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Abstract -    

This research presents the design and implementation of a 
digital clock integrated with a stopwatch feature using 
Field Programmable Gate Array (FPGA) technology. The 
project utilizes Verilog Hardware Description Language 
(HDL) to create a multifunctional timekeeping system 
capable of operating in two modes: digital clock and 
stopwatch. The clock mode displays time in minutes and 
seconds (MM:SS), while the stopwatch mode allows the 
user to start, stop, and reset elapsed time. Mode selection 
and control are handled through input signals, offering a 
flexible and user-interactive experience. 

The architecture includes key modules such as 
Digi for clock functionality, stop for stopwatch control, and 
Display for 7-segment display decoding. Timing is 
accurately managed using two internal clock dividers: one 
for generating a 1Hz signal for time progression and 
another for refreshing the 4-digit 7-segment display. 
Multiplexing logic is employed to drive the display 
efficiently, providing clear visual feedback of the current 
time or stopwatch values. 

The FPGA-based approach ensures high-speed 
operation, precise timing, and reconfigurability without 
requiring external microcontrollers. The design is 
synthesized and tested on an FPGA development board, 
confirming correct functionality under various input 
conditions. This project not only demonstrates the 
capabilities of FPGAs in digital system design but also 
provides an educational platform for understanding real-
time hardware control and display interfacing. The 
implementation highlights the potential of FPGAs in 
embedded systems where reliability, performance, and 
real-time response are critical. 

Keywords: FPGA (Field Programmable Gate Array) ,Digital 
Clock ,Stopwatch ,Verilog HDL ,7-Segment Display 
,Timekeeping ,Clock Divider ,Multiplexing ,Embedded 
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1.INTRODUCTION  

In the current landscape of digital electronics and 
embedded systems, the importance of timekeeping 

mechanisms has become more significant than ever. Time 
has always been a vital parameter in the operation and 
regulation of processes, not just in human life but also in 
machine operations. From microcontrollers regulating 
home appliances to high-performance processors 
synchronizing tasks across network systems, time forms 
the foundation of reliable execution. Among various 
methods of timekeeping, digital clocks remain one of the 
most widely utilized and illustrative systems, offering both 
functionality and conceptual clarity in understanding real-
time digital systems. One of the most instructive and 
functionally rich platforms for implementing such systems 
is the Field Programmable Gate Array (FPGA), which offers 
designers immense flexibility and control over hardware 
behavior. This research project focuses on the design and 
implementation of a digital clock system using FPGA 
technology, incorporating additional features such as a 
stopwatch and dynamic mode switching, all controlled and 
developed through the Verilog Hardware Description 
Language (HDL). 

Historically, digital clocks have evolved from 
simple seven-segment LED-based designs to integrated 
LCD and OLED displays with microcontroller-driven 
intelligence. These systems, while effective in delivering 
user-friendly interfaces and timekeeping functionalities, 
often face constraints in speed, flexibility, and 
performance when scaled or modified. This is where 
FPGA-based systems shine. Unlike microcontrollers or 
ASICs (Application-Specific Integrated Circuits), FPGAs 
allow developers to redefine hardware behavior 
dynamically without redesigning the physical circuitry. 
This makes FPGAs highly advantageous for time-critical 
applications and system designs that require 
customization, real-time responsiveness, and parallelism. 

FPGA devices are semiconductor components that 
consist of a matrix of configurable logic blocks (CLBs) 
interconnected via programmable routing. By using a 
hardware description language such as Verilog, designers 
can define the logical behavior of a circuit, which is then 
mapped onto the FPGA's resources. This methodology 
eliminates the latency introduced by software 
interpretation in traditional microcontroller systems and 
brings about deterministic, hardware-level control. For a 
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timekeeping device such as a digital clock, this results in 
extremely precise timing accuracy, efficient control 
mechanisms, and the ability to incorporate complex 
features like stopwatches, alarms, and event timers—all 
on a single programmable platform. 

The motivation behind this project stems not only 
from the desire to create a fully functional digital clock 
system but also from the educational and developmental 
value it provides. This project embodies the core 
principles of digital electronics—timing, counting, state 
machines, multiplexing, display interfacing, and user 
interaction—all wrapped within a practical and familiar 
application. It acts as a practical gateway for students and 
engineers to delve into the world of HDL programming, 
timing analysis, FPGA synthesis, and real-time digital 
systems. The decision to include stopwatch functionality 
and a mode selection feature further enhances the 
complexity and educational richness of the project by 
incorporating real-time user control and multi-mode 
operation, providing a deeper exploration into event-
driven design logic. 

The digital clock designed in this project focuses 
on the accurate display of time in the format MM:SS 
(minutes and seconds), using a four-digit seven-segment 
display. To achieve this, a reliable and stable one-second 
time base must be generated from the high-frequency 
system clock—often a 50 MHz or 100 MHz oscillator. The 
design thus incorporates clock division techniques to 
generate a 1Hz signal suitable for time counting. This is 
followed by binary counters that represent seconds and 
minutes, which are then decoded and mapped onto the 
seven-segment display using multiplexing logic. 
Multiplexing allows the sharing of display pins across 
multiple digits by rapidly switching between them, 
creating the illusion of a simultaneous display to the 
human eye. 

Alongside the digital clock, a stopwatch module 
has been integrated into the system. This stopwatch is 
activated using start and stop inputs and runs 
independently of the clock display. The logic used here 
includes event triggers, edge detection, and toggling 
mechanisms to switch between running and paused states. 
This logic is also robust against signal bouncing, ensuring 
reliable operation from mechanical buttons. The ability to 
reset the stopwatch independently while the clock runs 
simultaneously demonstrates the FPGA’s capability to 
manage concurrent operations, a feat difficult to achieve 
with limited microcontroller-based systems. 

To facilitate user interaction, a mode selection 
mechanism is incorporated into the design. With the press 
of a button or toggle switch, the user can choose between 
digital clock mode and stopwatch mode. Internally, this is 
implemented using conditional logic that routes the 
appropriate outputs to the display based on the mode 

signal. In digital clock mode, the system displays current 
time in MM:SS format, whereas in stopwatch mode, it 
displays elapsed time using the same format but derived 
from a different logic block. This modular design 
highlights the efficiency of code reuse and abstraction in 
Verilog, and the flexibility of FPGA hardware to 
accommodate multiple operational behaviors within a 
single design entity. 

An essential aspect of the design is the interface to 
the seven-segment display. The seven-segment display 
driver module is responsible for translating 4-bit binary-
coded decimal (BCD) inputs into the corresponding 8-bit 
segment patterns to illuminate the appropriate segments 
of each digit. Since seven-segment displays are limited to 
showing one digit at a time when used in a multiplexed 
configuration, a separate multiplexing module is 
developed to cycle through the digits at a high refresh rate. 
This refresh rate is carefully chosen to balance between 
human visual persistence and display flicker avoidance, 
typically achieved through another clock divider circuit 
derived from the system clock. 

From a developmental perspective, the system is 
described and simulated using Verilog HDL. Simulation 
plays a crucial role in validating the functionality before 
hardware synthesis. Testbenches are created to verify 
individual modules such as clock dividers, counters, 
display drivers, and the stopwatch logic. Once the 
behavior is verified through simulation, the design is 
synthesized using FPGA development tools like Xilinx 
Vivado or Intel Quartus, and deployed onto an FPGA 
development board such as the Xilinx Spartan or Intel DE-
series boards. On-board buttons serve as control inputs, 
while the seven-segment display shows the resulting 
outputs. 

One of the challenges encountered during the 
implementation of this project is ensuring timing accuracy 
and synchronization across different functional modules. 
Clock skew, metastability, and signal bouncing from input 
devices must be addressed through proper design 
techniques such as synchronous design practices, signal 
debouncing, and state machine implementation. In 
addition, power consumption and resource utilization are 
evaluated to ensure the design remains efficient and 
scalable. 

In terms of scalability and extension, this FPGA-
based clock design can be expanded to include features 
like 24-hour time format, alarm functionality, countdown 
timer, lap timing for the stopwatch, and even interfacing 
with external sensors or serial communication modules. 
These enhancements further elevate the value of the 
design and present opportunities for future work. 
Furthermore, the clock system can be made wireless or 
IoT-enabled with additional peripheral modules, allowing 
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remote time synchronization or mobile control through 
network interfaces. 

This project not only offers practical benefits but 
also academic and professional growth. It introduces 
students and aspiring engineers to the real-world process 
of digital system development, from conceptual design and 
HDL coding to simulation, synthesis, and hardware 
implementation. It reinforces the concepts of modularity, 
design abstraction, and reusability—hallmarks of robust 
system design. Moreover, the project aligns with the 
growing demand for FPGA expertise in industries such as 
telecommunications, aerospace, automotive electronics, 
and embedded system design, where deterministic and 
high-performance systems are critical.  

In conclusion, the implementation of a digital 
clock using FPGA technology stands as a testament to the 
power and flexibility of reconfigurable computing 
platforms. By combining precision, efficiency, and modular 
design, the project exemplifies the significant role that 
FPGAs can play in both educational settings and industrial 
applications. The integration of stopwatch functionality 
and dynamic mode switching adds layers of complexity 
and practical utility, transforming a simple timekeeping 
device into a multifunctional digital system. This work not 
only delivers a fully functional and demonstrable outcome 
but also lays a strong foundation for more advanced digital 
design projects, positioning it as a valuable learning tool 
and technological achievement. 

2. HARDWARE REQUIREMENTS 

Implementing a digital clock using an FPGA 
(Field-Programmable Gate Array) requires a 
comprehensive understanding of various hardware 
components and their integration. This section delves into 
the essential hardware requirements, providing a detailed 
overview of each component's role in the system. 

1. FPGA Development Board 

The cornerstone of this project is the FPGA 
development board. Boards such as the Xilinx Spartan-6, 
Artix-7, or Intel's Cyclone series are well-suited for digital 
clock implementations due to their ample logic resources, 
I/O capabilities, and integrated clock management 
features. These boards typically come equipped with a 
high-frequency oscillator, often around 50 MHz, serving as 
the primary clock source for the system. The FPGA's 
reconfigurable nature allows for the implementation of 
custom logic circuits, including counters, multiplexers, and 
display drivers, essential for timekeeping and display 
control. 

2. Clock Source and Management 

Accurate timekeeping is paramount in a digital clock. 
While the FPGA board provides a high-frequency clock, it's 

necessary to derive a 1 Hz signal for second-by-second 
time increments. This is achieved through clock division, 
where a counter within the FPGA reduces the high-
frequency input to a lower frequency. For enhanced 
accuracy, an external 32.768 kHz crystal oscillator can be 
employed, a standard in timekeeping applications due to 
its precise frequency, which divides evenly into 1 Hz. The 
FPGA's internal Phase-Locked Loops (PLLs) or Digital 
Clock Managers (DCMs) can also be utilized for clock 
generation and management, ensuring synchronized 
operation across the system. 

3. 7-Segment LED Displays 

Visual representation of time is facilitated 
through 7-segment LED displays. Depending on the 
desired format (HH:MM or HH:MM:SS), four to six digits 
are required. These displays can be of the common anode 
or common cathode type, with each segment representing 
a part of the digit. To prevent excessive current draw and 
potential damage, current-limiting resistors, typically 
ranging from 220Ω to 330Ω, are connected in series with 
each segment. Multiplexing is employed to control 
multiple digits using fewer I/O pins. In this technique, the 
FPGA rapidly cycles through each digit, activating one at a 
time at a speed imperceptible to the human eye, creating 
the illusion of a continuous display. 

4. Push Buttons and Switches 

User interaction is facilitated through push 
buttons and switches, allowing functionalities such as 
mode selection (clock or stopwatch), start/stop 
operations, and resets. Mechanical switches are prone to 
bouncing, which can cause multiple unintended 
transitions. To mitigate this, debouncing techniques are 
implemented, either through hardware (using RC circuits) 
or software (by incorporating debounce logic within the 
FPGA). Proper debouncing ensures reliable and 
predictable user inputs, crucial for the accurate operation 
of the clock and stopwatch functions. 

5. Power Supply 

A stable and regulated power supply is essential 
for the reliable operation of the FPGA and peripheral 
components. Most FPGA boards operate at 3.3V or 5V, and 
it's imperative to ensure that all connected components 
are compatible with the board's voltage levels. 
Overvoltage or undervoltage conditions can lead to erratic 
behavior or permanent damage. In prototyping 
environments, power is often supplied via USB or external 
adapters, while in finalized designs, dedicated power 
regulation circuits may be implemented. 

6. Interconnection Components 

During the prototyping phase, breadboards and 
jumper wires are commonly used to establish connections 
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between the FPGA and peripheral components. This setup 
allows for easy modifications and testing. However, for 
more permanent and reliable connections, especially in 
production environments, designing a custom printed 
circuit board (PCB) is advisable. A PCB ensures secure 
connections, reduces noise and interference, and provides 
a more compact and professional appearance. 

7. Programming and Development Tools 

Programming the FPGA requires a compatible 
programmer, such as a JTAG or USB-based device, to 
upload the synthesized design onto the hardware. 
Development environments like Xilinx ISE, Vivado, or Intel 
Quartus Prime are used to write, simulate, and synthesize 
the Verilog or VHDL code. These tools offer features like 
timing analysis, logic simulation, and debugging 
capabilities, which are invaluable during the development 
process. Simulation tools, such as ModelSim, allow for 
thorough testing of the design before deployment, 
ensuring functionality and performance meet the desired 
specifications. 

8. Optional Components 

Depending on the complexity and desired features 
of the digital clock, additional components may be 
incorporated. For instance, display driver ICs like the 
MAX7219 can simplify the control of multiple 7-segment 
displays, offloading the multiplexing logic from the FPGA. 
Incorporating features like alarms or timers may require 
additional memory elements or audio output components, 
such as buzzers or speakers, controlled by the FPGA. 

In conclusion, the successful implementation of a 
digital clock using an FPGA hinges on the careful selection 
and integration of various hardware components. Each 
element, from the FPGA board to the display units and 
user interface components, plays a pivotal role in the 
system's overall functionality and reliability. A thorough 
understanding of these hardware requirements ensures 
the development of an efficient, accurate, and user-
friendly digital clock system. 

3. Implementation 

 Implementing a digital clock using an FPGA (Field 
Programmable Gate Array) is a challenging yet rewarding 
task that involves several key components working 
together seamlessly. This process integrates various 
hardware elements and requires precise design of both the 
logic and timing components to ensure that the system 
works as expected. The implementation process can be 
broken down into the design phase, coding phase, 
simulation phase, and testing phase, each critical in 
ensuring the accuracy and functionality of the final system. 

 

1.Design Phase 

The first step in the implementation of a digital 
clock using FPGA is designing the overall architecture. The 
system needs to take in a clock signal, process it, and 
output the time to a 7-segment display. At the heart of the 
system lies the FPGA, which controls all the components. 
The design begins by understanding the requirements, 
which include displaying time in a format such as hours 
and minutes (HH:MM). The user should also be able to 
reset the clock, and optionally switch it into a stopwatch 
mode. For this, the digital clock is split into various 
modules, such as the clock generator, time counter, display 
multiplexing, and user interface components like the reset 
button and mode selection switch. 

2.Clock Generator 

The FPGA board will have an external clock, 
typically at a frequency of 50 MHz. This clock is fast, and 
we need to convert it into a much slower clock signal to 
drive the digital clock. The clock generator's purpose is to 
generate a 1 Hz signal by dividing the input clock. This is 
accomplished by creating a counter inside the FPGA that 
increments with each pulse of the 50 MHz clock. Once this 
counter reaches a certain value, corresponding to a 1 Hz 
signal, it will reset, producing a single pulse. This 1 Hz 
pulse is then used to increment the seconds on the digital 
clock. For example, if the clock is running in an MM:SS 
format, the seconds would increment every 1 Hz pulse. 

For accurate clock generation, it is common 
practice to use the FPGA's built-in clock management 
components like Phase-Locked Loops (PLLs) or Digital 
Clock Managers (DCMs). These components can manage 
the distribution of clock signals throughout the FPGA, 
providing additional stability and synchronization in 
complex designs. 

3.Time Counter 

The next important module is the time counter. 
This counter will keep track of the time and increment it 
accordingly. The system design typically uses a counter 
that increments the seconds once every 1 Hz pulse. Once 
the seconds reach 60, the counter for the minutes 
increments, and similarly, when the minutes reach 60, the 
hours counter increments. The time can be formatted in 
several ways; for example, the hours can be displayed in a 
12-hour or 24-hour format, depending on the system's 
requirement. 

The counter can be implemented using simple 
binary counters or BCD (Binary Coded Decimal) counters 
for each of the time components. In BCD, each digit (hours, 
minutes, and seconds) is represented by a 4-bit binary 
number, which makes it easier to interface with the 7-
segment display. If using BCD, each time unit (hours, 
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minutes, and seconds) will require a separate counter that 
can count up to 9 or 5, depending on whether it's tracking a 
single-digit or a two-digit number (like minutes 00-59). 

The counter also needs to handle resetting. A reset 
signal, either from a user input or an external trigger, is 
required to set the time back to the starting point. This 
signal can be provided via a push button connected to the 
FPGA, or through a software-controlled reset. The reset 
functionality will clear the current time registers and set 
the clock back to 00:00. 

4.Display Multiplexing 

A digital clock typically uses a 7-segment display 
to show the time. These displays consist of seven segments 
arranged in a figure-eight pattern, with each segment 
capable of displaying a part of a digit. The 7-segment 
displays are controlled by sending signals to the individual 
segments, where a high signal (usually 3.3V or 5V 
depending on the board) will light up that particular 
segment. 

When implementing the display, we must consider 
that each 7-segment display has a maximum of 8 lines to 
control. Since the digital clock may have several digits (for 
example, two digits for the minutes and two digits for the 
seconds), we need to implement multiplexing. In 
multiplexing, the FPGA will display each digit in rapid 
succession, but at a rate fast enough to give the illusion of 
simultaneously displaying all digits. This can be achieved 
by activating one digit at a time and cycling through them 
at a high frequency, typically around 60 Hz, which is 
sufficient for the human eye to perceive as continuous. 

Multiplexing requires the FPGA to cycle through 
the display digits, activating one at a time while 
deactivating the others. This is done in a round-robin 
fashion, where each digit gets a small window of time to be 
shown. A counter controls which digit is currently active, 
and the FPGA outputs the appropriate data to the 7-
segment display. In addition to controlling the 
multiplexing, the FPGA must send the correct values for 
each digit (e.g., 0, 1, 2, etc.). To convert a binary value into a 
corresponding 7-segment code, a lookup table or a 
combinatorial logic circuit is used. 

5.User Interface 

In any real-world digital clock, user interaction is 
key. The user must be able to reset the time and possibly 
switch between different modes (e.g., from a digital clock to 
a stopwatch). These functionalities are typically 
implemented using push buttons or switches connected to 
the FPGA. A mode selection switch allows the user to 
switch between different operational modes of the system. 
A start/stop button enables the stopwatch mode, while a 
reset button clears the current time. 

It is important to ensure that the buttons are 
debounced. Mechanical switches tend to "bounce" when 
pressed, which could result in multiple unintended presses 
being detected. Software debouncing can be used to solve 
this issue. This is achieved by reading the button input 
multiple times and confirming that the state is consistent 
over a short period before accepting the input. 
Alternatively, hardware debouncing circuits can be 
implemented using resistors and capacitors to smooth out 
the signal. 

System Integration and Communication 

After designing all the individual modules, the next 
step is to integrate them into a single FPGA design. The 
FPGA's logic resources are interconnected to ensure the 
digital clock works as expected. This integration involves 
connecting the clock signal to the counter, connecting the 
counter outputs to the display decoder, and routing the 
display signals to the 7-segment display. 

In addition to the basic functionality, a robust 
communication structure is necessary. The FPGA must be 
able to manage all the components efficiently. One key 
concern is the timing of each module and how they 
synchronize. Since FPGAs allow for parallel processing, 
several components can operate simultaneously, but 
careful attention must be paid to synchronization and 
signal propagation to ensure the system operates 
smoothly. 

Simulation and Testing 

Once the design has been integrated, the next 
phase is simulation. FPGA designs are usually tested in 
simulation environments before actual implementation to 
ensure the logic behaves as expected. Tools like ModelSim 
or Vivado's built-in simulation environment allow 
designers to simulate the design and examine how it reacts 
to different input signals (e.g., clock pulses, reset signals, 
button presses). 

Simulation is critical because it helps identify 
potential issues with timing, signal integrity, and logic 
errors. It is often much easier to fix bugs in simulation than 
during physical hardware testing, as simulation tools allow 
for step-by-step debugging and monitoring of signals. 

After successful simulation, the design can be loaded onto 
the FPGA hardware. At this stage, testing involves verifying 
the digital clock's functionality by checking if the time is 
displayed correctly, ensuring that the reset functionality 
works, and confirming that user inputs are correctly 
processed. 

Final Implementation 

After all the components are tested and verified, 
the final step is to deploy the design onto the FPGA 
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hardware. The system is now ready to operate in a real-
world environment. The FPGA is configured with the 
design, and the user can interact with the clock by pressing 
buttons to reset the time, switch modes, and start/stop the 
stopwatch. 

At this stage, power consumption, speed, and 
reliability are evaluated. The FPGA clock, the display 
multiplexing, and other components must work seamlessly 
together to ensure the system operates correctly. 

This process is a practical demonstration of 
FPGA's power in creating embedded systems and shows 
how complex logic can be implemented efficiently on 
reconfigurable hardware. The experience gained from such 
a project serves as a foundation for tackling even more 
complex designs, such as those involving multimedia 
processing, communication systems, and advanced control 
systems. 

3.1.1 Hardware Integration 

The hardware integration of a digital clock using 
FPGA involves combining multiple components and 
systems into a unified whole. FPGA-based designs are 
highly flexible and can accommodate various types of 
digital circuits, making them suitable for projects like the 
digital clock. The integration of hardware for such projects 
requires a thorough understanding of the components 
involved and how they interact with each other. The 
following discussion outlines the various components that 
must be integrated, the interconnections between them, 
and the necessary design steps to achieve a functional 
digital clock on an FPGA. 

3.1.2Introduction to Hardware Integration 

Hardware integration refers to the process of 
combining individual hardware components into a 
complete, functioning system. In the case of a digital clock, 
this involves integrating various hardware subsystems 
such as the FPGA board, clock generators, counter modules, 
user input systems, and output displays. Each subsystem 
must be designed to work together smoothly and 
efficiently. A key factor in FPGA hardware integration is 
understanding the concept of parallelism, which enables 
multiple components to function simultaneously, as well as 
synchronization, which ensures the proper timing of 
events. 

The digital clock's hardware integration must 
allow it to take in the system clock, process it, and output 
time information to a visual display. The FPGA board 
serves as the central controller, coordinating the 
functioning of all connected components. This includes 
reading input signals, processing them according to the 
design logic, and displaying output on a 7-segment display. 

3.1.3Components of Hardware Integration 

In this section, we will describe the primary components of 
the hardware integration for the FPGA-based digital clock. 

1. FPGA Board 

The FPGA (Field Programmable Gate Array) is the 
central component of the system, responsible for 
controlling all other hardware components. The FPGA's 
main function in a digital clock system is to handle the 
clock signals, manage the timekeeping logic, and output 
data to the display. The FPGA is reconfigurable, allowing 
designers to modify its behavior by programming it with 
specific logic. 

The FPGA must be capable of handling the clock 
input signal, dividing it down to the required frequency for 
timekeeping, managing user inputs (such as buttons for 
reset or mode selection), and outputting control signals to 
drive the 7-segment displays. Additionally, the FPGA must 
communicate with various modules, such as the counter 
and the clock divider, ensuring that each component 
operates in synchrony. 

2. Clock Input and Clock Divider 

The clock input provides the timing signals that 
are necessary for the operation of the digital clock. A 
standard FPGA board often has an external oscillator with a 
clock frequency of 50 MHz or higher. This high-frequency 
clock is not directly usable for timekeeping in a digital 
clock, as timekeeping requires very slow pulses, typically 
one pulse per second. 

To convert the high-frequency input into a usable 
timekeeping signal, a clock divider circuit is implemented 
within the FPGA. The clock divider divides the input clock 
by a large factor, for example, 50 million for a 1 Hz output. 
The resulting 1 Hz signal is then used to increment the 
seconds counter in the timekeeping module. This is an 
essential part of the hardware integration, as accurate 
timekeeping relies on generating a stable 1 Hz clock pulse. 

3. Timekeeping Module (Counter) 

The timekeeping module is responsible for 
maintaining and updating the current time. This is 
achieved using a counter, typically implemented as a 
binary or BCD (Binary Coded Decimal) counter. The 
counter will increment on every clock pulse, and the time is 
represented as a series of four 4-bit digits, corresponding 
to hours, minutes, and seconds. 

In a digital clock, the counter is usually designed 
with separate modules for hours, minutes, and seconds. 
For example, the seconds counter will increment from 0 to 
59, and once it reaches 59, it will reset to 0 and increment 
the minutes counter. Similarly, the minutes counter will 
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increment from 0 to 59, and the hours counter will 
increment from 0 to 23 (in a 24-hour clock format). 

 The integration of the timekeeping 
counter into the FPGA design requires careful attention to 
the synchronization of these counters, ensuring that they 
increment correctly in response to the 1 Hz pulse 
generated by the clock divider. Additionally, the counters 
must be designed with reset functionality to allow the user 
to reset the clock to a specific time. 

4. Display System (7-Segment Display) 

A key aspect of the digital clock design is the 
display system, which visually presents the current time to 
the user. The most common display used for digital clocks 
is the 7-segment display, which consists of seven segments 
arranged in a figure-eight pattern. Each segment can be 
turned on or off to form a number, and the combination of 
segments determines the displayed digit. 

In a typical FPGA-based digital clock, multiple 7-
segment displays are used to show the time. For example, a 
four-digit 7-segment display could be used to show hours 
and minutes in the format HH:MM. To control these 
displays, a display driver circuit is required. The FPGA 
outputs signals to the display driver, which in turn controls 
the on/off state of each segment. 

One important consideration in the display system 
is multiplexing. Since the 7-segment displays typically 
share common anode or cathode lines, only one display can 
be turned on at a time. Therefore, the FPGA must 
implement multiplexing, rapidly switching between the 
displays to give the appearance of simultaneous output. 
This is done by activating one display at a time in quick 
succession, updating the digit shown on each display while 
ensuring that the timing is precise enough that the user 
perceives a continuous display. 

The display system also requires a lookup table or 
a combinational logic circuit to convert the 4-bit binary 
values representing the digits into the corresponding 7-
segment display codes. Each binary value (0-9) must be 
mapped to a specific combination of segments that form 
the correct digit. 

5. User Input System 

The user input system allows the user to interact 
with the digital clock, for example, to reset the time or 
switch between different operational modes. In most 
FPGA-based designs, the user input system is implemented 
using physical buttons or switches. These switches can 
include a reset button, a start/stop button (for stopwatch 
mode), and a mode selection button. 

The reset button is used to clear the current time 
and set the clock to a predefined starting time (usually 
00:00). The mode selection button allows the user to toggle 
between different modes, such as switching from a 
standard digital clock mode to a stopwatch mode. The 
start/stop button in stopwatch mode allows the user to 
begin or halt the stopwatch timer. 

In FPGA designs, one key issue with button inputs 
is "switch bouncing." Mechanical switches can generate 
multiple transitions when pressed, causing multiple 
unintended signals to be detected. To resolve this, 
debouncing circuits are typically implemented. Debouncing 
can be achieved using either hardware circuits (e.g., RC 
filters) or software techniques, where the FPGA reads the 
button state multiple times in quick succession and ignores 
rapid state changes caused by bouncing. 

6. Power Supply and Voltage Regulation 

The FPGA board and the associated components 
(clock divider, counter, displays, and user input system) 
require a stable power supply. Most FPGA boards operate 
on 3.3V or 5V, depending on the specific model of the 
board. In addition to providing power to the FPGA, the 
power supply must also be able to deliver sufficient current 
to power the display system, which can require more 
power than the FPGA itself. 

Power regulation is a critical part of hardware 
integration because any instability in the power supply can 
result in erratic behavior or malfunctions. Voltage 
regulators or DC-DC converters are typically used to ensure 
that the FPGA and all components receive the correct 
voltage levels. The use of proper decoupling capacitors is 
also essential to smooth out any fluctuations in the power 
supply. 

7. FPGA I/O Pins and Signal Routing 

The FPGA’s I/O pins play a critical role in 
hardware integration, as they provide the necessary 
interface between the FPGA and the external components, 
such as the 7-segment displays and the user input buttons. 
The I/O pins must be properly configured and routed to 
connect to the appropriate components on the FPGA board. 

In the case of the 7-segment display, for example, 
each segment of the display is typically connected to one of 
the FPGA's I/O pins. Similarly, the buttons for reset, mode 
selection, and start/stop are connected to other I/O pins. 
Each of these pins must be configured for the correct 
direction (input or output) and, if necessary, have pull-up 
or pull-down resistors to ensure proper logic levels. 

Signal routing is another important aspect of 
hardware integration. The FPGA's internal routing 
resources must be carefully used to ensure that signals 
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from one module can reach the appropriate destination. 
This may involve using multiplexers or other logic to select 
signals based on the current mode of operation. 

Each component plays a vital role in the overall 
functionality of the digital clock, and their integration 
requires careful attention to timing, synchronization, and 
signal routing. Once the hardware is successfully 
integrated, the FPGA-based digital clock can provide 
accurate timekeeping and an intuitive user interface, 
demonstrating the power of FPGA technology in embedded 
systems design. 

Hardware integration in FPGA-based projects like 
digital clocks showcases the power and flexibility of FPGAs 
in creating custom digital systems. By integrating the right 
components and ensuring that they work together 
harmoniously, designers can create functional and efficient 
digital systems for a wide range of applications. 

3.2 Software Development 

Software development for FPGA-based systems 
such as a digital clock involves the design and 
implementation of various hardware modules using 
hardware description languages (HDLs) like Verilog or 
VHDL. The objective of FPGA software development is to 
create the logic that mimics the desired system behavior 
directly on hardware. This process differs significantly 
from conventional software programming, as it focuses on 
parallel execution and hardware resource management 
rather than sequential program execution on a general-
purpose processor. 

In FPGA-based systems, each logic block runs 
concurrently, making parallelism a crucial factor in 
ensuring system efficiency. The software development 
process, therefore, involves creating individual modules 
that handle specific tasks, ensuring they interact effectively 
with one another. In the case of the digital clock, several 
key functionalities need to be implemented in software, 
such as clock division, timekeeping, display driving, and 
input handling. 

1.Clock Divider Module 

One of the first tasks in the software development 
for a digital clock is implementing the clock divider 
module. Since most FPGA boards run at high frequencies 
(typically in the range of MHz), and the clock input for the 
digital clock requires a low frequency (such as 1 Hz for 
seconds), a clock divider is necessary. This module divides 
the high-frequency input clock into a low-frequency clock 
signal that will be used for timekeeping purposes. The 
software for this module will use a counter to count the 
clock cycles and toggle an output pulse at the appropriate 
frequency. For instance, if the FPGA’s clock frequency is 50 

MHz, a clock divider will divide it by 50 million to generate 
a 1 Hz pulse, ideal for ticking seconds in a digital clock. 

The development of the clock divider involves 
determining the appropriate divider factor based on the 
FPGA’s clock speed. The clock divider ensures the clock 
signal is manageable and that the digital clock module 
operates correctly at a 1 Hz time base. 

2.Timekeeping Module 

The timekeeping module is the core component of 
the digital clock. Its job is to track the current time, 
including hours, minutes, and seconds. The module must 
increment the seconds counter at the appropriate intervals 
and, when the seconds reach 60, reset to 0 and increment 
the minutes counter. Similarly, when the minutes reach 60, 
it will reset to 0 and increment the hours counter. This 
module must also handle the reset functionality, allowing 
the user to set the time manually or reset the clock back to 
zero. 

The timekeeping module also has to account for 
the rollover from one time unit to the next. For example, 
when the seconds reach 60, the clock should roll over to 00 
and increment the minute count. Additionally, it should 
handle the transition between minutes and hours, 
especially when moving from 59 minutes to 00 minutes 
and from 23:59 to 00:00 in a 24-hour clock format. 

3.Display Driver Module 

The display driver module controls the display of 
the time on the 7-segment display. A digital clock typically 
uses a 7-segment display to show time in the form of hours, 
minutes, and seconds. The software must convert the 
binary values representing each digit (from 0 to 9) into the 
appropriate signals that control the seven segments of the 
display. Each 7-segment display is made up of seven LEDs 
arranged in a figure-eight shape, and different segments 
are lit up to form the numbers 0 through 9. 

The software for the display driver will use a 
lookup table or case statements to map the binary values of 
each digit to the corresponding segments. The module 
needs to handle multiple digits, updating the display to 
show the correct time. It should also be capable of handling 
multiple time units such as seconds, minutes, and hours, 
displaying them in sequence. 

In addition to controlling the 7-segment display, 
the display driver needs to implement multiplexing logic. 
Since the digital clock typically uses multiple 7-segment 
displays to show the time, multiplexing is used to rapidly 
switch between the displays, creating the illusion that all 
digits are shown at once. This is achieved by updating one 
display at a time in a fast cycle, and the human eye 
perceives this as a continuous display of all digits. 
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4.Input Handling Module 

An important part of the digital clock is the input 
handling module. This module is responsible for processing 
user inputs, such as buttons that set the time or start and 
stop a stopwatch. Inputs are typically handled through 
mechanical switches, which can suffer from noise and 
bouncing effects. Debouncing is required to ensure that the 
FPGA reliably detects a single press of a button, without 
falsely registering multiple presses due to the mechanical 
properties of the switches. 

Debouncing is often implemented in software by 
sampling the button state at regular intervals and ensuring 
that the signal remains stable for a predefined period 
before recognizing the input as valid. The input handling 
module processes signals from switches and generates 
corresponding actions, such as setting the clock, resetting 
the clock, or switching between different modes (e.g., clock 
mode and stopwatch mode). 

The input handling logic needs to be integrated 
with the overall control flow of the digital clock. For 
example, the system should allow the user to toggle 
between the clock mode and stopwatch mode, with the 
display updating to show either the current time or the 
stopwatch reading. The software for input handling must 
ensure that the system responds promptly and correctly to 
user interactions while maintaining stable operation. 

5.Mode Selection and Control Logic 

In many digital clock designs, the system supports 
multiple modes of operation. For example, the clock may 
have a mode for displaying the current time and a mode for 
acting as a stopwatch. The mode selection logic allows the 
user to switch between these modes by pressing a button. 
This module controls which set of values (time or 
stopwatch) is shown on the 7-segment display. 

In software, the mode selection logic can be 
implemented as a simple condition check, where the 
system alternates between different displays based on the 
input mode select signal. For instance, when the system is 
in the digital clock mode, the software will update the 
display with the current time, and when the system 
switches to the stopwatch mode, it will display the 
stopwatch values. 

5.Synchronization and Timing Considerations 

One of the critical aspects of FPGA-based software 
development is synchronization. Since FPGAs are 
inherently parallel devices, ensuring that different modules 
operate synchronously and share data correctly is crucial. 
For example, the timekeeping module and the display 
driver module must be synchronized to ensure that the 
time is updated correctly on the display at regular 
intervals. 

Moreover, proper timing considerations are 
essential to ensure that the digital clock operates with 
accuracy. Any error in timing or synchronization could lead 
to incorrect timekeeping, which is not acceptable in a 
digital clock. Thus, the software must handle time signals 
carefully, particularly the 1 Hz signal generated by the 
clock divider, ensuring that it drives the timekeeping 
module at the correct frequency. 

6.Testing and Debugging FPGA Software 

Testing and debugging FPGA-based software can 
be more challenging than traditional software development 
due to the hardware nature of the system. Simulating FPGA 
designs before hardware implementation is crucial to catch 
errors early in the design process. FPGA software 
development tools often include simulation environments 
that allow developers to test their designs in a virtual 
setting, providing a way to verify functionality before 
deployment. 

Once the design has been simulated and tested, it 
can be synthesized and implemented on the FPGA 
hardware. At this point, further testing is required to 
ensure that the system works as expected on the actual 
FPGA device. Debugging FPGA software typically involves 
checking the behavior of the system in real-time, using 
tools like logic analyzers and on-chip debugging interfaces 
to monitor signals and detect issues. 

4. Real Time Implementation 

 
                                Fig -2: Hardware Implementation 

The real-time implementation of an FPGA-based 
digital clock project involves taking the design, which has 
been simulated and tested in a virtual environment, and 
deploying it onto an actual hardware platform for physical 
operation. This is a critical phase of the project, where all 
theoretical designs are brought into the real world, and 
the system’s functionality is verified under actual 
operating conditions. The real-time implementation 
process can be divided into several key stages, including 
hardware setup, software deployment, integration, system 
testing, and performance evaluation. Each of these stages 
requires careful planning, precise execution, and 
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troubleshooting to ensure that the final product operates 
as intended. In this section, we will discuss each of these 
phases in detail, from initial hardware setup to final 
system optimization. 

1.Hardware Setup  

The first step in the real-time implementation of 
the FPGA-based digital clock is setting up the physical 
hardware. This involves selecting the appropriate FPGA 
board, connecting necessary peripheral components, and 
ensuring that all hardware elements are functioning 
correctly. The FPGA board chosen for the project must 
have the required resources, such as sufficient logic cells, 
input/output pins, and clock sources, to handle the digital 
clock’s functionality. 

An important consideration during hardware 
setup is the display system. In this case, the digital clock 
will typically utilize a 7-segment display or an array of 7-
segment displays to show the time. Depending on the 
FPGA’s available pins, multiple displays may be connected 
via multiplexing or parallel connections. In this real-time 
implementation, the FPGA’s input/output pins will be 
connected to the anode and cathode terminals of the 7-
segment displays. Proper wiring and signal routing are 
essential to ensure the display works correctly and the 
FPGA can drive the segments without interference. 

Additionally, buttons for user interaction, such as 
setting the time, starting, and stopping the stopwatch, 
must be integrated into the hardware setup. These buttons 
must be connected to the FPGA’s input pins, and 
considerations for debouncing (to avoid noisy signals due 
to mechanical switch bouncing) must be factored into the 
implementation. 

Power supply and clock sources are also integral 
components of hardware setup. The FPGA board must be 
powered correctly, and the clock signal needs to be 
supplied at the correct frequency. In many FPGA systems, 
an external oscillator or crystal is used to generate a stable 
clock signal. For this digital clock system, the clock will 
need to be divided to generate the 1 Hz signal required for 
timekeeping. 

2.Software Deployment  

Once the hardware is physically set up, the next 
step is the deployment of the software onto the FPGA. 
Software deployment in an FPGA system is quite different 
from traditional software installation on a general-
purpose computer. FPGA software is typically developed 
using hardware description languages (HDLs), such as 
Verilog or VHDL, and is compiled into a configuration 
bitstream that is loaded onto the FPGA. 

The first task in software deployment is to 
synthesize the HDL code, which converts the written 

design into a form that the FPGA can understand. The HDL 
code is written in such a way that it describes the 
hardware behavior of the system. For example, the clock 
divider, timekeeping logic, display driver, and input 
handling modules are all described in Verilog or VHDL. 
The synthesis tool takes this HDL code and generates a 
netlist, which is essentially a set of instructions for 
configuring the FPGA’s internal logic blocks and routing. 

Once the design has been synthesized, the next 
step is to implement the design. This involves mapping the 
synthesized netlist onto the FPGA’s resources, such as 
logic cells, flip-flops, and routing channels. After 
implementation, a bitstream file is generated, which is 
used to configure the FPGA. The bitstream file contains all 
the necessary configuration information for the FPGA to 
perform the desired operations. This file is then loaded 
onto the FPGA using a programmer or USB cable. 

With the bitstream loaded onto the FPGA, the 
hardware can now execute the software, controlling the 
clock and display as intended. During this phase, the 
system will begin operating according to the specified 
logic, and the clock’s time should be displayed on the 7-
segment display. 

3.Integration  

After the FPGA software is deployed and the clock 
begins to function, the next step is integration. In real-time 
implementation, integration involves ensuring that all 
system components work together seamlessly. This 
includes verifying that the clock division, timekeeping, and 
display driving modules interact properly and that the 
user inputs are processed correctly. 

For example, when the user presses the "start" 
button, the stopwatch should begin counting, and when 
the user presses the "stop" button, the stopwatch should 
pause. The time should be displayed correctly on the 7-
segment displays, and the transition between the digital 
clock mode and stopwatch mode should be smooth. 
Integration also involves testing the various inputs, 
ensuring that they are properly debounced and that the 
system responds accurately to user commands. 

One key aspect of integration in FPGA systems is 
managing timing and synchronization. Since FPGA systems 
can execute multiple processes concurrently, it is crucial 
to ensure that signals are properly synchronized across 
modules. For instance, the clock divider’s output needs to 
be accurately synchronized with the timekeeping module’s 
inputs to maintain correct time. If there are timing issues 
or glitches in the signal propagation, the clock may drift, 
leading to inaccurate timekeeping. Therefore, careful 
attention must be given to ensuring that all clock signals 
and data paths are correctly synchronized. 
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4.System Testing 

Once integration is complete, the system enters 
the testing phase. Real-time testing is essential to verify 
that the FPGA-based digital clock operates correctly under 
various conditions. Testing involves both functional and 
performance evaluations. Functional testing ensures that 
the system behaves as expected, while performance 
testing evaluates the accuracy, reliability, and 
responsiveness of the clock system. 

Functional testing begins by checking the digital 
clock’s ability to display the correct time. The clock should 
increment seconds, minutes, and hours correctly, rolling 
over at the appropriate intervals (e.g., from 59 seconds to 
00, from 59 minutes to 00, and from 23 hours to 00). The 
user interface, including the buttons for setting the time, 
starting, and stopping the stopwatch, should work as 
expected. In stopwatch mode, the stopwatch should start 
counting when the start button is pressed, stop when the 
stop button is pressed, and reset when the reset button is 
pressed. 

Additionally, the transition between modes (from 
digital clock mode to stopwatch mode) must be smooth, 
and the display should update accordingly. The system’s 
ability to handle multiple button presses, switch between 
modes, and display the correct time should be verified 
during testing. 

Performance testing focuses on the system’s 
accuracy in timekeeping. For a digital clock, it is essential 
that the time is kept accurately. In FPGA systems, timing 
errors can arise from issues such as clock skew, improper 
synchronization, or incorrect clock division. Performance 
testing ensures that the clock does not drift over time and 
that the 1 Hz time base is accurate. The system should be 
tested for prolonged periods (e.g., several days) to ensure 
that the timekeeping remains consistent and accurate 
throughout its operation. 

Another aspect of performance testing is the 
responsiveness of the user interface. The clock should 
respond immediately to user inputs, such as setting the 
time, starting the stopwatch, or switching between modes. 
Delays or lag in responding to inputs can negatively 
impact the user experience, so this aspect of the system 
must be thoroughly tested. 

5.Troubleshooting and Optimization 

During the real-time implementation process, 
issues are likely to arise that need to be addressed. 
Common issues in FPGA systems include incorrect timing, 
signal glitches, and hardware malfunctions. 
Troubleshooting these issues involves analyzing the 
system’s behavior and identifying the root cause of the 
problem. 

One common approach for troubleshooting FPGA 
systems is to use hardware debugging tools such as logic 
analyzers, oscilloscopes, and in-system debugging 
interfaces. These tools allow developers to monitor the 
behavior of signals within the FPGA and identify any 
anomalies or errors. For example, if the clock divider is not 
generating the correct output, a logic analyzer can be used 
to check the waveform and identify any timing 
mismatches or incorrect configurations. 

Optimization is another critical step in real-time 
implementation. Although FPGA systems are inherently 
parallel, there may still be opportunities to improve the 
system’s efficiency. For instance, resource optimization 
can help reduce the amount of logic required for certain 
modules, making the system more efficient and leaving 
resources available for other tasks. Optimizing the clock 
division or display multiplexing logic can also improve the 
system’s performance. 

5. Simulations 

 

                                          Fig -1: Result 

6. ADVANTAGES 

1.High Precision Timekeeping:  

 FPGA-based digital clocks provide high accuracy 
due to precise control over clock division and 
time generation.  

 The 1 Hz clock used for timekeeping is generated 
through an accurate clock division process, 
ensuring minimal drift over time. 

2.Customization Flexibility:  

 FPGAs allow for customizability in design. The 
digital clock system can be tailored for specific 
use cases, such as adding additional features like a 
stopwatch, alarm functionality, or even 
integrating other custom peripherals. 
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3.Low Power Consumption:  

 FPGAs are known for their energy-efficient 
operation, especially when compared to general-
purpose processors. The digital clock 
implemented on FPGA consumes less power, 
making it ideal for battery-operated devices or 
energy-conscious applications. 

4.Parallel Processing Capabilities:  

 FPGAs excel at parallel processing, meaning that 
multiple operations (such as timekeeping, display 
updating, and input handling) can occur 
simultaneously without significant delays. This 
leads to faster and more responsive systems. 

5.Real-Time Operation:  

 FPGAs operate in real-time, ensuring that the 
digital clock is continuously and accurately 
updated without the delays or overhead found in 
software-based systems. This real-time 
processing makes the system more reliable and 
predictable. 

6.Scalability:  

 The design on an FPGA can be easily expanded or 
modified. For example, more features (e.g., 
additional alarms, different time zones) or higher-
resolution displays (e.g., adding more segments or 
connecting multiple displays) can be added with 
minimal changes to the underlying hardware. 

7.Reliability and Durability:  

 FPGA-based systems are typically more reliable 
and durable than microcontroller-based systems. 
They are resistant to environmental factors like 
temperature fluctuations, which makes them 
suitable for industrial or outdoor applications. 

8.Cost Efficiency:  

 FPGAs can be cost-effective for small-to-medium 
scale production runs, as they avoid the need for 
custom ASICs or expensive processors. Once the 
design is implemented, the cost of replication can 
be low. 

7. CONCLUSION 

In conclusion, implementing a digital clock using 
FPGA provides numerous benefits that make it an ideal 
solution for accurate, reliable, and efficient timekeeping. 
The precision offered by FPGA-based systems ensures that 
the clock remains accurate over long periods, with 
minimal drift, which is a critical feature for many 
applications. The flexibility of FPGA allows for easy 

customization, enabling the addition of various 
functionalities such as a stopwatch or alarm system, 
depending on the user's requirements. Moreover, the 
ability to perform parallel processing ensures that all 
operations, such as time updates, display refreshing, and 
input handling, can be executed simultaneously, making 
the system highly responsive. 

The low power consumption of FPGA devices and 
their durability make them suitable for battery-operated 
devices and harsh environmental conditions. Additionally, 
the scalability of FPGA designs ensures that future 
modifications or expansions can be incorporated with 
ease, extending the lifetime and usability of the system. By 
utilizing FPGA, the development time is shortened, and on-
the-fly modifications can be made to improve system 
performance, providing a significant advantage in fast-
paced development environments. 

In summary, FPGA-based digital clocks offer a 
highly efficient and robust solution for timekeeping and 
other embedded applications. With their high precision, 
low power consumption, scalability, and flexibility, FPGAs 
are an excellent choice for both educational and practical 
applications in a variety of industries. 
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