

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395 -0056Volume: 02 Issue: 06 | Sep-2015www.irjet.netp-ISSN: 2395-0072

Syed Intikhab Zia

M.Tech Student, Civil Engineering, Roorke Institute Of Technology, Uttrakhand ,India

Abstract Glass-Fiber reinforced concrete (G R C) is a material made up of cementatious matrix composed of cement, sand, water and admixtures, in which short length glass fiber are dispersed, due to the high corrosion-resistance ability in Glass Fiber Reinforced Polymers (GFRP), this reinforcement type is developing to be promising alternative reinforcement construction materials for concrete bridge decks currently. It has been widely used in the construction industry for nonstructural elements , like façade panels , piping and channels. GRP offers many advantages, such as being lightweight fire resistance , good appearance and strength. In this study trial tests for concrete with glass fiber without glass fiber are conducted to indicate the difference in compressive strength and flexural strength by using cubes of varying sizes

Keywords- glass Fiber, Compressive Strength, Cost, Flexural Strength, Paver Block, Water Absorption.

Introduction

Glass-Fiber reinforced concrete (G R C) is a material made up of cementatious matrix composed of cement, sand, water and admixtures , in which short length glass fiber are dispersed , due to the high corrosion-resistance ability in Glass Fiber Reinforced Polymers (GFRP), this reinforcement type is developing to be promising alternative reinforcement construction materials for concrete bridge decks currently . It has been widely used in the construction industry for non- structural elements , like façade panels , piping and channels. GRP offers many advantages, such as being lightweight fire restitance , good appearance and strength. In this study trial tests for concrete with glass fiber without glass fiber are conducted to indicate the difference in compressive strength and flexural strength by using cubes of varying sizes

OBJECT STUDY

Glass-Fiber reinforced concrete (G R C) is a material made up of cementatious matrix composed of cement, sand, water and admixtures , in which short length glass fiber are dispersed , due to the high corrosion-resistance ability in Glass Fiber Reinforced Polymers (GFRP), this reinforcement type is developing to be promising alternative reinforcement construction materials for concrete bridge decks currently. It has been widely used in the construction industry for non- structural elements, like façade panels, piping and channels. GRP offers many advantages, such as being lightweight fire restitance, good appearance and strength. In this study trial tests for concrete with glass fiber without glass fiber are conducted to indicate the difference in compressive strength and flexural strength by using cubes of varying sizes.

Methodology of the study

Glass-Fiber reinforced concrete (G R C) is a material made up of cementatious matrix composed of cement, sand, water and admixtures , in which short length glass fiber are dispersed , due to the high corrosion-resistance ability in Glass Fiber Reinforced Polymers (GFRP), this reinforcement type is developing to be promising alternative reinforcement construction materials for concrete bridge decks currently . It has been widely used in the construction industry for non- structural elements , like façade panels , piping and channels. GRP offers many advantages, such as being lightweight fire restitance , good appearance and strength. In this study trial tests for concrete with glass fiber without glass fiber are conducted to indicate the difference in compressive strength and flexural strength by using cubes of varying sizes

CURING

After moulding , the specimens are stored on the site free from vibration under damp matting , sack or other similar material for 24 hours from the time

of addition of water to the other ingredients .

The temperature of place of storages was within the range of 22 c to 32 c . After a period of 24 hours cubs were marked . After removing from the moulds , cubes were stored in clean potable water at a temperature of 24 c to 30 c until they were transported to the testing laboratory .

 $Fb = PL/bd^2$

When (a) is grater than 20 cms or

 $Fb = 3Pa/bd^2$

When (a) is less then 20cms but grater than 17cms

GRC RAW MATERIAL COST

S. NO	Material	Unit Price	
1	White cement	Rs. 12.50per kg	
2	Silica Sand	Rs. 4.00 per kg	
3	AR-Glass Fiber	Rs. 250 per kg	
4	Hardener (a)	Rs. 98 per litre	
	(Cemplast) Black		
	Liquid plasticizer		
5	(SBR-Styrene butadiene rubber)	Rs. 165 per kg	

*mix of 100 kg GRC (TYPYCAL)

Result of tests

Sample	% Of	Flexural strength	Average	
	Glass		Flexural	
No.	Fiber	MPa (N/mm ²) 7		
110.	ribei		Ctream ath MDa	
		days	Strength MPa	
NO.1	2.0	4.99	5.18	
No.2	2.0	5.52	5.18	
110.2	2.0	5.52	5.10	
N. O			= 40	
No.3	2.0	5.05	5.18	
NO.1	2.5	5.0	5.21	
No.2	2.5	5.58	5.21	
NO.2	2.5	5.50	5.21	
No.3	2.5	5.05	5.21	
Sample	% Of	Flexural strength	Average	
Sample	% Of	Flexural strength	Average Eloxural	
_	Glass		Average Flexural	
Sample No.		MPa (N/mm ²) 28	Flexural	
_	Glass			
No.	Glass Fiber	MPa (N/mm ²) 28 days	Flexural	
_	Glass	MPa (N/mm ²) 28	Flexural	
No.	Glass Fiber	MPa (N/mm ²) 28 days	Flexural Strength MPa	
No.	Glass Fiber 2.0	MPa (N/mm ²) 28 days 5.50	Flexural Strength MPa 5.85	
No.	Glass Fiber	MPa (N/mm ²) 28 days	Flexural Strength MPa	
No. NO.4 No.5	Glass Fiber 2.0 2.0	MPa (N/mm ²) 28 days 5.50 6.42	Flexural Strength MPa 5.85 5.85	
No.	Glass Fiber 2.0	MPa (N/mm ²) 28 days 5.50	Flexural Strength MPa 5.85	
No. NO.4 No.5	Glass Fiber 2.0 2.0	MPa (N/mm ²) 28 days 5.50 6.42	Flexural Strength MPa 5.85 5.85	
No. NO.4 No.5	Glass Fiber 2.0 2.0	MPa (N/mm ²) 28 days 5.50 6.42	Flexural Strength MPa 5.85 5.85	
No. NO.4 No.5 No.6	Glass Fiber 2.0 2.0 2.0	MPa (N/mm ²) 28 days 5.50 6.42 5.64	Flexural Strength MPa 5.85 5.85 5.85	
No. NO.4 No.5 No.6 NO.4	Glass Fiber 2.0 2.0 2.0 2.0 2.0 2.0	MPa (N/mm ²) 28 days 5.50 6.42 5.64 5.48	Flexural Strength MPa 5.85 5.85 5.85 5.84	
No. NO.4 No.5 No.6	Glass Fiber 2.0 2.0 2.0	MPa (N/mm ²) 28 days 5.50 6.42 5.64	Flexural Strength MPa 5.85 5.85 5.85	
No. NO.4 No.5 No.6 NO.4 No.5	Glass Fiber 2.0 2.0 2.5 2.5 2.5	MPa (N/mm ²) 28 days 5.50 6.42 5.64 5.48 6.00	Flexural Strength MPa 5.85 5.85 5.85 5.84 5.84	
No. NO.4 No.5 No.6 NO.4	Glass Fiber 2.0 2.0 2.0 2.0 2.0 2.0	MPa (N/mm ²) 28 days 5.50 6.42 5.64 5.48	Flexural Strength MPa 5.85 5.85 5.85 5.84	
No. NO.4 No.5 No.6 NO.4 No.5	Glass Fiber 2.0 2.0 2.5 2.5 2.5	MPa (N/mm ²) 28 days 5.50 6.42 5.64 5.48 6.00	Flexural Strength MPa 5.85 5.85 5.85 5.84 5.84	

Discussion

Following points emerge from the test result :

- As seen from table 5, the seven days average compressive strength of concrete is maximum when 2% of glass fiber are used.
- \triangleright According to this result, increasing weight of glass fiber in normal concrete affect the cohesiveness between the practical of concrete of this result in degrading of compressive strength ,flexural and tensile strength.
- \geq For (M60) mix ,a percentage of glass fiber of 2% gave a flexural strength of (6.15MPa), which is 10% more than that obtained at 2%.
- \geq One should take care of glass fiber during mixing with concrete . It should be not allow to mix more than 1 min otherwise it will be break to tiny pieces, and it can not be worked with.

REFERENCE

- 1. Alan J bookers ," Cladding of building", Third Edition Published 2002, (pp82).
- 2. Anon Bunter and Sidney Mindess "Fiber Reinforced Cementitious Composites ", Second Edition 2007, chapter 8, (pp278).
- 3. J. G Ferreria ,FA Branco 2005 "structural application of GRC in telecommunication tower."
- 4. Majumder A.J (1974) the role of the interface in glass fiber reinforced cement.