
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 519

Requirement risk prediction model(Impact of Fine Tuning)
 Krishna Kant Bhardwaj

 Birla Institue of Tecnology and Science
Pilani

Rajasthan, India
---***---

Abstract - An This Paper address two major problems that
are faced in the software development projects. Basically,
when defects are detected in testing phase, we have to perform
Root causal analysis to find out the root cause whether it is
injection or removal root cause and then accordingly we
perform the preventive and the corrective actions. However,
the causal analysis takes significant amount of effort and time
of development team. So, using textual analysis we find out the
root cause of various defects and accordingly categories
defects and take preventive actions. Another problem is that in
testing phase if in last phase we found that the defects are
more than the expected count and due to which there is a
chance of delay in milestone/release of the product so in order
to address this issue. We will be using the dataset of defects of
previous 5 years products and using ANN model will be trained
to predict risky requirements based on various factors, like
design complexity, code changes, side case or coverage area of
changes, developer’s skill. For example, bigger code changes
near the release may risk in quality. Also, one of the factors
would be the relevant functionality module. Based on the
predicted risky requirements, effort in testing could be
increased and also development team will also take action in
the relevant module. We will also try using ML algorithm
Gradient Boost on same dataset and compare the performance
with ANN

Key Words: ANN, ML, Gradient Boost, Softmax, SME,
SMOTE

1.INTRODUCTION

Requirement Engineering is the efficient and systematic
approach for gathering user’s requirements to implement
software solution. It is a process of describing,
understanding and maintaining requirements in the process
of engineering design. Mostly all the software saves some
basic features and they are basically the requirements which
need to be developed by the project team. QCD depends on
the requirements of a project directly or indirectly. In the
development some of the requirement share straightforward
and easy for the development team to understand and
implement however in some requirements there some issues
or aps or complexity which make these requirements risky
for the success of the project. When we say risky that means
the either project KPI Quality/ Cost or time is going beyond
target.

If these risks are not captured and mitigated timely, the
project may suffer a lot. These risks must be eliminated and
diluted to control the software cost and schedule. Because in
the testing phase beginning, we have already implemented
the requirements and the cane requests or any other
possible factors causing risk is already known to
development team and so it is best time for forecasting risks
at this stage. This may improvise software productivity and
quality while reducing the probability of project disaster.
When risks are appropriately mitigated or their contingency
plan is available then, it helps to reduce the possibility of
software project failure. There are many solutions available
to provide the prediction of software risk at different phases
in SDLC. however, as there is lot of variation of data and it
depends on the project nature as well. So still there is a
scope of improvement in the model implementation.
Whereas our timings are apt to predict risky requirements. A
Risk prediction model includes classification methods that
are projected to predict risks on the Software Specifications
of the project.

Figure 1: Proactive approach with prediction model

1.1 Solution

As we have been working for this client for more than 5
years and we have delivered several projects for the same
base source code. We have the entire data of the
requirements along with their defects. We have dataset of
around 250 different requirements developed till date. We
have taken inputs from SMEs about how to estimate defects
in a particular feature. There are few factors identified by
SMEs and based the impact of these factors the defects are
estimated. If a feature is having higher than the estimated
defects, then that requirement is considered risky
requirement and accordingly the testing team takes some
corrective action by proactively planning of testing that

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 520

feature. In this paper we use ANN to analyze Risk and predict
the result.

2. THE RESEARCH METHOD

We are going to use Multilayer Perceptron which is basic of
the neural networks (NN). Basically, it consists of are an
input layer and minimum one hidden layer followed by an
output layer. When Input data is given as the input layer in
to a NN, the neurons in the layer becomes active layer and
the passes the output to the next layer until an output value
is produced at each of the output layers neurons. Before
passing the data to model the data collection and cleaning is
also required which is part of feature engineering.

Figure 2: Risky Requirement prediction model

3. EXPLORATORY DATA ANALYSIS

We have taken defects data from JIRA for the last 7
years developed model and we analyze all those defects,
during the fixing of defect development team put the
feature/ requirement ID in the Jira’s so during the
retrospection we were able to find out that which
requirement results the exceeding defect counts from the
defined goal of KPI. Total defect counts were ~7000 defects
which were manually analyzed by SMEs.The dataset name is
risky_requirements which is having almost 10,000 records.
There is total ~250 unique requirements which are related
to these defects and based on these defect analysis the
different influencing factors were identified.

Table 1: Sample data of featuring Data and Target

3.1 Factor Identification

At the very first stage in the risk prediction model, this is
conducted using a checklist. SRS requirements having the
influencing factors as identified by SMEs in last 7 years
historical based data. There are several factors however only
some could be applicable in a project so accordingly the
factors are marked. The factors were identified after analysis
the defects in the previous year’s projects.

Figure3: Data collection and ANN model interaction

3.2 Different Factors

Table 2: Factors definition

3.3 Preprocessing

Table 3: Preprocessed Training data

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 521

Target label as 3 different Labels High_risky_feature,
Medium_risky_feature, Low_risky_feature, so we need to
convert these labels in to numeric values so that the machine
can understand it. We perform feature encoding as the
following table. Features and requirements are same.

3.4 One hot Encoding

Table 4: Feature Encoding on Target

In the Multiclass classification, it is required to create target
variable in to matrix of the class size. For example in our case
it would be [1,0,0],[0,1,0],[0,0,1] corresponding to each of
the target value.

4. ANN IMPLEMENTATION

In this implementation we have 9 inputs with 1 hidden layer
and 1 output layer with 3 outputs. We will have 18 neurons
in first hidden layer and 3 neurons in second layer. This is our
basic function which we will be changing in the fine tuning to
improve the accuracy. The activation function used for the
first hidden layer is ReLU; the reason of taking the ReLU is
that in current neural networks, the usage of rectified linear
unit or ReLU is recommended.

Function g (z) = max {0, z}

Figure 4: ReLU activation function

In the output layer will be having Softmax as activation
function the reason of using Softmax here is as we have to
predict the probability of any of three targets. As it is a multi-
class classification so the output would be in terms of
probability which is between [0, 1] Softmax for a vector x is
calculated as per the formula below

exp(x)/Sum(exp(x)

Figure 5: Softmax activation function

4.1 Evaluation Method

The categorical cross entropy is used in multiclass
classification. It easily distinguishes between two different
probability distribution.

Two parameters were analyzed. Suppose we have
probabilities p1, p2, p3, p4………pn of different variables and
variables Z1, Z2, ……….Zn are unnormalized probability. We
define Softmax function Qi as below with exponentiation,
division and summation operations.

Figure 6: ANN Model

In a situation when all Xi is equal to a constant C. Analytically
all the output should be equal to 1/n.

We construct a cross entropy loss J=-∑iPilogQi

Dataset

We have used another evaluation metric named K-fold
cross validation which creates a process where every
sample in the data is included in the dataset in the set at
some test. K represents a number of folds, usually in
ranges of 3 to 10. The data was split into K equal folds and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 522

their deviations for each running were analyzed. We found
that data set was not imbalanced. Data distribution

Table 5: Data Distribution

Accuracy & Precision

 We have run tree different sets for different combinations of
epoch and the batch sizes also with input and output number
of neurons. We have compared the accuracy and precision of
the model for the probability of the output of the features.

Following result is based on 25 epochs and batch size 32
with 64 input neurons

Table 6: Observation (Without Tuning)

4.2 Fine Tuning

Following fine tuning approaches were adopted to improve
the accuracy of ANN

Number of hidden layers

We can take even a single hidden layer with many neurons
this also can help us in extracting pattern in the dataset. It’s
always better to have multiple layers with neurons than
single layer with higher neurons. Since deep learning works
on the representing layer mechanism, so first layer captures
primitive features and then next layer links factors and then
next layer identifies pattern. This also uses transfer
learning. We can add hidden layer until overfitting does not
occur.

Number of neurons/layers to decide

Number of neurons is like in pyramid shape, means from the
initial hidden layers to the output layer the neuron count
decreases. Like 64->32->16 As number of primitive features
is more and then they make complex patterns which are
lesser in count and further reduced. However, it is not having
any impact on the performance so every layer can have same
number of neurons or nodes, however the numbers should
be sufficient. In the hidden layer we need to have sufficient
number of neurons/nodes.

Batch Size

a) Batch gradient decent All rows and then weights are
updated slow Training

b) Stochastic gradient decent After one row the weights
are updated. Very Fast

c) Mini Batch gradient decent We decide the batch size,
after how many rows the weights would be updated. After
how many rows traversal the weights would be updated.
Maximum we can have been 8192, however the best is to
have smaller batch size like 8, 24 or 32.

Activation function

Sigmoid gives vanishing gradient problem. However, in our
case it is unavoidable as we have multi-class classification
problem.

No of epochs

Early stopping implementation, it automatically stops the
model training or epoch’s when it finds that there is no more
improvement. Using Keras callback APIs.

Following result is based on 200 epochs and batch size 8
with 64 input neurons

Table 7: Observation (After Tuning Model)

We have used ML based XG BOOST method on same
dataset.

Table 8: Observation (Comparison)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 11 Issue: 08 | Aug 2024 www.irjet.net p-ISSN: 2395-0072

© 2024, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 523

5. CONCLUSIONS

The presented approach automatically predicts the risky
feature for a project. There are few factors identified by
SMEs and based on the presence of these factors the defects
are estimated. If a feature is having higher than the
estimated defects, then that features is considered risky
feature and accordingly the testing team takes some
corrective action by proactively planning of testing that
feature. In this paper we train ANN Model based on this data
and analyzes Risk and predicts the result. This information
can be used by the development team to choose a proper
preventive action. It can also be used by testing team to
create a test suite or design for that specific feature. In
addition, this approach could be utilized for building
benchmarks of specific bug types. The dataset size was
almost 1000 records with 3 outputs, in particular,
High_risky_feature, Medium_risky_feature, and
Low_risky_feature. 64 hidden nodes and batch size of 32
with 25 epochs for the initial condition was used in this
method. When evaluated using the categorical cross entropy
and k-fold cross validation, this method has an accuracy of
90% and if 200 epochs was used, the accuracy increased to
approximately 95%. XGBoost was used to compare with the
current method it has an accuracy of 87%. The ANN
Multiclass outperforms this method and has an outstanding
precision score of 94%. It can be concluded that the ANN
method is more stable in terms of how the network is
supposed to respond to a particular input. However further
exploration could be done with respect to XG BOOST
accuracy as compare o MLP.

Threats to validation

During the manual classification, we have noticed recurring
fault patterns. Manually categorizing the root cause might be
error-prone and the true root cause of the bug can only be
determined by the original programmer. We indicated the
confidence level for each bug we categorized and excluded
bugs with a low confidence level.

REFERENCES

[1] Assim, Marwa, Qasem Obeidat, and Mustafa Hammad.
"Software defects prediction using machine learning
algorithms." In 2020 International conference on data
analytics for business and industry: way towards a
sustainable economy (ICDABI), pp. 1-6. IEEE, 2020.

[2] Shah, Mitt, and Nandit Pujara. "A review on software
defects prediction methods." arXiv preprint
arXiv:2011.00998 (2020)..

[3] Hirsch, Thomas, and Birgit Hofer. "Root cause prediction
based on bug reports." In 2020 IEEE International
Symposium on Software Reliability Engineering
Workshops (ISSREW), pp. 171- 176. IEEE, 2020.

[4] Bhanage, Deepali Arun, Ambika Vishal Pawar, and Ketan
Kotecha. "It infrastructure anomaly detection and failure
handling: A systematic literature review focusing on
datasets, log preprocessing, machine & deep learning
approaches and automated tool." IEEE Access 9 (2021):
156392-156421.

[5] Tan, Lin, Chen Liu, Zhenmin Li, Xuanhui Wang,
Yuanyuan Zhou, and Chengxiang Zhai. "Bug
characteristics in open-source software." Empirical
software engineering 19 (2014): 1665- 1705.

[6] Herzig, Kim, Sascha Just, and Andreas Zeller. "It's not a
bug, it's a feature: how misclassification impacts bug
prediction." In 2013 35th international conference on
software engineering (ICSE), pp. 392-401. IEEE, 2013.

[7] Mahmud, Mahmudul Hoque, Md Tanzirul Haque Nayan,
Dewan Md Nur Anjum Ashir, and Md Alamgir Kabir.
"Software risk prediction: systematic literature review
on machine learning techniques." Applied Sciences 12,
no. 22 (2022): 11694.

[8] Elzamly, Abdelrafe, and Burairah Hussin. "Classification
and identification of risk management techniques for
mitigating risks with factor analysis technique in
software risk management." Review of Computer
Engineering Research 2, no. 1 (2015): 22-38.

[9] Gouthaman, P., and Suresh Sankaranarayanan.
"Prediction of Risk Percentage in Software Projects by
Training Machine Learning Classifiers." Computers &
Electrical Engineering 94 (2021): 107362.

