
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1232

Digital clock using FPGA

D.N.J Sandhya 1, M.R.S.N visranthamm2, Ch.Deepthi3, G.Poojasri4, K.Chandra Sekhar 5

1Student & AMRITA SAI INSTITUTE OF SCIENCE AND TECHNOLOGY
2Assistant Professor & AMRITA SAI INSTITUTE OF SCIENCE AND TECHNOLOGY

3Student & AMRITA SAI INSTITUTE OF SCIENCE AND TECHNOLOGY
4Student & AMRITA SAI INSTITUTE OF SCIENCE AND TECHNOLOGY
5Student & AMRITA SAI INSTITUTE OF SCIENCE AND TECHNOLOGY

---***---

Abstract -

This research presents the design and implementation of a
digital clock integrated with a stopwatch feature using
Field Programmable Gate Array (FPGA) technology. The
project utilizes Verilog Hardware Description Language
(HDL) to create a multifunctional timekeeping system
capable of operating in two modes: digital clock and
stopwatch. The clock mode displays time in minutes and
seconds (MM:SS), while the stopwatch mode allows the
user to start, stop, and reset elapsed time. Mode selection
and control are handled through input signals, offering a
flexible and user-interactive experience.

The architecture includes key modules such as
Digi for clock functionality, stop for stopwatch control, and
Display for 7-segment display decoding. Timing is
accurately managed using two internal clock dividers: one
for generating a 1Hz signal for time progression and
another for refreshing the 4-digit 7-segment display.
Multiplexing logic is employed to drive the display
efficiently, providing clear visual feedback of the current
time or stopwatch values.

The FPGA-based approach ensures high-speed
operation, precise timing, and reconfigurability without
requiring external microcontrollers. The design is
synthesized and tested on an FPGA development board,
confirming correct functionality under various input
conditions. This project not only demonstrates the
capabilities of FPGAs in digital system design but also
provides an educational platform for understanding real-
time hardware control and display interfacing. The
implementation highlights the potential of FPGAs in
embedded systems where reliability, performance, and
real-time response are critical.

Keywords: FPGA (Field Programmable Gate Array) ,Digital
Clock ,Stopwatch ,Verilog HDL ,7-Segment Display
,Timekeeping ,Clock Divider ,Multiplexing ,Embedded
Systems ,Real-Time Systems ,Digital Electronics

1.INTRODUCTION

In the current landscape of digital electronics and
embedded systems, the importance of timekeeping

mechanisms has become more significant than ever. Time
has always been a vital parameter in the operation and
regulation of processes, not just in human life but also in
machine operations. From microcontrollers regulating
home appliances to high-performance processors
synchronizing tasks across network systems, time forms
the foundation of reliable execution. Among various
methods of timekeeping, digital clocks remain one of the
most widely utilized and illustrative systems, offering both
functionality and conceptual clarity in understanding real-
time digital systems. One of the most instructive and
functionally rich platforms for implementing such systems
is the Field Programmable Gate Array (FPGA), which offers
designers immense flexibility and control over hardware
behavior. This research project focuses on the design and
implementation of a digital clock system using FPGA
technology, incorporating additional features such as a
stopwatch and dynamic mode switching, all controlled and
developed through the Verilog Hardware Description
Language (HDL).

Historically, digital clocks have evolved from
simple seven-segment LED-based designs to integrated
LCD and OLED displays with microcontroller-driven
intelligence. These systems, while effective in delivering
user-friendly interfaces and timekeeping functionalities,
often face constraints in speed, flexibility, and
performance when scaled or modified. This is where
FPGA-based systems shine. Unlike microcontrollers or
ASICs (Application-Specific Integrated Circuits), FPGAs
allow developers to redefine hardware behavior
dynamically without redesigning the physical circuitry.
This makes FPGAs highly advantageous for time-critical
applications and system designs that require
customization, real-time responsiveness, and parallelism.

FPGA devices are semiconductor components that
consist of a matrix of configurable logic blocks (CLBs)
interconnected via programmable routing. By using a
hardware description language such as Verilog, designers
can define the logical behavior of a circuit, which is then
mapped onto the FPGA's resources. This methodology
eliminates the latency introduced by software
interpretation in traditional microcontroller systems and
brings about deterministic, hardware-level control. For a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1233

timekeeping device such as a digital clock, this results in
extremely precise timing accuracy, efficient control
mechanisms, and the ability to incorporate complex
features like stopwatches, alarms, and event timers—all
on a single programmable platform.

The motivation behind this project stems not only
from the desire to create a fully functional digital clock
system but also from the educational and developmental
value it provides. This project embodies the core
principles of digital electronics—timing, counting, state
machines, multiplexing, display interfacing, and user
interaction—all wrapped within a practical and familiar
application. It acts as a practical gateway for students and
engineers to delve into the world of HDL programming,
timing analysis, FPGA synthesis, and real-time digital
systems. The decision to include stopwatch functionality
and a mode selection feature further enhances the
complexity and educational richness of the project by
incorporating real-time user control and multi-mode
operation, providing a deeper exploration into event-
driven design logic.

The digital clock designed in this project focuses
on the accurate display of time in the format MM:SS
(minutes and seconds), using a four-digit seven-segment
display. To achieve this, a reliable and stable one-second
time base must be generated from the high-frequency
system clock—often a 50 MHz or 100 MHz oscillator. The
design thus incorporates clock division techniques to
generate a 1Hz signal suitable for time counting. This is
followed by binary counters that represent seconds and
minutes, which are then decoded and mapped onto the
seven-segment display using multiplexing logic.
Multiplexing allows the sharing of display pins across
multiple digits by rapidly switching between them,
creating the illusion of a simultaneous display to the
human eye.

Alongside the digital clock, a stopwatch module
has been integrated into the system. This stopwatch is
activated using start and stop inputs and runs
independently of the clock display. The logic used here
includes event triggers, edge detection, and toggling
mechanisms to switch between running and paused states.
This logic is also robust against signal bouncing, ensuring
reliable operation from mechanical buttons. The ability to
reset the stopwatch independently while the clock runs
simultaneously demonstrates the FPGA’s capability to
manage concurrent operations, a feat difficult to achieve
with limited microcontroller-based systems.

To facilitate user interaction, a mode selection
mechanism is incorporated into the design. With the press
of a button or toggle switch, the user can choose between
digital clock mode and stopwatch mode. Internally, this is
implemented using conditional logic that routes the
appropriate outputs to the display based on the mode

signal. In digital clock mode, the system displays current
time in MM:SS format, whereas in stopwatch mode, it
displays elapsed time using the same format but derived
from a different logic block. This modular design
highlights the efficiency of code reuse and abstraction in
Verilog, and the flexibility of FPGA hardware to
accommodate multiple operational behaviors within a
single design entity.

An essential aspect of the design is the interface to
the seven-segment display. The seven-segment display
driver module is responsible for translating 4-bit binary-
coded decimal (BCD) inputs into the corresponding 8-bit
segment patterns to illuminate the appropriate segments
of each digit. Since seven-segment displays are limited to
showing one digit at a time when used in a multiplexed
configuration, a separate multiplexing module is
developed to cycle through the digits at a high refresh rate.
This refresh rate is carefully chosen to balance between
human visual persistence and display flicker avoidance,
typically achieved through another clock divider circuit
derived from the system clock.

From a developmental perspective, the system is
described and simulated using Verilog HDL. Simulation
plays a crucial role in validating the functionality before
hardware synthesis. Testbenches are created to verify
individual modules such as clock dividers, counters,
display drivers, and the stopwatch logic. Once the
behavior is verified through simulation, the design is
synthesized using FPGA development tools like Xilinx
Vivado or Intel Quartus, and deployed onto an FPGA
development board such as the Xilinx Spartan or Intel DE-
series boards. On-board buttons serve as control inputs,
while the seven-segment display shows the resulting
outputs.

One of the challenges encountered during the
implementation of this project is ensuring timing accuracy
and synchronization across different functional modules.
Clock skew, metastability, and signal bouncing from input
devices must be addressed through proper design
techniques such as synchronous design practices, signal
debouncing, and state machine implementation. In
addition, power consumption and resource utilization are
evaluated to ensure the design remains efficient and
scalable.

In terms of scalability and extension, this FPGA-
based clock design can be expanded to include features
like 24-hour time format, alarm functionality, countdown
timer, lap timing for the stopwatch, and even interfacing
with external sensors or serial communication modules.
These enhancements further elevate the value of the
design and present opportunities for future work.
Furthermore, the clock system can be made wireless or
IoT-enabled with additional peripheral modules, allowing

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1234

remote time synchronization or mobile control through
network interfaces.

This project not only offers practical benefits but
also academic and professional growth. It introduces
students and aspiring engineers to the real-world process
of digital system development, from conceptual design and
HDL coding to simulation, synthesis, and hardware
implementation. It reinforces the concepts of modularity,
design abstraction, and reusability—hallmarks of robust
system design. Moreover, the project aligns with the
growing demand for FPGA expertise in industries such as
telecommunications, aerospace, automotive electronics,
and embedded system design, where deterministic and
high-performance systems are critical.

In conclusion, the implementation of a digital
clock using FPGA technology stands as a testament to the
power and flexibility of reconfigurable computing
platforms. By combining precision, efficiency, and modular
design, the project exemplifies the significant role that
FPGAs can play in both educational settings and industrial
applications. The integration of stopwatch functionality
and dynamic mode switching adds layers of complexity
and practical utility, transforming a simple timekeeping
device into a multifunctional digital system. This work not
only delivers a fully functional and demonstrable outcome
but also lays a strong foundation for more advanced digital
design projects, positioning it as a valuable learning tool
and technological achievement.

2. HARDWARE REQUIREMENTS

Implementing a digital clock using an FPGA
(Field-Programmable Gate Array) requires a
comprehensive understanding of various hardware
components and their integration. This section delves into
the essential hardware requirements, providing a detailed
overview of each component's role in the system.

1. FPGA Development Board

The cornerstone of this project is the FPGA
development board. Boards such as the Xilinx Spartan-6,
Artix-7, or Intel's Cyclone series are well-suited for digital
clock implementations due to their ample logic resources,
I/O capabilities, and integrated clock management
features. These boards typically come equipped with a
high-frequency oscillator, often around 50 MHz, serving as
the primary clock source for the system. The FPGA's
reconfigurable nature allows for the implementation of
custom logic circuits, including counters, multiplexers, and
display drivers, essential for timekeeping and display
control.

2. Clock Source and Management

Accurate timekeeping is paramount in a digital clock.
While the FPGA board provides a high-frequency clock, it's

necessary to derive a 1 Hz signal for second-by-second
time increments. This is achieved through clock division,
where a counter within the FPGA reduces the high-
frequency input to a lower frequency. For enhanced
accuracy, an external 32.768 kHz crystal oscillator can be
employed, a standard in timekeeping applications due to
its precise frequency, which divides evenly into 1 Hz. The
FPGA's internal Phase-Locked Loops (PLLs) or Digital
Clock Managers (DCMs) can also be utilized for clock
generation and management, ensuring synchronized
operation across the system.

3. 7-Segment LED Displays

Visual representation of time is facilitated
through 7-segment LED displays. Depending on the
desired format (HH:MM or HH:MM:SS), four to six digits
are required. These displays can be of the common anode
or common cathode type, with each segment representing
a part of the digit. To prevent excessive current draw and
potential damage, current-limiting resistors, typically
ranging from 220Ω to 330Ω, are connected in series with
each segment. Multiplexing is employed to control
multiple digits using fewer I/O pins. In this technique, the
FPGA rapidly cycles through each digit, activating one at a
time at a speed imperceptible to the human eye, creating
the illusion of a continuous display.

4. Push Buttons and Switches

User interaction is facilitated through push
buttons and switches, allowing functionalities such as
mode selection (clock or stopwatch), start/stop
operations, and resets. Mechanical switches are prone to
bouncing, which can cause multiple unintended
transitions. To mitigate this, debouncing techniques are
implemented, either through hardware (using RC circuits)
or software (by incorporating debounce logic within the
FPGA). Proper debouncing ensures reliable and
predictable user inputs, crucial for the accurate operation
of the clock and stopwatch functions.

5. Power Supply

A stable and regulated power supply is essential
for the reliable operation of the FPGA and peripheral
components. Most FPGA boards operate at 3.3V or 5V, and
it's imperative to ensure that all connected components
are compatible with the board's voltage levels.
Overvoltage or undervoltage conditions can lead to erratic
behavior or permanent damage. In prototyping
environments, power is often supplied via USB or external
adapters, while in finalized designs, dedicated power
regulation circuits may be implemented.

6. Interconnection Components

During the prototyping phase, breadboards and
jumper wires are commonly used to establish connections

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1235

between the FPGA and peripheral components. This setup
allows for easy modifications and testing. However, for
more permanent and reliable connections, especially in
production environments, designing a custom printed
circuit board (PCB) is advisable. A PCB ensures secure
connections, reduces noise and interference, and provides
a more compact and professional appearance.

7. Programming and Development Tools

Programming the FPGA requires a compatible
programmer, such as a JTAG or USB-based device, to
upload the synthesized design onto the hardware.
Development environments like Xilinx ISE, Vivado, or Intel
Quartus Prime are used to write, simulate, and synthesize
the Verilog or VHDL code. These tools offer features like
timing analysis, logic simulation, and debugging
capabilities, which are invaluable during the development
process. Simulation tools, such as ModelSim, allow for
thorough testing of the design before deployment,
ensuring functionality and performance meet the desired
specifications.

8. Optional Components

Depending on the complexity and desired features
of the digital clock, additional components may be
incorporated. For instance, display driver ICs like the
MAX7219 can simplify the control of multiple 7-segment
displays, offloading the multiplexing logic from the FPGA.
Incorporating features like alarms or timers may require
additional memory elements or audio output components,
such as buzzers or speakers, controlled by the FPGA.

In conclusion, the successful implementation of a
digital clock using an FPGA hinges on the careful selection
and integration of various hardware components. Each
element, from the FPGA board to the display units and
user interface components, plays a pivotal role in the
system's overall functionality and reliability. A thorough
understanding of these hardware requirements ensures
the development of an efficient, accurate, and user-
friendly digital clock system.

3. Implementation

 Implementing a digital clock using an FPGA (Field
Programmable Gate Array) is a challenging yet rewarding
task that involves several key components working
together seamlessly. This process integrates various
hardware elements and requires precise design of both the
logic and timing components to ensure that the system
works as expected. The implementation process can be
broken down into the design phase, coding phase,
simulation phase, and testing phase, each critical in
ensuring the accuracy and functionality of the final system.

1.Design Phase

The first step in the implementation of a digital
clock using FPGA is designing the overall architecture. The
system needs to take in a clock signal, process it, and
output the time to a 7-segment display. At the heart of the
system lies the FPGA, which controls all the components.
The design begins by understanding the requirements,
which include displaying time in a format such as hours
and minutes (HH:MM). The user should also be able to
reset the clock, and optionally switch it into a stopwatch
mode. For this, the digital clock is split into various
modules, such as the clock generator, time counter, display
multiplexing, and user interface components like the reset
button and mode selection switch.

2.Clock Generator

The FPGA board will have an external clock,
typically at a frequency of 50 MHz. This clock is fast, and
we need to convert it into a much slower clock signal to
drive the digital clock. The clock generator's purpose is to
generate a 1 Hz signal by dividing the input clock. This is
accomplished by creating a counter inside the FPGA that
increments with each pulse of the 50 MHz clock. Once this
counter reaches a certain value, corresponding to a 1 Hz
signal, it will reset, producing a single pulse. This 1 Hz
pulse is then used to increment the seconds on the digital
clock. For example, if the clock is running in an MM:SS
format, the seconds would increment every 1 Hz pulse.

For accurate clock generation, it is common
practice to use the FPGA's built-in clock management
components like Phase-Locked Loops (PLLs) or Digital
Clock Managers (DCMs). These components can manage
the distribution of clock signals throughout the FPGA,
providing additional stability and synchronization in
complex designs.

3.Time Counter

The next important module is the time counter.
This counter will keep track of the time and increment it
accordingly. The system design typically uses a counter
that increments the seconds once every 1 Hz pulse. Once
the seconds reach 60, the counter for the minutes
increments, and similarly, when the minutes reach 60, the
hours counter increments. The time can be formatted in
several ways; for example, the hours can be displayed in a
12-hour or 24-hour format, depending on the system's
requirement.

The counter can be implemented using simple
binary counters or BCD (Binary Coded Decimal) counters
for each of the time components. In BCD, each digit (hours,
minutes, and seconds) is represented by a 4-bit binary
number, which makes it easier to interface with the 7-
segment display. If using BCD, each time unit (hours,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1236

minutes, and seconds) will require a separate counter that
can count up to 9 or 5, depending on whether it's tracking a
single-digit or a two-digit number (like minutes 00-59).

The counter also needs to handle resetting. A reset
signal, either from a user input or an external trigger, is
required to set the time back to the starting point. This
signal can be provided via a push button connected to the
FPGA, or through a software-controlled reset. The reset
functionality will clear the current time registers and set
the clock back to 00:00.

4.Display Multiplexing

A digital clock typically uses a 7-segment display
to show the time. These displays consist of seven segments
arranged in a figure-eight pattern, with each segment
capable of displaying a part of a digit. The 7-segment
displays are controlled by sending signals to the individual
segments, where a high signal (usually 3.3V or 5V
depending on the board) will light up that particular
segment.

When implementing the display, we must consider
that each 7-segment display has a maximum of 8 lines to
control. Since the digital clock may have several digits (for
example, two digits for the minutes and two digits for the
seconds), we need to implement multiplexing. In
multiplexing, the FPGA will display each digit in rapid
succession, but at a rate fast enough to give the illusion of
simultaneously displaying all digits. This can be achieved
by activating one digit at a time and cycling through them
at a high frequency, typically around 60 Hz, which is
sufficient for the human eye to perceive as continuous.

Multiplexing requires the FPGA to cycle through
the display digits, activating one at a time while
deactivating the others. This is done in a round-robin
fashion, where each digit gets a small window of time to be
shown. A counter controls which digit is currently active,
and the FPGA outputs the appropriate data to the 7-
segment display. In addition to controlling the
multiplexing, the FPGA must send the correct values for
each digit (e.g., 0, 1, 2, etc.). To convert a binary value into a
corresponding 7-segment code, a lookup table or a
combinatorial logic circuit is used.

5.User Interface

In any real-world digital clock, user interaction is
key. The user must be able to reset the time and possibly
switch between different modes (e.g., from a digital clock to
a stopwatch). These functionalities are typically
implemented using push buttons or switches connected to
the FPGA. A mode selection switch allows the user to
switch between different operational modes of the system.
A start/stop button enables the stopwatch mode, while a
reset button clears the current time.

It is important to ensure that the buttons are
debounced. Mechanical switches tend to "bounce" when
pressed, which could result in multiple unintended presses
being detected. Software debouncing can be used to solve
this issue. This is achieved by reading the button input
multiple times and confirming that the state is consistent
over a short period before accepting the input.
Alternatively, hardware debouncing circuits can be
implemented using resistors and capacitors to smooth out
the signal.

System Integration and Communication

After designing all the individual modules, the next
step is to integrate them into a single FPGA design. The
FPGA's logic resources are interconnected to ensure the
digital clock works as expected. This integration involves
connecting the clock signal to the counter, connecting the
counter outputs to the display decoder, and routing the
display signals to the 7-segment display.

In addition to the basic functionality, a robust
communication structure is necessary. The FPGA must be
able to manage all the components efficiently. One key
concern is the timing of each module and how they
synchronize. Since FPGAs allow for parallel processing,
several components can operate simultaneously, but
careful attention must be paid to synchronization and
signal propagation to ensure the system operates
smoothly.

Simulation and Testing

Once the design has been integrated, the next
phase is simulation. FPGA designs are usually tested in
simulation environments before actual implementation to
ensure the logic behaves as expected. Tools like ModelSim
or Vivado's built-in simulation environment allow
designers to simulate the design and examine how it reacts
to different input signals (e.g., clock pulses, reset signals,
button presses).

Simulation is critical because it helps identify
potential issues with timing, signal integrity, and logic
errors. It is often much easier to fix bugs in simulation than
during physical hardware testing, as simulation tools allow
for step-by-step debugging and monitoring of signals.

After successful simulation, the design can be loaded onto
the FPGA hardware. At this stage, testing involves verifying
the digital clock's functionality by checking if the time is
displayed correctly, ensuring that the reset functionality
works, and confirming that user inputs are correctly
processed.

Final Implementation

After all the components are tested and verified,
the final step is to deploy the design onto the FPGA

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1237

hardware. The system is now ready to operate in a real-
world environment. The FPGA is configured with the
design, and the user can interact with the clock by pressing
buttons to reset the time, switch modes, and start/stop the
stopwatch.

At this stage, power consumption, speed, and
reliability are evaluated. The FPGA clock, the display
multiplexing, and other components must work seamlessly
together to ensure the system operates correctly.

This process is a practical demonstration of
FPGA's power in creating embedded systems and shows
how complex logic can be implemented efficiently on
reconfigurable hardware. The experience gained from such
a project serves as a foundation for tackling even more
complex designs, such as those involving multimedia
processing, communication systems, and advanced control
systems.

3.1.1 Hardware Integration

The hardware integration of a digital clock using
FPGA involves combining multiple components and
systems into a unified whole. FPGA-based designs are
highly flexible and can accommodate various types of
digital circuits, making them suitable for projects like the
digital clock. The integration of hardware for such projects
requires a thorough understanding of the components
involved and how they interact with each other. The
following discussion outlines the various components that
must be integrated, the interconnections between them,
and the necessary design steps to achieve a functional
digital clock on an FPGA.

3.1.2Introduction to Hardware Integration

Hardware integration refers to the process of
combining individual hardware components into a
complete, functioning system. In the case of a digital clock,
this involves integrating various hardware subsystems
such as the FPGA board, clock generators, counter modules,
user input systems, and output displays. Each subsystem
must be designed to work together smoothly and
efficiently. A key factor in FPGA hardware integration is
understanding the concept of parallelism, which enables
multiple components to function simultaneously, as well as
synchronization, which ensures the proper timing of
events.

The digital clock's hardware integration must
allow it to take in the system clock, process it, and output
time information to a visual display. The FPGA board
serves as the central controller, coordinating the
functioning of all connected components. This includes
reading input signals, processing them according to the
design logic, and displaying output on a 7-segment display.

3.1.3Components of Hardware Integration

In this section, we will describe the primary components of
the hardware integration for the FPGA-based digital clock.

1. FPGA Board

The FPGA (Field Programmable Gate Array) is the
central component of the system, responsible for
controlling all other hardware components. The FPGA's
main function in a digital clock system is to handle the
clock signals, manage the timekeeping logic, and output
data to the display. The FPGA is reconfigurable, allowing
designers to modify its behavior by programming it with
specific logic.

The FPGA must be capable of handling the clock
input signal, dividing it down to the required frequency for
timekeeping, managing user inputs (such as buttons for
reset or mode selection), and outputting control signals to
drive the 7-segment displays. Additionally, the FPGA must
communicate with various modules, such as the counter
and the clock divider, ensuring that each component
operates in synchrony.

2. Clock Input and Clock Divider

The clock input provides the timing signals that
are necessary for the operation of the digital clock. A
standard FPGA board often has an external oscillator with a
clock frequency of 50 MHz or higher. This high-frequency
clock is not directly usable for timekeeping in a digital
clock, as timekeeping requires very slow pulses, typically
one pulse per second.

To convert the high-frequency input into a usable
timekeeping signal, a clock divider circuit is implemented
within the FPGA. The clock divider divides the input clock
by a large factor, for example, 50 million for a 1 Hz output.
The resulting 1 Hz signal is then used to increment the
seconds counter in the timekeeping module. This is an
essential part of the hardware integration, as accurate
timekeeping relies on generating a stable 1 Hz clock pulse.

3. Timekeeping Module (Counter)

The timekeeping module is responsible for
maintaining and updating the current time. This is
achieved using a counter, typically implemented as a
binary or BCD (Binary Coded Decimal) counter. The
counter will increment on every clock pulse, and the time is
represented as a series of four 4-bit digits, corresponding
to hours, minutes, and seconds.

In a digital clock, the counter is usually designed
with separate modules for hours, minutes, and seconds.
For example, the seconds counter will increment from 0 to
59, and once it reaches 59, it will reset to 0 and increment
the minutes counter. Similarly, the minutes counter will

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1238

increment from 0 to 59, and the hours counter will
increment from 0 to 23 (in a 24-hour clock format).

 The integration of the timekeeping
counter into the FPGA design requires careful attention to
the synchronization of these counters, ensuring that they
increment correctly in response to the 1 Hz pulse
generated by the clock divider. Additionally, the counters
must be designed with reset functionality to allow the user
to reset the clock to a specific time.

4. Display System (7-Segment Display)

A key aspect of the digital clock design is the
display system, which visually presents the current time to
the user. The most common display used for digital clocks
is the 7-segment display, which consists of seven segments
arranged in a figure-eight pattern. Each segment can be
turned on or off to form a number, and the combination of
segments determines the displayed digit.

In a typical FPGA-based digital clock, multiple 7-
segment displays are used to show the time. For example, a
four-digit 7-segment display could be used to show hours
and minutes in the format HH:MM. To control these
displays, a display driver circuit is required. The FPGA
outputs signals to the display driver, which in turn controls
the on/off state of each segment.

One important consideration in the display system
is multiplexing. Since the 7-segment displays typically
share common anode or cathode lines, only one display can
be turned on at a time. Therefore, the FPGA must
implement multiplexing, rapidly switching between the
displays to give the appearance of simultaneous output.
This is done by activating one display at a time in quick
succession, updating the digit shown on each display while
ensuring that the timing is precise enough that the user
perceives a continuous display.

The display system also requires a lookup table or
a combinational logic circuit to convert the 4-bit binary
values representing the digits into the corresponding 7-
segment display codes. Each binary value (0-9) must be
mapped to a specific combination of segments that form
the correct digit.

5. User Input System

The user input system allows the user to interact
with the digital clock, for example, to reset the time or
switch between different operational modes. In most
FPGA-based designs, the user input system is implemented
using physical buttons or switches. These switches can
include a reset button, a start/stop button (for stopwatch
mode), and a mode selection button.

The reset button is used to clear the current time
and set the clock to a predefined starting time (usually
00:00). The mode selection button allows the user to toggle
between different modes, such as switching from a
standard digital clock mode to a stopwatch mode. The
start/stop button in stopwatch mode allows the user to
begin or halt the stopwatch timer.

In FPGA designs, one key issue with button inputs
is "switch bouncing." Mechanical switches can generate
multiple transitions when pressed, causing multiple
unintended signals to be detected. To resolve this,
debouncing circuits are typically implemented. Debouncing
can be achieved using either hardware circuits (e.g., RC
filters) or software techniques, where the FPGA reads the
button state multiple times in quick succession and ignores
rapid state changes caused by bouncing.

6. Power Supply and Voltage Regulation

The FPGA board and the associated components
(clock divider, counter, displays, and user input system)
require a stable power supply. Most FPGA boards operate
on 3.3V or 5V, depending on the specific model of the
board. In addition to providing power to the FPGA, the
power supply must also be able to deliver sufficient current
to power the display system, which can require more
power than the FPGA itself.

Power regulation is a critical part of hardware
integration because any instability in the power supply can
result in erratic behavior or malfunctions. Voltage
regulators or DC-DC converters are typically used to ensure
that the FPGA and all components receive the correct
voltage levels. The use of proper decoupling capacitors is
also essential to smooth out any fluctuations in the power
supply.

7. FPGA I/O Pins and Signal Routing

The FPGA’s I/O pins play a critical role in
hardware integration, as they provide the necessary
interface between the FPGA and the external components,
such as the 7-segment displays and the user input buttons.
The I/O pins must be properly configured and routed to
connect to the appropriate components on the FPGA board.

In the case of the 7-segment display, for example,
each segment of the display is typically connected to one of
the FPGA's I/O pins. Similarly, the buttons for reset, mode
selection, and start/stop are connected to other I/O pins.
Each of these pins must be configured for the correct
direction (input or output) and, if necessary, have pull-up
or pull-down resistors to ensure proper logic levels.

Signal routing is another important aspect of
hardware integration. The FPGA's internal routing
resources must be carefully used to ensure that signals

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1239

from one module can reach the appropriate destination.
This may involve using multiplexers or other logic to select
signals based on the current mode of operation.

Each component plays a vital role in the overall
functionality of the digital clock, and their integration
requires careful attention to timing, synchronization, and
signal routing. Once the hardware is successfully
integrated, the FPGA-based digital clock can provide
accurate timekeeping and an intuitive user interface,
demonstrating the power of FPGA technology in embedded
systems design.

Hardware integration in FPGA-based projects like
digital clocks showcases the power and flexibility of FPGAs
in creating custom digital systems. By integrating the right
components and ensuring that they work together
harmoniously, designers can create functional and efficient
digital systems for a wide range of applications.

3.2 Software Development

Software development for FPGA-based systems
such as a digital clock involves the design and
implementation of various hardware modules using
hardware description languages (HDLs) like Verilog or
VHDL. The objective of FPGA software development is to
create the logic that mimics the desired system behavior
directly on hardware. This process differs significantly
from conventional software programming, as it focuses on
parallel execution and hardware resource management
rather than sequential program execution on a general-
purpose processor.

In FPGA-based systems, each logic block runs
concurrently, making parallelism a crucial factor in
ensuring system efficiency. The software development
process, therefore, involves creating individual modules
that handle specific tasks, ensuring they interact effectively
with one another. In the case of the digital clock, several
key functionalities need to be implemented in software,
such as clock division, timekeeping, display driving, and
input handling.

1.Clock Divider Module

One of the first tasks in the software development
for a digital clock is implementing the clock divider
module. Since most FPGA boards run at high frequencies
(typically in the range of MHz), and the clock input for the
digital clock requires a low frequency (such as 1 Hz for
seconds), a clock divider is necessary. This module divides
the high-frequency input clock into a low-frequency clock
signal that will be used for timekeeping purposes. The
software for this module will use a counter to count the
clock cycles and toggle an output pulse at the appropriate
frequency. For instance, if the FPGA’s clock frequency is 50

MHz, a clock divider will divide it by 50 million to generate
a 1 Hz pulse, ideal for ticking seconds in a digital clock.

The development of the clock divider involves
determining the appropriate divider factor based on the
FPGA’s clock speed. The clock divider ensures the clock
signal is manageable and that the digital clock module
operates correctly at a 1 Hz time base.

2.Timekeeping Module

The timekeeping module is the core component of
the digital clock. Its job is to track the current time,
including hours, minutes, and seconds. The module must
increment the seconds counter at the appropriate intervals
and, when the seconds reach 60, reset to 0 and increment
the minutes counter. Similarly, when the minutes reach 60,
it will reset to 0 and increment the hours counter. This
module must also handle the reset functionality, allowing
the user to set the time manually or reset the clock back to
zero.

The timekeeping module also has to account for
the rollover from one time unit to the next. For example,
when the seconds reach 60, the clock should roll over to 00
and increment the minute count. Additionally, it should
handle the transition between minutes and hours,
especially when moving from 59 minutes to 00 minutes
and from 23:59 to 00:00 in a 24-hour clock format.

3.Display Driver Module

The display driver module controls the display of
the time on the 7-segment display. A digital clock typically
uses a 7-segment display to show time in the form of hours,
minutes, and seconds. The software must convert the
binary values representing each digit (from 0 to 9) into the
appropriate signals that control the seven segments of the
display. Each 7-segment display is made up of seven LEDs
arranged in a figure-eight shape, and different segments
are lit up to form the numbers 0 through 9.

The software for the display driver will use a
lookup table or case statements to map the binary values of
each digit to the corresponding segments. The module
needs to handle multiple digits, updating the display to
show the correct time. It should also be capable of handling
multiple time units such as seconds, minutes, and hours,
displaying them in sequence.

In addition to controlling the 7-segment display,
the display driver needs to implement multiplexing logic.
Since the digital clock typically uses multiple 7-segment
displays to show the time, multiplexing is used to rapidly
switch between the displays, creating the illusion that all
digits are shown at once. This is achieved by updating one
display at a time in a fast cycle, and the human eye
perceives this as a continuous display of all digits.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1240

4.Input Handling Module

An important part of the digital clock is the input
handling module. This module is responsible for processing
user inputs, such as buttons that set the time or start and
stop a stopwatch. Inputs are typically handled through
mechanical switches, which can suffer from noise and
bouncing effects. Debouncing is required to ensure that the
FPGA reliably detects a single press of a button, without
falsely registering multiple presses due to the mechanical
properties of the switches.

Debouncing is often implemented in software by
sampling the button state at regular intervals and ensuring
that the signal remains stable for a predefined period
before recognizing the input as valid. The input handling
module processes signals from switches and generates
corresponding actions, such as setting the clock, resetting
the clock, or switching between different modes (e.g., clock
mode and stopwatch mode).

The input handling logic needs to be integrated
with the overall control flow of the digital clock. For
example, the system should allow the user to toggle
between the clock mode and stopwatch mode, with the
display updating to show either the current time or the
stopwatch reading. The software for input handling must
ensure that the system responds promptly and correctly to
user interactions while maintaining stable operation.

5.Mode Selection and Control Logic

In many digital clock designs, the system supports
multiple modes of operation. For example, the clock may
have a mode for displaying the current time and a mode for
acting as a stopwatch. The mode selection logic allows the
user to switch between these modes by pressing a button.
This module controls which set of values (time or
stopwatch) is shown on the 7-segment display.

In software, the mode selection logic can be
implemented as a simple condition check, where the
system alternates between different displays based on the
input mode select signal. For instance, when the system is
in the digital clock mode, the software will update the
display with the current time, and when the system
switches to the stopwatch mode, it will display the
stopwatch values.

5.Synchronization and Timing Considerations

One of the critical aspects of FPGA-based software
development is synchronization. Since FPGAs are
inherently parallel devices, ensuring that different modules
operate synchronously and share data correctly is crucial.
For example, the timekeeping module and the display
driver module must be synchronized to ensure that the
time is updated correctly on the display at regular
intervals.

Moreover, proper timing considerations are
essential to ensure that the digital clock operates with
accuracy. Any error in timing or synchronization could lead
to incorrect timekeeping, which is not acceptable in a
digital clock. Thus, the software must handle time signals
carefully, particularly the 1 Hz signal generated by the
clock divider, ensuring that it drives the timekeeping
module at the correct frequency.

6.Testing and Debugging FPGA Software

Testing and debugging FPGA-based software can
be more challenging than traditional software development
due to the hardware nature of the system. Simulating FPGA
designs before hardware implementation is crucial to catch
errors early in the design process. FPGA software
development tools often include simulation environments
that allow developers to test their designs in a virtual
setting, providing a way to verify functionality before
deployment.

Once the design has been simulated and tested, it
can be synthesized and implemented on the FPGA
hardware. At this point, further testing is required to
ensure that the system works as expected on the actual
FPGA device. Debugging FPGA software typically involves
checking the behavior of the system in real-time, using
tools like logic analyzers and on-chip debugging interfaces
to monitor signals and detect issues.

4. Real Time Implementation

 Fig -2: Hardware Implementation

The real-time implementation of an FPGA-based
digital clock project involves taking the design, which has
been simulated and tested in a virtual environment, and
deploying it onto an actual hardware platform for physical
operation. This is a critical phase of the project, where all
theoretical designs are brought into the real world, and
the system’s functionality is verified under actual
operating conditions. The real-time implementation
process can be divided into several key stages, including
hardware setup, software deployment, integration, system
testing, and performance evaluation. Each of these stages
requires careful planning, precise execution, and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1241

troubleshooting to ensure that the final product operates
as intended. In this section, we will discuss each of these
phases in detail, from initial hardware setup to final
system optimization.

1.Hardware Setup

The first step in the real-time implementation of
the FPGA-based digital clock is setting up the physical
hardware. This involves selecting the appropriate FPGA
board, connecting necessary peripheral components, and
ensuring that all hardware elements are functioning
correctly. The FPGA board chosen for the project must
have the required resources, such as sufficient logic cells,
input/output pins, and clock sources, to handle the digital
clock’s functionality.

An important consideration during hardware
setup is the display system. In this case, the digital clock
will typically utilize a 7-segment display or an array of 7-
segment displays to show the time. Depending on the
FPGA’s available pins, multiple displays may be connected
via multiplexing or parallel connections. In this real-time
implementation, the FPGA’s input/output pins will be
connected to the anode and cathode terminals of the 7-
segment displays. Proper wiring and signal routing are
essential to ensure the display works correctly and the
FPGA can drive the segments without interference.

Additionally, buttons for user interaction, such as
setting the time, starting, and stopping the stopwatch,
must be integrated into the hardware setup. These buttons
must be connected to the FPGA’s input pins, and
considerations for debouncing (to avoid noisy signals due
to mechanical switch bouncing) must be factored into the
implementation.

Power supply and clock sources are also integral
components of hardware setup. The FPGA board must be
powered correctly, and the clock signal needs to be
supplied at the correct frequency. In many FPGA systems,
an external oscillator or crystal is used to generate a stable
clock signal. For this digital clock system, the clock will
need to be divided to generate the 1 Hz signal required for
timekeeping.

2.Software Deployment

Once the hardware is physically set up, the next
step is the deployment of the software onto the FPGA.
Software deployment in an FPGA system is quite different
from traditional software installation on a general-
purpose computer. FPGA software is typically developed
using hardware description languages (HDLs), such as
Verilog or VHDL, and is compiled into a configuration
bitstream that is loaded onto the FPGA.

The first task in software deployment is to
synthesize the HDL code, which converts the written

design into a form that the FPGA can understand. The HDL
code is written in such a way that it describes the
hardware behavior of the system. For example, the clock
divider, timekeeping logic, display driver, and input
handling modules are all described in Verilog or VHDL.
The synthesis tool takes this HDL code and generates a
netlist, which is essentially a set of instructions for
configuring the FPGA’s internal logic blocks and routing.

Once the design has been synthesized, the next
step is to implement the design. This involves mapping the
synthesized netlist onto the FPGA’s resources, such as
logic cells, flip-flops, and routing channels. After
implementation, a bitstream file is generated, which is
used to configure the FPGA. The bitstream file contains all
the necessary configuration information for the FPGA to
perform the desired operations. This file is then loaded
onto the FPGA using a programmer or USB cable.

With the bitstream loaded onto the FPGA, the
hardware can now execute the software, controlling the
clock and display as intended. During this phase, the
system will begin operating according to the specified
logic, and the clock’s time should be displayed on the 7-
segment display.

3.Integration

After the FPGA software is deployed and the clock
begins to function, the next step is integration. In real-time
implementation, integration involves ensuring that all
system components work together seamlessly. This
includes verifying that the clock division, timekeeping, and
display driving modules interact properly and that the
user inputs are processed correctly.

For example, when the user presses the "start"
button, the stopwatch should begin counting, and when
the user presses the "stop" button, the stopwatch should
pause. The time should be displayed correctly on the 7-
segment displays, and the transition between the digital
clock mode and stopwatch mode should be smooth.
Integration also involves testing the various inputs,
ensuring that they are properly debounced and that the
system responds accurately to user commands.

One key aspect of integration in FPGA systems is
managing timing and synchronization. Since FPGA systems
can execute multiple processes concurrently, it is crucial
to ensure that signals are properly synchronized across
modules. For instance, the clock divider’s output needs to
be accurately synchronized with the timekeeping module’s
inputs to maintain correct time. If there are timing issues
or glitches in the signal propagation, the clock may drift,
leading to inaccurate timekeeping. Therefore, careful
attention must be given to ensuring that all clock signals
and data paths are correctly synchronized.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1242

4.System Testing

Once integration is complete, the system enters
the testing phase. Real-time testing is essential to verify
that the FPGA-based digital clock operates correctly under
various conditions. Testing involves both functional and
performance evaluations. Functional testing ensures that
the system behaves as expected, while performance
testing evaluates the accuracy, reliability, and
responsiveness of the clock system.

Functional testing begins by checking the digital
clock’s ability to display the correct time. The clock should
increment seconds, minutes, and hours correctly, rolling
over at the appropriate intervals (e.g., from 59 seconds to
00, from 59 minutes to 00, and from 23 hours to 00). The
user interface, including the buttons for setting the time,
starting, and stopping the stopwatch, should work as
expected. In stopwatch mode, the stopwatch should start
counting when the start button is pressed, stop when the
stop button is pressed, and reset when the reset button is
pressed.

Additionally, the transition between modes (from
digital clock mode to stopwatch mode) must be smooth,
and the display should update accordingly. The system’s
ability to handle multiple button presses, switch between
modes, and display the correct time should be verified
during testing.

Performance testing focuses on the system’s
accuracy in timekeeping. For a digital clock, it is essential
that the time is kept accurately. In FPGA systems, timing
errors can arise from issues such as clock skew, improper
synchronization, or incorrect clock division. Performance
testing ensures that the clock does not drift over time and
that the 1 Hz time base is accurate. The system should be
tested for prolonged periods (e.g., several days) to ensure
that the timekeeping remains consistent and accurate
throughout its operation.

Another aspect of performance testing is the
responsiveness of the user interface. The clock should
respond immediately to user inputs, such as setting the
time, starting the stopwatch, or switching between modes.
Delays or lag in responding to inputs can negatively
impact the user experience, so this aspect of the system
must be thoroughly tested.

5.Troubleshooting and Optimization

During the real-time implementation process,
issues are likely to arise that need to be addressed.
Common issues in FPGA systems include incorrect timing,
signal glitches, and hardware malfunctions.
Troubleshooting these issues involves analyzing the
system’s behavior and identifying the root cause of the
problem.

One common approach for troubleshooting FPGA
systems is to use hardware debugging tools such as logic
analyzers, oscilloscopes, and in-system debugging
interfaces. These tools allow developers to monitor the
behavior of signals within the FPGA and identify any
anomalies or errors. For example, if the clock divider is not
generating the correct output, a logic analyzer can be used
to check the waveform and identify any timing
mismatches or incorrect configurations.

Optimization is another critical step in real-time
implementation. Although FPGA systems are inherently
parallel, there may still be opportunities to improve the
system’s efficiency. For instance, resource optimization
can help reduce the amount of logic required for certain
modules, making the system more efficient and leaving
resources available for other tasks. Optimizing the clock
division or display multiplexing logic can also improve the
system’s performance.

5. Simulations

 Fig -1: Result

6. ADVANTAGES

1.High Precision Timekeeping:

 FPGA-based digital clocks provide high accuracy
due to precise control over clock division and
time generation.

 The 1 Hz clock used for timekeeping is generated
through an accurate clock division process,
ensuring minimal drift over time.

2.Customization Flexibility:

 FPGAs allow for customizability in design. The
digital clock system can be tailored for specific
use cases, such as adding additional features like a
stopwatch, alarm functionality, or even
integrating other custom peripherals.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 12 Issue: 04 | Apr 2025 www.irjet.net p-ISSN: 2395-0072

© 2025, IRJET | Impact Factor value: 8.315 | ISO 9001:2008 Certified Journal | Page 1243

3.Low Power Consumption:

 FPGAs are known for their energy-efficient
operation, especially when compared to general-
purpose processors. The digital clock
implemented on FPGA consumes less power,
making it ideal for battery-operated devices or
energy-conscious applications.

4.Parallel Processing Capabilities:

 FPGAs excel at parallel processing, meaning that
multiple operations (such as timekeeping, display
updating, and input handling) can occur
simultaneously without significant delays. This
leads to faster and more responsive systems.

5.Real-Time Operation:

 FPGAs operate in real-time, ensuring that the
digital clock is continuously and accurately
updated without the delays or overhead found in
software-based systems. This real-time
processing makes the system more reliable and
predictable.

6.Scalability:

 The design on an FPGA can be easily expanded or
modified. For example, more features (e.g.,
additional alarms, different time zones) or higher-
resolution displays (e.g., adding more segments or
connecting multiple displays) can be added with
minimal changes to the underlying hardware.

7.Reliability and Durability:

 FPGA-based systems are typically more reliable
and durable than microcontroller-based systems.
They are resistant to environmental factors like
temperature fluctuations, which makes them
suitable for industrial or outdoor applications.

8.Cost Efficiency:

 FPGAs can be cost-effective for small-to-medium
scale production runs, as they avoid the need for
custom ASICs or expensive processors. Once the
design is implemented, the cost of replication can
be low.

7. CONCLUSION

In conclusion, implementing a digital clock using
FPGA provides numerous benefits that make it an ideal
solution for accurate, reliable, and efficient timekeeping.
The precision offered by FPGA-based systems ensures that
the clock remains accurate over long periods, with
minimal drift, which is a critical feature for many
applications. The flexibility of FPGA allows for easy

customization, enabling the addition of various
functionalities such as a stopwatch or alarm system,
depending on the user's requirements. Moreover, the
ability to perform parallel processing ensures that all
operations, such as time updates, display refreshing, and
input handling, can be executed simultaneously, making
the system highly responsive.

The low power consumption of FPGA devices and
their durability make them suitable for battery-operated
devices and harsh environmental conditions. Additionally,
the scalability of FPGA designs ensures that future
modifications or expansions can be incorporated with
ease, extending the lifetime and usability of the system. By
utilizing FPGA, the development time is shortened, and on-
the-fly modifications can be made to improve system
performance, providing a significant advantage in fast-
paced development environments.

In summary, FPGA-based digital clocks offer a
highly efficient and robust solution for timekeeping and
other embedded applications. With their high precision,
low power consumption, scalability, and flexibility, FPGAs
are an excellent choice for both educational and practical
applications in a variety of industries.

REFERENCES

[1] Xilinx Inc. (2016). FPGA-Based Digital Design. Xilinx
White Paper. Retrieved from https://www.xilinx.com.

[2] Simmons, L. M., & Thompson, R. M. (2014). Digital
Logic Design: A Design Manual for Implementation of
FPGA, ASIC, and CMOS Circuits. Springer.

[3] Brown, S. D., & Vranesic, Z. G. (2009). Fundamentals of
Digital Logic with VHDL Design. McGraw-Hill Higher
Education.

[4] Cohen, D. S. (2017). FPGA Prototyping by VHDL
Examples: Xilinx Spartan-3 Version. Wiley-Interscience.

[5] Maxim Integrated (2015). Understanding FPGA Design
for Digital Signal Processing. Maxim White Paper.
Retrieved from https://www.maximintegrated.com.

[6] Wakerly, J. F. (2011). Digital Design: Principles and
Practices. Pearson Education.

[7] Wang, H., & Li, D. (2019). High-Performance FPGA
Design: From Algorithms to Hardware. Springer.

[8] Brown, A. E., & McMillan, P. J. (2018). FPGA-Based
Time Measurement Systems. Journal of Embedded
Systems, 35(2), 245-258.

[9]Meyer-Baese, U. (2007). Digital Signal Processing with
Field Programmable Gate Arrays. Springer.

