

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 748

Fortifying Financial Systems: Exploring the Intersection of

Microservices and Banking Security

Sumit Bhatnagar1, Roshan Mahant2

1Individual Researcher, New Jersey, USA
2LaunchIT Corp, Urbandale, IA USA

---***--

Abstract- As part of their digital transformation,
financial service companies can greatly benefit from the
implementation of a microservice architecture. We can
build a service-oriented architecture (SOA) application
using the architecture to enhance its overall
performance and maintainability. This enables the
application to consist of several smaller components that
operate independently and simultaneously. In the
financial services industry, the accuracy of artifact states
holds immense significance. Given that an inaccurate
artifact state or anomalous artifact operation(s) could
potentially ruin the entire application, it is crucial to
conduct an analysis of the artifact operations within each
microservice during the design process. In this study, we
present a technique for identifying anomalies through
the characteristics of artifacts associated with the
microservice architecture. Following this, we identify the
properties of artifacts. As a result of technological
improvements and shifting client expectations, the
financial sector is currently going through a tremendous
upheaval. Among these advancements, microservices
architecture has emerged as a key enabler of agility,
scalability, and innovation in banking systems. This
paper delves into the relationship between
microservices and banking security, emphasizing the use
of microservices to strengthen financial systems in the
face of growing cyber security risks. The microservices
architecture simplifies the development, deployment,
and scalability of big financial applications by separating
them into smaller, self-contained services. This modular
approach not only makes the system more reliable and
helps separate problems, but it also makes continuous
integration and delivery (CI/CD) easier, which lets you
respond quickly to changes in the market and new rules.
However, the implementation of microservices
introduces new security challenges, such as controlling
inter-service communication, ensuring data integrity,
and safeguarding against attack detection and
protection.

Keywords -microservices, artifact anomaly, workflow

INTRODUCTION

In recent years, microservice architecture has garnered a
lot of interest due to the numerous advantages it offers,
particularly in applications that are both sophisticated

and large. The strategy is based on the idea of dividing an
application into a number of smaller services that serve a
specific purpose. This makes the process of development
and maintenance simpler, more efficient, and more
scalable. Microservice architecture is especially helpful in
the context of financial systems, which are frequently big
and complicated and call for high levels of reliability and
fault tolerance. We will discuss the advantages of utilizing
microservice architecture in financial systems, along with
the challenges to successfully implement this strategy, in
the following paragraphs. Compared to organizations
that specialize in financial technology, the majority of
traditional financial services have become less innovative
over the course of the past few years. This is mostly due
to the fact that these services rely heavily on their big,
monolithic legacy systems. To a large extent, these
systems are highly stiff, and they frequently become
maintenance headaches due to their limited adoption of
new technologies and performance [1]. Overall, they are
quite rigid. The adoption of system design that is more
adaptive to changes, such as new technologies and faster
performance requirements, is something that
organizations that provide financial services are
contemplating in order to maintain their competitive
edge [2].An example of a service-oriented architecture
(SOA) is the microservice design, which breaks down
large applications into smaller, autonomous parts called
microservices that can operate in tandem. [1, 2].
Microservices are also known as microservices. The
ability to scale and operate a microservice independently
at smaller granularities is one of its defining
characteristics. which allows for a significant
improvement in both the system's performance and its
ability to be maintained. Every microservice, for instance,
has the ability to adopt a variety of technological
platforms that are optimally suited to the performance
levels that it requires.

The process of developing applications that use the
microservice architecture frequently uses workflow
models. These models assist in both the development of a
microservice and the planning of its partnership with
other service units. Conducting an analysis of artwork is
absolutely necessary to ensure accurate workflow
execution. We define artifacts as the data or objects
specified, employed, or referenced by the operations
within a workflow. Despite the well-behaved workflows,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 749

conflicts between the operations could potentially lead to
erroneous states. The distribution of microservices
across multiple locations necessitates a thorough
examination of the artwork. This is because an inaccurate
artifact state has the potential to corrupt the entire
system. For instance, the process of message passing
might propagate an improper state from one
microservice to other microservices.

In this paper, the authors provide methods for
identifying suspicious artifacts inside microservices. This
research's topic is "Fortifying Financial Systems: The
Intersection of Microservices and Banking Security."
Initially, they determine the quality of the artworks by
analyzing the microservices' features. They first show
two methods that use these properties to detect
abnormalities, and then they turn a microservices
workflow model into the appropriate SP-tree structure.

Using the detection result, the designer can make
adjustments to the service application to prevent the
system from experiencing a failure state. E.g., below:
Digital Banking Architecture

Microservices in finance Sector

Microservices and layered architectures are the most
common types of architectures for core banking systems.
As a result, it is essential to disclose their most important
characteristics, as well as their strengths and
weaknesses, in order to create an excellent fintech
solution and make an informed decision. Therefore, let's
begin with a stratified structure.

Fig.1 Layered architecture

The presentation layer, often known as the front end,
middleware, and backend, are the components that
make up a standard tiered design, as depicted in figure 1.
Modularity, scalability, and maintainability are among its
most important characteristics. These characteristics
make it simple to implement changes and add new
features. Each layer of this design represents a different
module, simplifying the development of this
architecture. Additionally, we can apply different scales
to each layer separately. At long last, it is feasible to
improve one layer without having an effect on the other
layers.

A number of benefits, including ease of creation, clarity,
and simplicity, are associated with this digital bank
design. Therefore, we can use it to build large and
complex banking solutions, improve existing ones, and
incorporate new features.

The performance overhead and rigidity of a layered
design are two reasons why it is considered to be a
weakness. Communication between levels may
complicate the process of setting up and carrying out
functions. In addition to this, the layered method is
typically stiff, which makes it difficult to make changes in
a single layer.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 750

Fig.2 Microservices-based architecture

Figure II depicts the microservices-based architecture.
Figure II displays a variety of services that are
deployable independently. Each service performs a
specific business function, and these services
communicate with each other. Numerous digital banks
construct their banking applications using microservices
architecture. Now, let's explore the factors that
contribute to its popularity. In addition to providing the
largest prospects for scalability, microservices also make
it possible to integrate with a wide variety of third-party
services in a seamless manner.

Benefits of Using Microservice Architecture in
Financial Systems

Scalability

The scalability of microservice architecture is among the
most important advantages that use this design.
Sometimes, financial systems are difficult to understand
since they are made up of a wide variety of components
that need to be controlled and maintained. Microservice
architecture makes it possible to divide and partition
these components with ease, which makes it simpler to
scale the system up or down according to the
requirements of the circumstance. The general scalability
and flexibility of the system is improved as a result of this
functionality, which enables developers to tweak or add
new features to the system without causing disruption to
the system as a whole.

Agility

Microservice design in financial systems offers a number
of benefits, one of which is more agility. The ability to

swiftly react to changing market conditions and customer
requirements is an essential quality for financial systems.
By enabling developers to rapidly adjust and add new
features to the system, microservice architecture makes
it possible for financial systems to be more adaptable and
sensitive to circumstances that are always shifting.

Fault Tolerance

Financial systems are required to have a high degree of
reliability and tolerance for errors. It is of the utmost
importance that the system be able to get back up and
running without any interruptions in the event that it has
a breakdown or an outage. This helps to lessen the
impact of any failures or outages that may occur.
Microservice design offers fault isolation and
containment. The testing and monitoring of the system is
also simplified by this approach, which enables
developers to quickly discover and resolve any problems
that may arise.

Technology Heterogeneity

One of the advantages of microservice architecture is its
ability to support the utilization of many technologies.
Financial systems typically consist of a variety of
components, each constructed using a variety of
technologies or computer languages. Microservice
architecture enhances the system's overall performance
and scalability by allowing the construction of each
component using the most appropriate technology.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 751

Challenges of Using Microservice Architecture in
Financial Systems

Implementing microservice architecture presents
challenges despite its benefits. These challenges include:

Complexity

When working with huge and complicated financial
systems, microservice architecture can be particularly
difficult to understand and implement. The complexity of
the system increases in proportion to the number of
microservices that are present, making it more difficult to
manage and maintain. It is necessary to practice careful
planning and management in order to guarantee that the
system will continue to be scalable, maintainable, and
secure.

Testing

In addition, testing might be a difficult task when dealing
with microservice architecture. It is necessary for us to
perform unique tests on each microservice in order to
verify that it functions appropriately and integrates with
the other microservices that are present in the system.
Performing this might be a time-consuming process that
calls for meticulous organization and coordination in
order to guarantee that the testing is comprehensive and
efficient.

Data Consistency

The use of microservice architecture in financial systems
may pose challenges in terms of maintaining data
consistency. It is difficult to guarantee that the data is
consistent throughout the entire system because each
microservice could have its own data store or database.

Careful design and management are required to ensure
data synchronization and consistency across all

microservices. There is a kind of software design known
as microservices architecture. This form of architecture
divides an application into a collection of small,
independent services. Every service handles its own
process and communicates with others via well-defined
APIs. In order to design and maintain complex systems,
developers have the ability to develop, launch, and scale
these services independently of one another. This
provides a variety of benefits.

Finbox as a case study

By easing the introduction of new white-label solutions,
Finbox helps financial institutions and fintechs increase
their customer base and revenue. One of these is an
investment product.

Through the use of the Java Spring Framework, we
initially developed and constructed the backend using
the Java Spring Framework in a monolithic architecture.
Using the PostgreSQL database, they were able to
construct everything into a single application. This
strategy expedited the implementation of business logic
and guaranteed the consistent achievement of goals. On
the other hand, it contributed to issues in terms of
performance and scalability. Because of a specific use
case, the FIX protocol was experiencing a period of high
load. Since we wanted to avoid program crashes, we had
to devise workarounds.

Fig.3Monolithic architecture

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 752

Authentication and authorization, caching, and
notification services are some of the components that
the financial services platform offers to banks and
fintech companies in order to assist them in expanding
their user base and capitalization, trade history, user
account management, symbol management, payment
gateway, data feed, log monitoring, FIX feeder, broker
API, market API, KYC/AML service, back-office API, and
news feed. The platform was initially constructed using a
monolithic architecture that included the Java Spring
Framework and PostgreSQL, as depicted in Fig. 1.
Because of the high load on the FIX protocol, it faced
performance and scalability issues. To address these, the
platform transitioned to a microservices architecture
with asynchronous task processing via Kafka, leveraging
HTTPS and web sockets for stability. This transition

allowed for independent scaling and better resource
utilization, resulting in improved response times,
throughput, and system stability, while also ensuring
compliance and efficient user and trade management. As
shown in Fig. 3, Monolithic architecture

The next iteration aimed to prevent issues with the high
load and frequent failures of the FIX Feeder, while also
enhancing the scalability of the API Gateway layer. This
time, the challenge lay at the core of the system. Given
the high degree of coupling in the software, any
modification would result in crushes occurring in
unexpected locations. Ineffective horizontal scaling was
a result of errors that occurred during the design and
implementation of the architecture.[1]

Fig.4 Microservices architecture

After learning from these two phases, we made the
decision to transition to a fully decoupled microservices
architecture, utilizing Kafka for asynchronous task
processing. This system is currently quite flexible and
scalable, able to accommodate changes in both the
codebase and the architecture, as demonstrated in
Figure 5: Microservices architecture. The core

Fig.5 Microservices architecture integration model for finance industry

microservices handle the primary functionality, allowing
for dynamic scaling of each service. On the other hand,
the peripheral is responsible for managing connectivity
with devices and APIs provided by third parties. They
decided to switch from the FIX protocol to HTTPS and
Web Sockets because of the stability and usability of
these protocols.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 753

Response time is a critical performance metric that
measures the time taken to process a request from start
to finish. In a monolithic architecture, the response time
can be longer due to the tightly coupled nature of the
components, leading to potential bottlenecks.
Transitioning to microservices architecture aims to
reduce response time by decoupling components and
enabling parallel processing. [1]

Monolithic Architecture

RTmonolithic =

∑

Where:

 RTi is the response time for each request iii

 N is the total number of requests

Microservices Architecture:

RTmicroservices =

∑

Where:

RTj is the response time for each request jjj

M is the total number of requests

Improvement in Response Time (IRT):

IRT=RTmonolithic− RTmicroservices

Load (L)

Theory:

The load is the number of messages or requests handled
by the system per unit time. A high load on a single
component in a monolithic architecture can lead to
performance degradation. Increasing both performance
and reliability can be accomplished by distributing the
load among a number of different

microservices.LHTTPS+WebSockets =

ANOMALIES IN MICROSERVICE ARCHITECTURE

A microservice is defined as a programmable unit that is
surrounded by contexts and has the ability to
communicate with every other microservice through
message forwarding. [3]. On various platforms, such as
physical machines, virtual machines, or containers, we
can manage, deploy, and scale different microservices
independently [4]. An application with a microservice
architecture can be built by assembling several
distributed microservices, each of which handles its own
process and communicates with others through
message-based protocols. This design has at least three
features: it is context-bound, smaller than a typical

service in service-oriented architecture (SOA) [5], and
operationally independent. Based on the observation of
these traits, the following is a list of artifact attributes
that can be located and identified: Through the use of a
messaging mechanism, the independence feature
ensures that the artifacts included within each
microservice are independent of those contained within
another microservice using a messaging mechanism.
This facilitates the transfer of the artifact from one
microservice to another. It is possible for each
microservice to have its own unique context because of
the limited context characteristic. When a message
passes an artwork from one microservice to another,
each microservice's context can give it a different name.
However, the artifact itself remains separate and
autonomous. The smaller size and independent
properties of each microservice make it possible for it to
readily expand horizontally [6]. This allows it to
concurrently operate on multiple instances. This
scenario allows for the simultaneous presence of
identical independent artifacts on multiple processes in
different locations. Using the above information about
artifacts, finding strange artifacts within each
microservice of the application (intra-micro service) can
help check the accuracy of the artifact states sent
between microservices and keep the system from failing.
In the context of a microservice's related workflow, we
can examine an artifact's erroneous state without regard
to processes external to the microservice. When we
exchange an artifact via a message and send it to other
microservices or service units, we can interpret the act
of receiving a message as writing on the artifact, and we
can also consider each parameter it represents as a
reading on the artifact. The following definition [7]
identifies an artifact as having an intra-micro service
artifact anomaly if it exhibits abnormal Read, Write, and
Kill operations. (1) A concurrent artifact anomaly occurs
when two parallel operations on the same artifact fall
into one of the following pairs: (Kill, Write), (Kill, Read),
or (Write, Write). A continuous artifact anomaly arises
when two successive operations on the same artifact
end, read, write, or terminate. written, written, or
written.

Microservice, Structured Workflow, and SP-Tree

Using the microservice architecture [2], they are able to
model the design of a microservice as a workflow that is
contained within a pool. This enables the microservices
to communicate with one another via message passing.
Figure 6 provides a visual representation of an example
of the microservices paradigm.

The workflow modeling process employs a structured
workflow model (SW). They use this model to avoid
stalemate or unwanted recurrence. [8] This paradigm
guarantees that a joint node accompanies each split node
at a specific level, and that nodes within the split-joint

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 754

structure lack any edges connecting to nodes beyond the
structure. Each joint node is located at the same level as
the split node. To streamline linear computation,
researchers utilized a specialized tree structure known
as a sequential and parallel tree (SP-tree) [9]. The
sequential structure positions the child nodes on the left
side, while the parallel structure positions them on the
right side. In this structure, each SW node is associated
with a matching SP-tree node N. When considering its

structure, an SP tree can be defined as follows: A child
positioned to the left of the N symbolizes the immediate
successor that is 0½V in the southwest direction.
Software uses split nodes like AND, XOR, and Loop to
express split-joint structures. The first node in the
software structure initiates a new branch as a right-side
child. The structure's direct heir is represented by a
youngster on the left side. To symbolize a road that is
empty, we build a node that says "Empty" in Figure 7.

Fig. 6: An example of microservice modeled in SW

Fig. 7: An example for transforming an SW into a SP-Tree

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 755

Detecting Anomaly in A Microservice

Detection of Continuous Anomaly

One way to characterize a continuous anomaly is with a
three-tuple (v, m, n). In this scenario, artifact v is used on
node m before moving on to node n. Because m precedes
n, there is no processing of v between m and n. Each
possible combination of m and n operations is an
operation pair: (Kill, Read), (Kill, Kill), (Write, Kill), or
(Write, Write). Detecting continuous abnormalities in
the SP-tree is the purpose of Algorithm 1, which is
derived from [9]. The algorithm employs a leftmost
depth-first technique, incorporating a recursive
procedure to traverse the SP-tree node by node. Once
you have arrived at a node: (1) If the node in question is
an activity node, the algorithm will gather information
about the flow of data. It will then identify any anomalies
within the current node. In the case of split nodes, the
algorithm will recursively find anomalies within the
current node and any child nodes on the right side, using
the data flow information. After that, it will either return
the data flow from the right side or call its successor
recursively if one exists. Upon completion of the task, we
examine all the SP tree nodes.

 Algorithm 1:

Continued Detection of Abnormalities (SAD)

Application: SP-tree node Produced: SP-tree element

A set of continuous abnormalities switch is a global
variable. {

cDVH(³6WDUW´):

The left-hand child must initiate data flow information
return SAD.

cDVH(³(QG´);

return node = Null;

cDVH(³$cWiYiW\´);

return ProcessActivityNode(node);

cDVH(³;25´):

return ProcessXorNode(node);

cDVH(³$1D´);

return ProcessAndNode(node);

cDVH(³/RRS´):

return ProcessLoopNode(node);

}

For ProcessActivityNode Analysis of anomalies in an
activity node primarily entails the following five steps:
(2) Locate the assemblage of artifacts that possess either
a Kill or a Write operation prior to reaching that specific
node, referred to as LK and LW sets, respectively. (3) use
this collection to identify any continuous anomalies; and
(4) find the collection of artifacts in that node that have
the first and last operations, which are called SA sets. (1)
call the left-side child recursively; (2) call the left-side
child iteratively; (3) update the LK and LW based on the
SA sets used in the successor node; and (6) return the
data flow for analysis appropriately if there is no left-
side child. For ProcessXorNode they can divide the
process of discovering continuous anomalies into two
independent components: (1) the expression, and (2) the
branches. This section provides a detailed explanation of
both these components. When discussing an XOR
structure, there is an operation that involves artifacts;
hence, it is possible for an anomaly to occur as a result of
its action in the nodes that came before it. Following are
the four steps that make up the first part: The process
involves four steps: (1) identifying the node's SA sets; (2)
determining its LK and LW; (3) identifying the oddities
in the XOR node's expression; and (4) altering LK and
LW based on the SA sets, thereby identifying the oddities
in the XOR branches. There are four steps involved in
this process. The three steps that make up the second
part are listed below:

Find the problem and get the data flow by calling each
child on the right side multiple times; (2) change LK and
LW based on the data flow from step (1), which is used
to find the problems in the child on the left side. which
might be thought of as a successor to the XOR structure
in SW. (3) If there is no child on the left side, then the
data flow should be returned for processing in the
appropriate manner. Otherwise, the recursive call should
be performed to the child on the left side.

For ProcessAndNode The technique bypasses
expressions in AND split nodes and goes straight to the
right-hand children to identify the continuous
abnormality. The detection process consists of four
steps: Using the flow data gathered in step (2), they
proceed as follows: First, they determine the LK and LW
for each child on the right side of the AND node. Next, we
check for any anomalies and collect data through mutual
recursive calls. Finally, we update the variables LK and
LW. Next, make a recursive call to the child on the left
side. If there is no child on the left side, return the data
flow for analysis in the appropriate manner. [10]

For ProcessLoopNode Combining all iterations into one
reduces the need for duplicate computation due to the
loop body's recurring structure and control, making
iterating more efficient for finding continuous
abnormalities in a loop. Eliminating unnecessary
computations will help achieve this. They categorize

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 756

continuous anomalies associated with a loop based on
the location of the two processes that make up the loop.
This is because two actions taken on the same artifact
constitute a continuous anomaly. If the first operation
takes place outside of the loop and the second occurs
inside the loop, we can refer to the anomaly as pre-loop-
end. They refer to the anomaly as an intra-loop anomaly
when both procedures occur inside the loop.

An irregularity with a first operation occurring inside the
loop and a second operation occurring outside of it is
known as a tailed-loop anomaly.

The following six steps comprise the formula: Start by
obtaining the loop node's SA sets. 2. Acquire LK and LW
components. 3. Look for any irregularities in the loop
node before it ends. 1. 4. Repeatedly invoking the right-
hand child will return any abnormalities in the loop
body, whether they occur before or after the loop ends.
5. Update LK and LW to identify the tail loop anomaly. 5.
Using a recursive function, call the left-hand child. Take
the data flow back to analysis if the left side does not
include any children, return the data flow for
analysis.[11]

Detecting of Concurrent Anomaly

If two nodes in the SW are close to each other (m and n),
they can run at the same time. The NCP that came before
this one is an AND split node. Using an AND split node
for each of the two nodes m and n, we test artifact V
extensively. Consider the following as a three-tuple: (v,
m, n). Hence, it has the option to select (Write, Write),
(Kill, Read), or (Kill, Write) as the pair of processes in m
and n. Using Algorithm 2, they can identify concurrent
anomalies in an SP tree by employing a leftmost depth-
first strategy. [12]. This algorithm uses a recursive
approach to explore the SP tree node by node. When the
algorithm reaches a node The algorithm will return a
union containing the artifact(s), their operation, and any
other elements within the current node. This set, named
a_set, not only returns the value from the recursive call
to its child, but also returns the value itself. On the right
side, there is a separate collection known as
branch_a_set that is associated with each AND node's
distinct branches. This set encompasses all a_sets
derived from the top node to its final successor in this
branch. After gathering all the branch_a_sets, the
algorithm scrutinizes each pair of branch_a_sets to
identify any contemporaneous anomalies.

Algorithm 2:

Detection of Concurrent Anomalies (CAD)

Application: SP-tree node Results: a_set{}

International variables: collection of simultaneous

outliers

When the node type is not Start, End, or AND, then
gather all objects and their operations and save them in

 a_set;

}

switch(type of node) {

cDVH (³Start´):

return CAD(child in the left side);

cDVH (³End´):

return {};

cDVH (³Activity´):

if(child in the left side exist){

return (a_set ɷ CAD (child in the left side));

 }else{

return (a_set);

}

cDVH(³Loop´):

a_set= a_set ɷ CAD (child in the right side);

return (a_set ɷ CAD (child in the left side));

cDVH(³;25´):

for(int i=0; i<a number of immediate child in the right

 side; i++) {

a_set= a_set ɷ CAD (ith child in the right side);

}

return (a_set ɷ CAD (child in the left side));

 cDVH(³$1D´):

branch_a_set[];

for(int i=0; i<a number of immediate child in the

right side; i++) {

branch_a_set[i] = CAD (ith child in the right side);

a_set= a_set ɷ branch_a_set[i];

}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 757

for (int i =0; i<branch_a_set.size; i++) {

for (int j=i+1; j<branch_a_set.size; j++) { Detect the
concurrent anomaly by comparing branch_a_set[i] and
branch_a_set[j];

}

}

return (a_set ɷ CAD (child in the left side));

Algorithm 2's operations: When the algorithm reaches a
node, it will first determine the type of node that it is
currently examining and then perform a detection that
corresponds to that kind. When the node is a Start, the
algorithm calls the child on the left side of the tree, which
alternates between levels. The answer is an empty set,
indicating that the SP-tree for the end node has ended.
This method takes an activity node and returns its A_set
plus the value of the recursive call to its leftmost child, if
any. If the activity node does not have a child, the
procedure directly returns its a_set. [13]

The method initiates a recursive call to retrieve all the
a_sets from the child on the right and its successor, if
any. The method then performs a union operation on all
of these sets. Next, the method joins the values that were
returned with the a_set of the Loop node. A loop node,
for example, could handle this. The procedure finishes by
returning the union of the current a_set and the value
received by a call to the child on the left that proceeded
backwards, taking care of the child on the left. To create
a union, the technique takes all the a_sets from the
children of an XOR node and puts them together. The
recursive call collects all the a_sets from each direct child
on the right and any subsequent children. Next, it merges
the returned value with the a_set of the XOR node.
Finally, it takes care of the left child in a way that is
similar to what happens in the loop node [14].

It functions similarly to the XOR node, joining all the
a_sets associated with each child on the right side of the
AND node. It makes a recursive call for each direct child
on the right. This call retrieves all a_sets from that child
and its successor, if any. We also save the returned
number in a separate branch. It will figure out the
ongoing anomaly in each pair of branch sets once it has
dealt with all the children on the right side. The left kid is
taken care of last, like a loop node. It’s [15]

CONCLUSION

When it comes to financial institutions and fintech
companies, using a microservices design is essential
because the financial sector is always changing. This
method has many advantages, including more scalability,

better fault separation, faster development, and more
customization. Additionally, it ensures the framework
meets strict security and compliance standards.
Transitioning from a monolithic architecture to a
microservices architecture significantly enhanced the
financial services platform's performance, scalability,
and stability. The use of Kafka for asynchronous
processing and HTTPS/WebSockets for communication
ensured a more resilient and efficient system, capable of
handling high loads and providing a superior user
experience. To summarize, the incorporation of
microservice architecture is not only a technological
movement, but rather a transformative journey for
financial institutions. In the dynamic financial industry, it
is crucial for attaining operational excellence, increasing
client delight, and maintaining a competitive advantage.
Businesses may secure their future growth and success
in the digital age by adopting this architectural
paradigm, which puts them at the forefront of financial
innovation. Microservice architecture can provide
significant advantages to financial service sectors as they
undergo digital transformation. Distributed
microservices, each operating independently as its own
process and interacting with other microservices
through message-based protocols, can compose a
microservice-based financial application. During the
application design process, it is critical to analyze the
artifact operations that occur within each microservice.
An anomalous artifact operation can lead to an
inaccurate artifact state, potentially corrupting the entire
application. This article delves into the attributes of
artifacts within a company's microservice design, taking
into account the characteristics of microservices. These
characteristics provide a method to prevent the system
utilizing the microservice architecture from entering a
state of failure. In order to guarantee that the artifacts
sent to other microservices are accurate, this method
employs the detection of artifact abnormalities within
each microservice. They can categorize the intra-
microservice artifact anomaly into two types: continuous
and concurrent, where two sequential or parallel
operations on the same artifact lead to abnormal
behavior. We present a method to detect intra-micro
service artifact anomalies with a SP-tree structure for
each micro service. The presented methods show that
they can detect intra-microservice anomalies.

References

1. https://medium.com/firstlineoutsourcing/micr
oservices-architecture-in-financial-systems-
benefits-challenges-and-use-cases-
b388ed01f8a3

2. https://forbytes.com/blog/digital-banking-
architecture/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 758

 3. F. J. Wang and F. Fahmi, "Constructing a Service
Software with Microservices," in the
Proceedings of 2018 IEEE World Congress on
Services (SERVICES), pp. 43-44, 2018.

4. S. Newman, Building Microservice: Designing
Fine-Grained Systems, O'Reilly Media, 2015.

5. F. Fahmi, P.-S. Huang and F.-J. Wang, "Improving
the Detection of Sequential Anomalies
Associated with a Loop," in the Proceedings of
2019 IEEE 43rd Annual Computer Software and
pplications Conference (COMPSAC), pp. 127-
134, 2019.

6. S. X. Sun, J. L. Zhao, J. F. Nunamaker, and O.
R. L. Sheng,374-391, 2006.

7. P. S. Huang, F. Fahmi, F. J. Wang, "Improving the
Detection of Artifact Anomalies in a Workflow
Analysis", under submission review.

8. N. Dragoni, et al., Microservices: Yesterday,
Today, and Tomorrow, Present and Ulterior
Software Engineering, pp. 195-216, 2017.

9. N. Dragoni, et al., Microservices: how to make
your application scale. International Andrei
Ershov Memorial Conference on Perspectives of
System Informatics, pp. 95-104, 2017.

10. T. Erl, Service-Oriented Architecture: Analysis
and Design for Services and Microservices,
Prentice Hall, 2016.

11. D Temporal Structural Workflow Computer
Software and Applications Conference
Workshops 2014 IEEE 38th International, pp.
480-485, 2014.

12. Chen, P. Qi, Y. Hou, D. Causeinfer: Automated
end-to-end performance diagnosis with
hierarchical causality graph in cloud
environment. IEEE Trans. Serv.
Comput. 2016, 12, 214–230.

13. Lin, J.Chen, P. Zheng, Z. Microscope: Pinpoint
performance issues with causal graphs in micro-
service environments. In Proceedings of the
International Conference on Service-Oriented
Computing, Hangzhou, China, 12–15 November
2018; Springer: Berlin/Heidelberg, Germany;
pp. 3–20.

14. Chen, H. Chen, P. Yu, G. A framework of virtual
war room and matrix sketch-based streaming
anomaly detection for microservice
systems. IEEE Access 2020, 8, 43413–43426.

15. Meng, L.Ji, F. Sun, Y.Wang, T. Detecting
anomalies in microservices with execution trace
comparison. Future Gener. Comput.
Syst. 2021, 116, 291–301.

https://medium.com/firstlineoutsourcing/microservices-architecture-in-financial-systems-benefits-challenges-and-use-cases-b388ed01f8a3
https://medium.com/firstlineoutsourcing/microservices-architecture-in-financial-systems-benefits-challenges-and-use-cases-b388ed01f8a3
https://medium.com/firstlineoutsourcing/microservices-architecture-in-financial-systems-benefits-challenges-and-use-cases-b388ed01f8a3
https://medium.com/firstlineoutsourcing/microservices-architecture-in-financial-systems-benefits-challenges-and-use-cases-b388ed01f8a3
https://forbytes.com/blog/digital-banking-architecture/
https://forbytes.com/blog/digital-banking-architecture/

