studying and assessing the desired property. Employing multiple methods yields more reliable results. For instance, increased concrete moisture content elevates ultrasonic pulse velocity but lowers the rebound number. Thus, employing both methods concurrently reduces errors inherent in using one method alone for concrete assessment.

REFERENCES

- [1] Muhammet Asan1, * , Hadi Abbaszadeh2 , and Serkan Karatosun "An Evaluation on Low and Middle Strength Concretes Rebound, Upv, and Sonreb Methods".
- [2] Rohan Anil Kanthak1, Prof. Abhijeet A. Galatage "DAMAGE DETECTION AND IT'S REPAIR BY NDT".
- [3] Mohammadreza Hamidian, Ali Shariati, M. M. Arabnejad Khanouki, Hamid Sinaei, Ali Toghroli and Karim Nouri "Application of Schmidt rebound hammer and ultrasonic pulse velocity techniques for structural health monitoring"
- [4] Seonguk Hong 1, Sangki Yoon 2, Jonghyun Kim 2, Changjong Lee 2, Seunghun Kim 2 and Yongtaeg Lee 2,*
 "Evaluation of Condition of Concrete Structures Using Ultrasonic Pulse Velocity Method"
- [5] Gomasa Ramesh1, Dharna Ramya2, Mandala Sheshu Kumar3 "Health Monitoring of Structures by Using Non Destructive Testing Methods"
- [6] Jones Owusu Twumasi, Viet Le, Qixiang Tang and Tzuyang Yu U.S.A. Stated that "Quantitative Sensing of Corroded Steel Rebar Embedded in Cement Mortar Specimens using Ultrasonic Testing".

Kássio Stein Universidade Federal do Rio Grande do Sul, Laboratório de Ensaios e Modelos Estruturais (LEME) Av. Bento Gonçalves, 9500, Prédio 43436, Campus do Vale CEP 91509-90, Agronomia, Porto Alegre, RS (Brasil) kassio86@hotmail.com "Concrete structures monitoring using ultrasonic tests"