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Abstract - Keyword queries on databases provide 
easy access to data, but often suffer from low ranking 
quality, i.e., low precision and/or recall, as shown in 
recent benchmarks. It would be useful to identify 
queries that are likely to have low ranking quality to 
improve the user satisfaction. For instance, the system 
may suggest to the user alternative queries for such 
hard queries. In the existing work, analyzes the 
characteristics of hard queries and propose a novel 
framework to measure the degree of difficulty for a 
keyword query over a database, considering both the 
structure and the content of the database and the query 
results. However, in this system numbers of issues are 
there to address. They are, searching quality is lower 
than the other system and reliability rate of the system 
is lowest. In order to overcome these drawbacks, to 
perform the noise generation in three levels includes 
attribute level, attribute value level and entity set level 
in the database. This proposed system is well enhancing 
the reliability rate of the difficult query prediction 
system. In other words, this work is support these 
operators for efficient result. From the experimentation 
result, the proposed system is well effective than the 
existing system in terms of accuracy rate, quality of 
result 
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1. INTRODUCTION 
 

Keyword query interfaces (KQIs) for databases 
have attracted much attention in the last decade due to 
their flexibility and ease of use in searching and exploring 
the data. Since any entity in a data set that contains the 
query keywords is a potential answer, keyword queries 
typically have many possible answers. KQIs must identify 
the information needs behind keyword queries and rank 
the answers so that the desired answers appear at the top 
of the list. Unless otherwise noted, it refers to keyword 
query as query in the remainder of this project. 

Databases contain entities, and entities contain 
attributes that take attribute values. Some of the 
difficulties of answering a query are as follows: First, 

unlike queries in languages like SQL, users do not 
normally specify the desired schema element(s) for each 
query term. For instance, query Q1: Godfather on the IMDB 
database (http://www.imdb.com) does not specify if the 
user is interested in movies whose title is Godfather or 
movies distributed by the Godfather Company. Thus, a KQI 
must find the desired attributes associated with each term 
in the query. Second, the schema of the output is not 
specified, i.e., users do not give enough information to 
single out exactly their desired entities. For example, Q1 
may return movies or actors or producers. 

It is important for a KQI to recognize such queries 
and warn the user or employ alternative techniques like 
query reformulation or query suggestions. It may also use 
techniques such as query results diversification. To the 
best of our knowledge, there has not been any work on 
predicting or analyzing the difficulties of queries over 
databases. Researchers have proposed some methods to 
detect difficult queries over plain text document 
collections. However, these techniques are not applicable 
to our problem since they ignore the structure of the 
database. In particular, as mentioned earlier, a KQI must 
assign each query term to a schema element(s) in the 
database. It must also distinguish the desired result 
type(s). 

 
1.1 Properties of Hard Keyword Query 
 
The queries which are difficult to answer correctly are 
called hard keyword queries. The properties of hard 
keyword query are: 
Less Specificity : If more entities match the terms in a 
query, the query is less specific and it is harder to answer 
properly.  
Higher Attribute Level Ambiguity : Each attribute 
explains a different feature of an entity and defines the 
context of terms in attribute values of it. If a query 
matches different attributes in its candidate answers, it 
will have a more diverse set of potential answers in 
database, and hence it has higher attribute level ambiguity 
Higher Entity set level Ambiguity :  Each entity set 
contains the information about a different type of entities 
and defines another level of context (in addition to the 
context defined by attributes) for terms. Hence, if a query 
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matches entities from more entity sets, it will have higher 
entity set level ambiguity 
 

2. RELATED WORKS 
 
Prediction of query performance has long been of interest 
in information retrieval. It is invested under a different 
names query difficulty, query ambiguity and sometimes 
hard query. 
 
Keyword Searching and Browsing in Databases using 
BANKS [4] describe techniques for keyword searching and 
browsing on databases that we have developed as part of 
the BANKS system (BANKS is an acronym for Browsing 
ANd Keyword Searching). The BANKS system enables data 
and schema browsing together with keyword-based 
search for relational databases. BANKS enables a user to 
get information by typing a few keywords, following 
hyperlinks, and interacting with controls on the displayed 
results; absolutely no query language or programming is 
required. The greatest value of BANKS lies in near zero-
effort web publishing of relational data which would 
otherwise remain invisible to the web. BANKS may be 
used to publish organizational data, bibliographic data, 
and electronic catalogs. Search facilities for such 
applications can be hand crafted: many web sites provide 
forms to carry out limited types of queries on their 
backend databases. For example, a university web site 
may provide form interface to search for faculty and 
students. Searching for departments would require yet 
another form, as would search for courses offered. 
Creating an interface for each such task is laborious, and is 
also confusing to users since they must first expend effort 
finding which form to use 
 
Efficient IR-Style Keyword Search over Relational 
Databases [2]  A key contribution of this work is the 
incorporation of IR-style relevance ranking of tuple trees 
into our query processing framework. In particular, our 
scheme fully exploits single-attribute relevance-ranking 
results if the RDBMS of choice has text-indexing 
capabilities (e.g., as is the case for Oracle 9.1, as discussed 
above). By leveraging state-of-the-art IR relevance-
ranking functionality already present in modern RDBMSs, 
we are able to produce high quality results for free-form 
keyword queries. For example, a query [disk crash on a 
net vista] would still match the comments attribute of the 
first Complaints tuple above with a high relevance score, 
after word stemming (so that “crash” matches “crashed”) 
and stop-word elimination (so that the absence of “a” is 
not weighed too highly).  
This scheme relies on the IR engines of RDBMSs to 
perform such relevance-ranking at the attribute level, and 
handles both AND and OR semantics. Unfortunately, 
existing query-processing strategies for keyword search 
over RDBMSs are inherently inefficient, since they attempt 
to capture all tuple trees with all query keywords. Thus 
these strategies do not exploit a crucial characteristic of 

IR-style keyword search, namely that only the top 10 or 20 
most relevant matches for a keyword query –according to 
some definition of “relevance”– are generally of interest. 
The second contribution of this paper is the presentation 
of efficient query processing techniques for our IR-style 
queries over RDBMSs that heavily exploit this observation. 
As we will see, our techniques produce the top-k matches 
for a query –for moderate values of k– in a fraction of the 
time taken by state-of-the-art strategies to compute all 
query matches. Furthermore, our techniques are pipelined, 
in the sense that execution can efficiently resume to 
compute the “next-k” matches if the user so desires. 
 
Predicting Query Performance via Classification [6] Here 
introduce new models and representations for estimating 
two important measures of query performance: query 
difficulty and expansion risk. This work brings together 
features from previous studies on query difficulty based 
on divergences between language models of the query, 
collection and initial results. Here extend this to include a 
model of expansion results from the expanded query. With 
these models and features, here compare the performance 
of two model representations: a low-dimensional pre 
computed topic representation and a much larger unigram 
language model over two standard Web collections. Here 
also develop a simple, effective method for deriving a topic 
representation, modeled as a distribution over ODP 
categories, of a query by estimating and combining pre-
computed topic representations from the individual query 
terms. Here investigate using topic prediction data, as a 
summary of document content, to compute measures of 
search result quality. Unlike existing quality measures 
such as query clarity that require the entire content of the 
top-ranked results, class-based statistics can be computed 
efficiently online, because class information is compact 
enough to pre compute and store in the index. In an 
empirical study we compare the performance of class-
based statistics to their language-model counterparts for 
two performance-related tasks: predicting query difficulty 
and expansion risk. Here findings suggest that using class 
predictions can offer comparable performance to full 
language models while reducing computation overhead. 
 

3. PREDICTION FRAMEWORK 
 

3.1 Noise Generation in Databases 
 

In order to compute SR, we need to define the 
noise generation model fXDB (M) for database DB. It will 
show that each attribute value is corrupted by a 
combination of three corruption levels: on the value itself, its 
attribute and its entity set. Now the details: Since the 
ranking methods for queries over structured data do not 
generally consider the terms in V that do not belong to 
query Q, we consider their frequencies to be the same 
across the original and noisy versions of DB. The 
corruption model must reflect the challenges about search 
on structured data, where we showed that it is important 



         International Research Journal of Engineering and Technology (IRJET)     e-ISSN: 2395 -0056 

           Volume: 02 Issue: 01 | Apr-2015                            www.irjet.net                                                          p-ISSN: 2395-0072 

© 2015, IRJET.NET- All Rights Reserved                                                                                                                            Page 267 
 

to capture the statistical properties of the query keywords 
in the attribute values, attributes and entity sets. We must 
introduce content noise (recall that we do not corrupt the 
attributes or entity sets but only the values of attribute 
values) to the attributes and entity sets, which will 
propagate down to the attribute values. For instance, if an 
attribute value of attribute title contains keyword 
Godfather, then Godfather may appear in any attribute 
value of attribute title in a corrupted database instance. 
Similarly, if Godfather appears in an attribute value of 
entity set movie, then Godfather may appear in any 
attribute value of entity set movie in a corrupted instance. 
 

3.2 Ranking in Original & Corrupted Database 
With the mapping probabilities estimated as 

described above, the probabilistic retrieval model for 
semi-structured data (PRMS) can use them as weights for 
combining the score from each element into a document 
score, as follows: 

 
Here, the mapping probability PM(Ej|w) is 

calculated and the element-level query-likelihood score 
PQL(w|ej) is estimated in the same way as in the HLM 
approach. 

 

 
 
The rationale behind this weighting is that the 

mapping probability is the result of the inference 
procedure to decide which element the user may have 
meant for a given query term.  

 

3.3 Structured Robustness Algorithm 
 

This compute the similarity of the answer lists 
using Spearman rank correlation. It ranges between 1 and 
−1, where 1, −1, and 0 indicate perfect positive correlation, 
perfect negative correlation, and almost no correlation, 
respectively. To computes the Structured Robustness 
score (SR score), for query Q over database DB given 
retrieval function  
 
g: SR(Q, g,DB,XDB) = E{Sim(L(Q, g,DB), L(Q, g,XDB))} 
 
where Sim denotes the Spearman rank correlation 
between the ranked answer lists. 
 
 
 
 
 
 

 

Algorithm1 CorruptTopResults(Q,L,M,I,N) 
Input: Query Q, Top-K result list L of Q by ranking function g, 
Metadata M, Inverted indexes I, Number of corrupted iteration N. 
Output: S R score for Q. 
1: S R ← 0; C ← { }; // C caches λT, λS for keywords in Q 
2: FOR i=1 → N DO 
3: I′ ← I; M′ ← M; L′ ← L; // Corrupted copy of I, M and L 
4: FOR each result R in L DO 

5: FOR each attribute value A in R DO 
6: A′ ← A; // Corrupted versions of A 
7: FOR each keywords w in Q DO 
8: Compute # of w in A′ by Equation 10; // If λT,w λS,w needed but 
not in C, calculate and cache them 
9: IF # of w varies in A′ and A THEN 
10: Update A′, M′ and entry of w in I′; 
11: Add A′ to R′; 
12: Add R′ to L′; 
13: Rank L′ using g, which returns L, based on I′, M′; 
14: S R += Sim(L,L′); // Sim computes Spearman correlation 
15: RETURN S R ← S R / N; // AVG score over N rounds 

Algorithm 3.3: Structured Robustness Algorithm 
 
Algorithm 3.3 shows the Structured Robustness 

Algorithm (SR Algorithm), which computes the exact SR 
score based on the top K result entities. Each ranking 
algorithm uses some statistics about query terms or 
attributes values over the whole content of DB. Some 
examples of such statistics are the number of occurrences 
of a query term in all attributes values of the DB or total 
number of attribute values in each attribute and entity set. 
These global statistics are stored in M (metadata) and I 
(inverted indexes) in the SR Algorithm pseudocode. SR 
Algorithm generates the noise in the DB on-the-fly during 
query processing. Since it corrupts only the top K entities, 
which are anyways returned by the ranking module, it 
does not perform any extra I/O access to the DB, except to 
lookup some statistics. 

 
 

3.4 Approximation Algorithms 
 

In this section, this paper proposes approximation 
algorithms to improve the efficiency of SR Algorithm. Our 
methods are independent of the underlying ranking 
algorithm. 
Query-specific Attribute values Only Approximation (QAO-
Approx): QAO-Approx corrupts only the attribute values 
that match at least one query term. 
Observation 1: The noise in the attribute values that 
contain query terms dominates the corruption effect. 
Observation 2: The number of attribute values that contain 
at least one query term is much smaller than the numbers of 
all attribute values in each entity. 
Static Global Stats Approximation (SGS-Approx): SGS 
Approx uses the following observation: 
Observation 3: Given that only the top-K result entities are 
corrupted, the global DB statistics do not change much. 
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4. ARCHITECTURE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig -1: Work Flow Architecture 
Form the fig 1, It shows the complete work flow of the 
proposed system and illustrate that how the system 
artichecture has been created for detecting the hard 
queries with multi-level noise generation and produes the 
quality result for the given query. 
 

 5. EXPERIMENTS AND RESULTS 

Fig 2 Comparison between Attribute onlyand Attribute 
set + Attribute + Entity setmethod 

From the fig 2, It shows the comparison between 
the Attribute onlyand Attribute set + Attribute value + 
Entity set method where N is the number of iterations. In 

the Attribute only method, the SR score value is based on 
attribute set but in Attribute set + Attribute value + Entity 
set method, the SR score value is based on attribute value, 
attribute set and entity set. As number of iteration 
increases the SR score value decreases in Attribute only 
method but in Attribute set + Attribute value + Entity set 
method the SR score value linearly increases. 
The comparison can be calculated as follows:  
Comparison   =     Average of number of occurrences in SR score 
                                                  
                                                  Number of iterations 
 
Table 1 Comparison between Attribute only and 
Attribute set + Attribute + Entity set method 
Method Iteration 

1 
Iteration 

2 
Iteration 

3 
Comparison 

in % 

Attribute 
only 

12 44 22 26 % 

Attribute 
set + 

Attribute 
value + 
Entity 

set 

30 75 98 64 % 

From table 1, it shows that in Attribute only 
method the accuracy rate is 26% whereas in Attribute set 
+ Attribute value + Entity set method the accuracy rate 
increased to 64%. 

 
5. CONCLUSION 
 

We introduced the novel problem of predicting 
the effectiveness of keyword queries over DBs. We showed 
that the current prediction methods for queries over 
unstructured data sources cannot be effectively used to 
solve this problem. We set forth a principled framework 
and proposed novel algorithms to measure the degree of 
the difficulty of a query over a DB, using the ranking 
robustness principle. Based on our framework, we 
propose novel algorithms that efficiently predict the 
effectiveness of a keyword query. Our extensive 
experiments show that the algorithms predict the 
difficulty of a query with relatively low errors and 
negligible time overheads. 
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