
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 642

PARALLELIZATION OF ENCRYPTION AND
HASHING ALGORITHM USING GPU

Mr. Vijay J.Bodake1, Prof.D.B.Bangal2 ,Mr.K.B.Dhatrak3

1 HOD, Computer Engg Department, KVN Naik polytechnic Nashik, Maharashtra, India

2 Principal, KVN Naik Polytechnic Nashik, Maharashtra, India
3 HOD, Electrical Engg Department, KVN Naik Polytechnic Nashik, Maharashtra, India

---***---

Abstract - With the development of the GPGPU
(General-purpose computing on graphics processing
units), more and more computing problems are solved
by using the parallel property of GPU (Graphics
Processing Unit). CUDA (Compute Unified Device
Architecture) is a framework which makes the GPGPU
more accessible and easier to learn for the general
population of programmers. This is because it builds
on C and hides many of the complicated details of how
the GPU works from a CUDA developer. Using the
unique properties of the GPU through CUDA has
greatly increased the efficiency of many
computational problems. The target in this project is
to study and analyses the majority of algorithms
related to the cryptography and then to design and
make an implementation of algorithm in CUDA.
Finally, this reach will compare the performance
between the GPU implementation and the CPU
implementation in order to look into the possibility of
improving the performance of algorithms. The survey
done in three cryptography algorithm AES, SHA, MD5.

Key Words: Advanced Encryption Standard (AES),
Graphics Processing Unit (GPU), Parallel Computing, CUDA

and cryptography.

1. INTRODUCTION

This section introduces to the entire background of the
proposed work. It highlights the overall description of
entire work. It also highlights the concept of cryptography,
hash algorithm and GPU.

1.1 Cryptography

Cryptography is the study of mathematical techniques
focused on information security, including confidentiality,
data integrity, and authentication. An implementation of
cryptography is typically comprised of computationally
intensive algorithms which are used by applications when
encrypting, decrypting, and hashing data. Some
implementations also include authentication and
verification techniques. Information security is the hot
topic of research in the field of computer science and
technology, and the data encryption is one of the most

important methods for information security. Since a new
kind of encryption algorithm, i.e. Advanced Encryption
Standard (AES), has been proposed for replacing the
previous encryption of Data Encryption Standard (DES) in
2001, more and more applications are starting to use AES
instead of DES to protect their information security in the
past ten years. Currently, the implementations of AES are
based on CPU because CPU is regarded as the computing
component in the computer system from the traditional
point of view. With the rapid growth of information data,
more and more applications require encrypting data with
the performance of more and more high speed. The
traditional CPU based AES implementation shows the poor
performance and cannot meet the demands of fast data
encryption. Therefore, how to develop a new method for
high performance is a challenging topic of research, which
are interesting more and more researchers in developing
new approaches for fast AES encryption.

1.2 Literature Survey

There have been several attempts utilizing GPU, especially
in NVIDIA CUDA framework for AES cryptography, and
then showed the performance improvement over a
traditional CPU. Most of them have applied a traditional
AES CUDA-GPU implementation, i.e. dividing plaintext into
an equal-block size, and then each individual block will be
encrypted in each AES GPU block with multiple threads
with/without operational modes [10-13]. Notice that all of
them investigated on different GPU models with the
comparative performance illustration. Some proposals
have also considered other performance factors for
example, S. A. Manavski et al. [17] proposed AES
implementation on CUDA-GPU utilizing an off chip
constant (slow) memory without operational mode
consideration[16]. In 2009, A. D. Biagio et al. [18]
evaluated the performance of NVIDIA 8800 GT GPU of
parallel AES implementation using on-chip shared
memory with CTR mode. Similarly, P. Maistri et al. [16]
also investigated on AES parallelism in CTR mode but with
NVIDIA 9600 GT and 260 GTX comparatively. In addition,
C. Mei et al. [19] evaluated parallel AES design
implementation of NVIDIA GeForce 9200M given the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 643

discussion of various memory usages. Note that there is a
difficulty to acquire the actual CUDA implementation. In
addition, they do not practically discuss the actual parallel
algorithm for performance evaluation among various
parallel AES implementations.

2. AES ALGORITHM

AES, i.e. Rijndael algorithm is a symmetric key
cryptography. The AES standard comprises three block
ciphers, i.e. AES-128, AES-192 and AES-256. The
encryption of AES is carried out in blocks with a fixed
block size of 128 bits each. The AES cipher calculation is
specified as a number of repetitions of transformation
rounds that convert the input plaintext into the final
output of cipher text. Each round consists of several
processing steps, including one that depends on the
encryption key. A set of reverse rounds are applied to
transform the cipher text back into the original plaintext
using the same encryption key.
 The AES encryption perform on the CPU and GPU.If User
select the GPU module for execution then encryption
perform parallel. The well-formed 64 byte data blocks are
transferred to GPU for encryption. The number of data
blocks decides the number of threads to be created. Each
thread in kernel then performs operations on its
corresponding data block logically at same time. The Key
Expansion is performed on CPU, as its computations are
inherently serial. The sub-functions of AES are
implemented as simple device functions. After
implementation of kernel, the data blocks are copied back
to CPU.

Fig -1. AES on GPU Logical Execution

The AES round key and lookup tables are stored within
constant memory rather than slow global memory to

optimize the execution of AES on GPU. A data structure is
maintained to reconstruct the records from these data
blocks after encryption. Below fig 1 shows the logical
execution of the AES on GPU with the help of CUDA. Then
each thread is divided into its subpart and then each
subpart is executed parallel for the high speed to decrease
the process time of encryption and decryption. The AES
perform the four functions SubBytes, ShiftRows,
MixColumns and AddRoundKey. These functions are
executed parallel. NVIDIA's new Kepler GK110 GPU's has
introduced dynamic parallelism technology that enables
CUDA kernel to launch other kernels using CUDA runtime
API. Till now, AES sub functions were implemented as
device functions on GPU due to lack of dynamic
parallelism support. Now on this new dynamic parallelism
supported GPU's, System propose to implement these sub-
functions as CUDA kernel and launch these sub-function
kernels from parent AES kernel. The fig 2 shows the
thread parallel processing of the kernel.

 Fig-2 AES parallel Thread Process

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 644

3. MD5 ALGORITHM

In MD5, the input message is broken up into chunks of
512-bit blocks (each with sixteen 32-bit sub-blocks). After
a series of operations, MD5 produces a 128-bit message
digest with four concatenated 32-bit blocks for the
integrity of a _le. To compute the digest of a message,
padding bits are appended first to make the messages
length congruent to 448, modulo 512, and then the length
bits. A 64-bit portion is appended to indicate the length of
the actual message. MD5 algorithm operates on a 128-bit
state which is divided into four 32-bit words (denoted as
A, B, C and D) and initialized. Each 512-bit message block
is applied in turn to modify the state. The processing of a
message block consists of four similar rounds, each of
which is composed of 16 similar operations based on a
non-linear function F, modular, addition, and left rotation.
At last, MD5s output is produced by cascading A, B, C and
D after the final round.

Fig-3 MD5 System Architecture

There are four steps in parallelized hybrid MD5
encryption algorithm. First, key initialization and
expansion are accomplished by MD5 key encryption
module and key expansion module in Host (CPU). Thus the
hashed and expanded new key is prepared and ready for
the initialization procedure. Second, initialization
procedure generates Sub-keys, which is also operated by
the host (CPU). Third, Sub-keys and input data objects (a
number of input data blocks) are copied into GPU Memory.
Encryption Module is coded as CUDA kernel functions to
encrypt the input message and generate outputs
(encrypted message) on GPU. Finally, the encrypted
message is copied back to the host and delivered to users
as shown in fig 3.

4. SHA-1 ALGORITHM

The Secure Hash Algorithm (SHA) was developed by the
National Institute of Standards and Technology (NIST) and
published as a federal information processing standard
(FIPS PUB 180) in 1993; a revised version was issued as
FIPS PUB 180-1 in 1995 and is generally referred to as
SHA-1. The algorithm takes as input a message with a
maximum length of less than 264 bits and produces as
output a 160-bit message digest. The input is processed in
512- bit blocks. The heart of the algorithm is a module that
consists of four rounds of processing 20 steps each. The
logic is illustrated in Figure 4.9.In that _g user takes the
input then calculate the hash value from the hash function.
After calculating the hash value then system execute the
SHA-1 algorithm to crack that password with the help of
hash value. Then system finds multiple combinations of
the password and try to compare with hash value. If it get
then it display the password and time required for the
total process. For this process it used the above algorithm
for message digest.
 There are four steps in parallelized hybrid SHA-1
encryption algorithm. First, key initialization and
expansion are accomplished by SHA-1 key encryption
module and key expansion module in Host (CPU). Thus the
hashed and expanded new key is prepared and ready for
the initialization procedure. Second, initialization
procedure generates Sub keys, which is also operated by
the host (CPU). Third, Sub-keys and input data objects (a
number of input data blocks) are copied into GPU Memory.
Encryption Module is coded as CUDA kernel functions to
encrypt the input message and generate outputs
(encrypted message) on GPU. Finally, the encrypted
message is copied back to the host and delivered to users
as shown in Fig 4.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 645

Fig-4 SHA-1 algorithm Architecture

5. RESULTS AND ANALYSIS
In this section, the actual results obtained from the
comparison of CPU, GPU and optimized GPU
implementations are presented. The CPU used for the
experiments was a 2.8 GHz Intel CORE I3 processor with 4
cores, 4 GB total memory. The GPU used for the imple-
mentation was a GTX 680 device with 1536 CUDA Cores.

5.1 AES Algorithm

However, the presented computational system composed
of CPU and GPU devices can be used to any massively
parallel and intensive-data computations we used it to
develop efficient cryptanalysis and cryptography. The
results of evaluations of selected encryption and
decryption AES algorithm is described in section 2.The
aim of the first series was to test the efficiency of CPU-
based implementation of the symmetric block ciphers AES
and various modes of this algorithms operations. The table
1 shows the time required by CPU encryption and
Decryption. The results shows that decryption takes much
time than encryption.

Table -1: AES Encryption and Decryption on CPU and GPU

Datasiz
e

Encryptio
n by
CPU(ms)

Decryptio
n by
CPU(ms)

Encryptio
n by
GPU(ms)

Decryptio
n by
GPU(ms)

10 MB 6.705 13.748 0.986 0.987

20 MB 12.868 26.076 1.916 1.92

100 MB 68.937 144.106 10.257 10.21

200 MB 123.632 251.978 17.734 17.765

300 MB 189.748 364.066 26.00 27.106

Chart -1: AES algorithm result

5.2 Hashing Algorithm
In this report discuss the efficiency of parallel
implementations of selected password recovery
algorithms. The only reasonable technique for recovering
a password from hash is to scan all potential password,
compute their hash, and test the coincidence. In general,
cryptographic hash functions include integer and binary
operations such as: addition modulo power of two, bit
shift and rotation, bitwise xor, bitwise or, bit negation and
words permutation. All those operations are natively
supported by GPU processors. Multiple tests were
performed for parallel implementations of password
recovery from MD5, SHA-1.The aim of the first series of
tests was to compare the performance achieved by Intel
core i3 central processing units (CPU).Then multiple tests
were performed for password recovery algorithms. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 646

performance of CPU-based and GPU-based versions of
MD5, SHA-1, and hash techniques for hashes generation
was evaluated. The multi-threaded implementations of the
MD5 and SHA-1 were executed on GPU, each composed on
Nvidia GPU. Then compare the performance of CPU-based
and GPU-based algorithms for password recovery. Two
techniques for hash generation were considered: MD5 and
SHA-1. The number of hashes generated per second
running MD5 and SHA-1 algorithms by CPU and NVIDIA
Gforce740m are presented in chart 2 and chart 7
respectively

Chart -2:MD5 Algorithm Results

Chart -3: SHA-1 Results

6. CONCLUSIONS

The main goal of the project was to present the wide
applicability of the GPU technology to cryptography and
cryptanalysis. With the results compared the efficiency of
the CPU based with the GPU devices, for AES algorithm,
MD5 algorithm and SHA-1 algorithm. The results
confirmed that the modern unified GPU architecture can
perform as an efficient cryptographic acceleration board.
Moreover, system showed that hybrid computer offer a
new opportunity to increase the performance of parallel
implementations, by combining traditional CPU and
efficient GPU devices.

REFERENCES

[1] Bin Liu, Student Member, IEEE, and Bevan M. Baas,

Senior Member, IEEE, Parallel AES Encryption
Engines for Many-Core Processor Arrays, IEEE
TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 3,
MARCH 2013

[2] NIST, Advanced Encryption Standard (AES),
http://csrc.nist.gov/publications/_ps/_ps197/_ps-
197.pdf, Nov. 2001

[3] NIST, Data Encryption Standard (DES),
http://csrc.nist.gov/ publications/_ps/_ps46

3/_ps46-3.pdf, Oct. 1999.
[4] J D. Owens, D. Luebke, N. Govindaraju et al. A Survey

of General- Purpose Computation on Graphics
Hardware. Computer Graphics Forum, Vol. 26, No. 1,
pp. 80-113,2007.

[5] L. Marziale, G. G. Richard III, and V. Roussev. Massive
Threading: Using GPUs to Increase The Performance
of Digital Forensics Tools. Digital Investigation, pp.
S73-S81,2007.

[6] J. Daemen, V. Rijmen. The Design of Rijndael: AES The
Advanced Encryption Standard. New York, USA:
Springer-Verlag, 2002.

[7] S. Arul, M. Dash, M. Tue and N. Wilson. Hierarchical
Agglomerative Clustering Using Graphics Processor
with Compute Unified Device Architecture, In
Proceedings of International Conference on
Computer Design and Applications (ICCDA 2009),
Singapore,May 2009, pp. 556-561.

[8] J. L. D. Comba, C. A. Dietrich, C. A. Pagot and C. E.
Scheidegger. Computation on GPUs: From a
Programmable Pipeline to an Efficient Stream
Processor. Revista de Informtica Terica e Aplicada,
vol. X, no. 1, 2003, pp. 41-70.

[9] D. Luebke. CUDA: Scalable Parallel Programming for
High- Performance Scientific Computing. In
Proceedings of 5th IEEE International Symposium on
Biomedical Imaging: From Nano to Macro (ISBI
2008), Paris France, May 2008, pp. 836-838.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 06 | Sep-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 647

[10] M. Garland, S. Le Grand and J. Nickolls et al. Parallel
Computing Experiences with CUDA. IEEE Micro, vol.
28, no. 4, pp. 13-27, 2008.

[11] NVIDIA. CUDA [EB/OL]. (2010-01-09).
http://www.nvidia.cn/object/cudahomecn.html.

[12] C. J. Thompson, S. Hahn, and M. Oskin. Using Modern
Graphics Architectures for General-Purpose
Computing: a Framework and Analysis. In
Proceedings of the 35th Annual ACM/IEEE
international Symposium on Microarchitecture
(MICRO-35). Is-tanbul, Turkey. November 2002,
pp.306-317.

[13] Brandon P. Luken, Ming Ouyang, and Ahmed H.
Desoky"AES and DES Encryption with
GPU",Computer Engineering and Computer Science
Department University of Louisville Louisville, KY
40292

[14] Robert Szerwinski and Tim Guneysu"Exploiting the
Power of GPUs for Asymmetric Cryptography" Horst
Gortz Institute for IT Security, Ruhr University
Bochum,Germany
szerwinski,gueneysu@crypto.rub.de.

[15] Svetlin A. Manavski "CUDA COMPATIBLE GPU AS AN
EFFICIENT HARDWARE ACCELERATOR FOR AES
CRYPTOGRAPHY"2007 IEEE International
Conference on Signal Processing and
Communications (ICSPC 2007), 24-27 November
2007, Dubai, United Arab Emirates.

[16] Chakchai So-In, Sarayut Poolsanguan, Chartchai
Poonriboon, Kanokmon Rujirakul,
Comdet Phudphut "Performance Evaluation of
Parallel AES Implementations over CUDAGPU
Framework" Department of Computer Science,
Faculty of Science, Khon Kaen University Maung,
Khon Kaen, Thailand, 40002.

[17] P. Maistri, F. Masson, and R. Leveugle,
Implementation of the Advanced Encryption
Standard on GPUs with the NVIDIA CUDA framework,
In Proceeding(s) of the IEEE Symposium On
Industrial Electronics and Applications, pp. 213-217,
2011.

[18] A. D. Biagio, A. Barenghi, G. Agosta, and G. Pelosi,
"Design of a Parallel AES for Graphics Hardware
using the CUDA framework," In Proceeding(s) of the
IEEE International Conference on Parallel and
Distributed Processing, pp. 1-8, 2009.

[19] C. Mei, H. Jiang, and J. Jenness, " CUDA-based AES
parallelization with fine-tuned GPU memory
utilization ", In Proceeding(s) of the IEEE
International Symposium on Parallel and Distributed
Processing, Workshops and Ph.D. Forum, pp. 1-7,
2010.

[20] D. Le, J. Chang, X. Gou, A. Zhang, and C. Lu, "Parallel
AES Algorithm for Fast Data Encryption on GPU ", In
Proceeding(s) of the International Conference on
Computer Engineering and Technology, pp. V6-1-6-6,
2010.

[21] R. Rivest, (1992) The MD5 Message-Digest Algorithm,
RFC 1321.

[22] www.wikipedia.com/SHA-1.
[23] N Wilt. The CUDA Handbook: A Comprehensive Guide

to GPU Programming. Addison-Wesley Professional,
2013.

