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Abstract- In the embedded processor, a cache could 

consume 40% of the entire chip power. So, reduce the 

high power utilization of cache is very important. To 

reduce the high power utilization a new cache method 

is used in the embedded processors. This is termed as 

an Early Tag Access (ETA) method. For the memory 

instructions, the early target way can be found by this 

ETA. Thereby it can reduce the high power utilization. 

If the ETA does not find the way, it search the way in L1 

Cache. So automatically the power gets increased. Here 

a new energy efficient matching mechanism referred 

to as Counting Bloom Filter (CBF) based Tag Overflow 

Buffer (TOB) is proposed. This TOB uses reduced 

number of tag bits thereby the power gets reduced. 

The ETA can be activating only when the TOB hit is 

occurred. Compared to the previous technique the 

power consumption gets decreased up to 40%. 
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I. INTRODUCTION 
 

In embedded processors the most common and 
critical problem is to reducing the large power utilization 
of cache memory. Because it  focuses only the low-power 
consideration in embedded processors. In the total chip 
power, the cache consumes 40% [1]-[3]. Because of this 
large power utilization, thermal effects and reliability 
degradation issues may be generated in the cache. 
Usually the caches are performed critically because of this 
large power utilization. Therefore, reduce the large power 
utilization in the cache is more important. To show the 
tradeoff between the power and efficiency of the cache, 

many cache design methods [4]-[13] have been designed 
under various level of the design abstract. Here, to reduce 
the high power utilization a new cache matching 
mechanism termed as a CBF based TOB can be defined. 
The CBF is area-effective probabilistic data structure; it is 
used to check whether a tag bit is present in the cluster 
or set. From which it can reduce the power consumption. 
For sample, CBFs have been used to Increase    the    
action    in    multiprocessor snoop-coherent multi-core 
system [14],[15]. It is also used to reduce the quick miss 
decision at the L1 cache [16] and to increase the 
adaptability of load/store ordering queues [17]. There are 
two types of CBFs are present. That is SRAM CBF (S-CBF) 
and LFSR CBF (L-CBF). Related to the S-CBF, the L-CBF is 
more efficient one. Because the LFSR is high efficiency 
feedbacks shift register. The TOB is the identical 
mechanism that handles minimum address bits i.e., it use 
only the most significant bits for matching [18]-[22]. 

On a hit in the TOB, the restricted-tag cache is 
approached usually through the ETA. On a miss, common 
miss method is used i.e., it goes to the L2 cache to searching 
the particular tag. The following are the main strength of 
the TOB: 1) In the cache it uses a planned count of address 
bits. 2) It u s e s  much smaller hardware, so it accomplishes 
a tag power minimization similar to the other methods. 3) It 
achieves a reduction of leakage power. In the ETA, the 
Transition look ahead buffer (TLB) can perform the 
conversion between the Physical address and the Virtual 
address. During that conversion a portion of the physical 
tag is saved in the tag array, in a physical tag and virtual 
index cache. During the Load Store Queue (LSQ)  stage by 
approaching tag arrays and TLB, the target way can be 
resolved previously approaching the L1 cache. At the final, 
the energy consumption can be reduced significantly by 
accessing single way in the L1 cache. Note that at the LSQ 
stage the TLB can generate the Virtual addresses that can 
also be used for succeeding cache approaches. The energy 
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utilities of way resolution at the LSQ stage can be decreased 
by avoiding the TLB approaches over the cache approaches 
stage for most of the memory instruction. At the LSQ stage 
the destination cannot be determined for memory 
instruction. For that an improved technique of the ETA 
cache is designed at the cache access stage to minimize the 
number of ways accessed. Note that approaching L2 cache is 
complete correspond with the  approaches to the L1 cache 
in many high-end processors. Our CBF based TOB 
technique is fundamentally performed at the L1 cache. For 
embedded processors, the proposed TOB cache is more 
effective to take advantage for reducing cache traffic and 
power utilization by series approaches to the ETA and L1 
cache. As correlated with the associated work the output 
results  determine that the considered TOB cache is higher 
efficient in power minimization. 

 
II. WORKING PRINCIPLE 

A. Ear
ly Tag Access 

In a conventional cache, based on the cache hit 
the corresponding way of the data only activate. Other 
ways gets inactive. But the cache miss occurring means 
automatically it goes to the L1 cache to search the 
address, so the power gets increase. In this segment, a 
new cache matching mechanism termed as TOB will be 
established. This method will decrease the power 
consumption by reducing the number of tag bits. 

 

 

 

Fig. 1 Operation flow of L1 cache under the ETA cache [1] 

To get various powers and efficiency condition in 

embedded processors, the ETA cache can be explored in 
the Basic mode. 

A.1 Basic Mode 
 

Due to the possibility of memory  addresses it is likely 
to access an operation to the address arrays at the LSQ 
stage. In the basic mode of ETA cache, a novel group of 
address arrays and TLB (termed as LSQ tag arrays and LSQ 
TLB) is executed; when the memory information  is  go to 
the LSQ. This new group of LSQ tag  array and LSQ TLB is 
the reproduction of the tag array and TLB of the L1 cache 
correspondingly, to ignore the data assertion with the L1 
cache. In the course  of the LSQ lookup performance if the 
hit happen, that specific way can be used as a target way of 
the information. If this target way is correct, then that 
specific way can be activated and other ways get inactive. 
This enables power saving. On the other hand, if the way 
miss occurring in the  LSQ tag array or in the LSQ TLB 
during the lookup operation then the L1 cache will be 
performed in the Normal mode, i.e., in the tag array  and 
data array of the L1 cache, all ways will be activated. 
From Fig. 1, shows the operation flow of the L1 cache 
under the ETA cache. Here by using the physical address 
and the data, the  particular way can be determined and 
activated in the L1 cache. 

A. Tag Overflow Buffer 
 

The TOB is the matching mechanism;  it uses 
minimum number of address bit. The main thought of 
this planned design is to send the most significant bit 
of the address bits from  the cache into an independent 
register named as TOB, that act as an identifier of the 
memory instructions present location. In majority of the 
memory accreditation a minimized –tag cache can be 
accessed to achieve the dynamic energy efficiency. 
Various classes of methods are present to minimize the 
power utilization of the cache by decreasing the number 
of bits. In some cases a miss may be unfortunately 
represented as a hit. Because in these cases a subset can 
be used to compare the address. Therefore that case 
must be compact with misinterpretation. Some authors     
will     use     this     design     where    the 
misinterpretation cost is low, such as in branch 
prediction engines [18], [19]. The approach designed by 
Peng et al.[23] mingle the minimized data array power 
induced by the modified way- predicting cache design 
as proposed in [24] with the minimum tag power 
achieved by restricted tag comparison. 
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Fig. 2 CBF based TOB architecture 
 

Fig.2 shows the Block Diagram of CBF based 
TOB architecture. The dotted lines in the figure denote 
the extra hardware needed to achieve the minimized-tag 
architecture. For every memory references the TOB and 
the cache are always performed compliment with each 
other. The block diagram operates as follows. For each 
memory references, the most significant bits of the 
tag are sent to the CBF. If both the address are 
equal (a CBF hit occurs), then we can easily perform the 
minimized-tag cache. 

B. Counting Bloom Filter 
 

Fig. 3 shows the CBF architecture.  A CBF is a 
group of up/down linear feedback shift register and 
local zero detectors listed via hash function of the 
address in membership check. Fig. 4 shows the user 
defined 32 bit hash table. Because of hashing, within 
the same array entry, multiple element addresses are 
mapped. Normally, the CBF is a limited cluster and the 

tags are hashed onto this little cluster only. 

 

 

Fig. 3 CBF architecture 
 

 

 

Fig. 4 Hash table (32 bit) 
 

In this hash table, the address present in the 
cache is denoted as one and others are denoted as zero. 
For example, 00001,00011,00101,01000 and 01010 are 
present in the cache means that will be denoted as 
one. If the particular input address tag is present in 
cache, then the CBF will be activated. A CBF has three 
function: 1) increment count   (INC); 2) decrement count 
(DEC); and 3) test if the  count is zero or not (PROBE). 
The INC and DEC operations can increment or 
decrement the respective count by one based on the 
hit, and the third one checks weather the count is zero 
and returns true or false single-bit output. The first two 
functions are referred as a updates and the third 
operation will be consider as a probe. Based on the 
number of inputs and the size of the count per entry, a 
CBF is characterized. A CBF give any one of the two 
answers: 1) “Definite no,” indicating that the particular 
address is surely not a member of large set and 2) “I 
dont know,” denote that a CBF cannot find the address in 
the membership check, and must looking for the large 
group. The CBF is capable of determine the required 
answers to the membership check, it saves power and 
much faster on two conditions. First, CBF serves most 
membership tests. Second, compared to accessing the 
large group, the CBF is much sooner and needs less 
energy. The CBF is performed as follows, at first the 
large group is empty and all the count is put into zero. In 
the large set, when the address is added or deleted, the 
respected CBF gets incremented or decremented by one. 
The corresponding CBF denotes that in the large set, 
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whether an element is exits or not. If the count is zero, 
the large set does not have that particular element. If the 
count is one, then the large set must be searched for that 
element. 

 

 
Fig.5 L-CBF architecture; LFSR holds the CBF count; 

INC/DEC: read- modify-write sequences; PROBE: read-
compare sequence 

 

Fig. 5 shows the L-CBF architecture. Here the 
up/down Leaner Feedback Shift Register is used to 
generate random number of addresses. By using the 
comparator both the addresses are correlated to test 
whether the address is member or not. Fig. 6 
indicating the LFSR block diagram. The number of D-flip 
flops and the XOR gates are used here to generate 
different addresses. Every LFSR has the following limits: 
1) the number of bits in the shift registers is parallel to 
the width and size of the LFSR. 2) in the LFSR, taps are the 
output of D-flip flop that have been connected with the 
feedback loop. 3) at starting state, the LFSR can be  any 
value, except one. Here the total numbers of tag bits 

are 5. So, the feedback polynomial will be X
5 

+   X
3

 

+ 1. So, the output is taken from 3
rd  

and 5
th  

output of D-

flip flop and Xored both of them and feedback to the 1
st 

flip flop. The input of the LFSR is Clock and reset. The 
memory core is used to tell  whether the element is 
member or not in the large set. 

 

 

Fig. 6 LFSR Block diagram 
 

It is a single bit output. It can increment 
the address bits and read the address bits. But 
it cannot able to decrement it. 

C. LSQ Tag Array and LSQ TLB 
 

The LSQ tag array and LSQ TLB are the 
reproduction of the tag array and TLB of L1 cache 
accordingly, to ignore the data assertion with the L1 
cache. In the LSQ tag array and LSQ TLB the lookup 
operation can be takes place. When the address go to 
the LSQ, both the LSQ tag array and LSQ TLB search the 
early destination way by using the lookup operation. If 
the hit is occur (the particular address present in the 
LSQ tag array or TLB), then that particular way gets 
activate in the L1 cache. Otherwise, the information will 
be either an early tag miss or early TLB miss. 

D. Way Decoder and Way Hit/Miss Decoder 
 

Here the way decoder is used to decode the 
early destination way from the recently accessed ways 
by using the way enabling signal. Whether the 
particular destination way will be correct or not can be 
denoted by the way hit/miss decoder. The cache 
performance can be considered as a hit only when both 
the cache hit/miss and the way hit/miss signals denote 
a hit. If both the cache hit/miss and the way hit/miss 
indicating a miss signal means, then the cache process 
will be consider as a miss. A cache connection problem 
is found when the cache hit/miss denotes hit and the 
way hit/miss denotes miss or the early target way 
does not similar with the actual target way. 
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III. OVER ALL FLOW OF THE CBF BASED TOB 
 

Fig. 7 shows the flow diagram of the CBF 
based TOB architecture. The dotted lines denote the CBF 
based TOB architecture and the ETA. Here the TOB is 
connected between the address generation part and the 
ETA. The particular tag bit can be retrieved from the 
ETA, only when it present in the TOB. If the tag bit not 
present in the TOB, then the L2 cache or main memory 
will be searched for the tag bits. It can reduce the search 
time. So, automatically the power is also gets reduced. 

 

 

Fig. 7 Flow diagram of CBF based TOB 
 

By using the hash table the CBF can find 
whether the address is member of a set or not. From 
that information, the TOB can determine the output. 
Each time when the address reaches the LSQ tag and 
LSQ TLB, lookup operation can be takes place to find 
the early destination way of that particular address in 
L1 cache. Here the TLB is nothing but the Transition 
Look ahead Buffer. It is used to convert the physical 
address to the virtual address. Basically, the physical 
address is used to find the data array and the virtual 
address is used to find the tag array. If the particular 
destination way can be found,  then  that  way  can  be  
activated  in  the L1 cache. From that way we can easily 
retrieve the data of that particular address.  

 

IV IMPLIMENTATION OF CBF BASED TOB 
 

This segment furnish the VLSI 
implementation of CBF based TOB cache. Fig. 8 
shows the two-way set-associative L1 cache for 
demonstration. The key component in the proposed 
is CBF, TOB, Hash table, LFSR, LSQ tag array, 
LSQ TLB, Information buffer, Way decoder, and way 
hit/miss decoder. 

 

 

Fig. 8 proposed CBF based TOB cache architecture 
 

Initially the address generation can be takes 
place by using the CAM. CAM is nothing but Content 
Addressable Memory. It can generate the address for the 
particular data. This address will be called as physical 
address. This address only sent to the L1 cache. In the 8 
bit address, the first 5 bits are consider as a tag bits, the 
next 2 bits are consider as a index bits, and the final bit is 
consider as a offset bit. The tag bits only sent to the 
TOB. Because it uses minimum number of address bits to 
matching the address. If the most significant bits are 
equal, more over the other bits are also equal. 

Then this tag bits are sent to the CBF. In the CBF 
user defined hash table can be used to search the address 
bits in the large group. If the address bit is currently in 
the Hash table means,  then it activates the CBF. In the 
CBF, the LFSR is  present to generate the random number 
of tag bits to compare with the input tag bit. If both the 
tag bits are equal means, then it sent the control signal 
„1‟ to the memory core. In the memory core three types 
of operations are present. 1) INC, 2) DEC, and 3) PROBE. 
Increment is used to increase the tag  bits in the CBF. The 



          International Research Journal of Engineering and Technology (IRJET)        e-ISSN: 2395-0056 

               Volume: 02 Issue: 07 | Oct-2015            www.irjet.net                                               p-ISSN: 2395-0072 

 

© 2015, IRJET                                                ISO 9001:2008 Certified Journal                                                           Page 702 
 

PROBE is used to read the tag bits in the CBF. The CBF 
cannot able to access the decrement operation. 

If the output of LFSR is one means, then the 
memory core said that “yes, the element is a member of a 
set”. If the output of LFSR is not equal to „1‟ means, then 
the memory core output will be “I don‟t know whether 
the element is a member of a set or not”. Then the CBF 
output will be compared with the input tag bits in the 
TOB. If both the tag bits are equal means, TOB hit is 
occurred. If the TOB miss occurring means, then that 
particular tag bit is added to the CBF by using Locality 
Change Detection (LCD). This LCD is based on both 
the input tag bit and the TOB miss. If the TOB miss 
occurring, then this tag bit is sent to the LCD. Here based 
on the TOB miss, the counter gets increased by „1‟ and 
compared with the maximum threshold value of the 
cache. Compared to the  threshold value, the input tag 
bit is minimum means it will load to the CBF. After this 
action, the cache will be flushed. Then the TOB hit 
information and the particular tag bit can be sent to the 
ordering logic. Here first in first out logic can be used. So, 
the highest priority tag bit is first stored in the 
information buffer and it is used for the temporary 
storage of the tag bits. The dotted lines denote the ETA. 
From the ETA the particular destination way can be 
determined and it sent to the information buffer. From 
the information buffer the way can be sent to the way 
decoder. In the way decoder the recently accessed ways 
are present. From that ways, the particular destination 
way can be decoded by using the way enabling signal 
produced by the comparison of the actual destination way 
and the early destination way. Then the address of that 
destination way can be correlated with the address of the 
L1 cache. If both the addresses are equal the way hit is 
occurred, and that will sent to the controller. From that 
address, the data can be retrieved.  

 

Fig. 9 Implementation of way decoder 
 

Otherwise if the addresses are not equal, 
then way miss will be occurred. Suppose, if the tag 
bits are not present in the TOB means, it  can 
directly go to the L2 cache or main memory to 
retrieve the data. 

 

V. S
IMULATION RESULT AND COMPARISION 
TABLE 

 
Fig. 10 Simulation result of CBF Based TOB  

Architecture 

The following Table shows the time and power 
variation between the Early Tag Access and the 
Counting Bloom Filter based Tag Overflow Buffer. 
Compared to the ETA technique, CBF based TOB 
architecture give the better power and time 
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reduction. 

TABLE I 

COMPARISION TABLE 

Methods Used Time 

( ns) 

Power 

(mW) 

 

ETA 

 

11.409 

 

141 

 

CBF Based 
TOB 

 

6.420 

 

133 

 

 

IV CONCLUSION 
 

A new power efficient cache design for low-power 
embedded processors has been implemented here. By 
using the reduced tag bits, The TOB can determine if the 
address is existing in the cache or not. If the tag bits 
existing in the TOB, it will go to the ETA and retrieve the 
data. Suppose the tag bit not present in the TOB, and 
then it directly goes to the L2 cache or Main memory to 
search the address. This can automatically reduce the 
power from compared to the ETA technique. Here the 
high power utilization can be minimized with no 
compromise in behavior. Simulation results show the 
efficiency of the CBF based TOB  architecture as well as 
the performance impression and design utilities. The 
TOB architecture has been implemented for the L1 cache 
alone. Further  work is being aimed toward extending 
this design  to other levels of the cache. 
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