
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 697

Power Optimization in L1 Cache of Embedded Processors

Using CBF Based TOB Architecture

B.Gomathi
Assistant Professor

Department of Electronics and Communication Engineering

SNS College of Engineering

Tamil Nadu
India

Abstract- In the embedded processor, a cache could

consume 40% of the entire chip power. So, reduce the

high power utilization of cache is very important. To

reduce the high power utilization a new cache method

is used in the embedded processors. This is termed as

an Early Tag Access (ETA) method. For the memory

instructions, the early target way can be found by this

ETA. Thereby it can reduce the high power utilization.

If the ETA does not find the way, it search the way in L1

Cache. So automatically the power gets increased. Here

a new energy efficient matching mechanism referred

to as Counting Bloom Filter (CBF) based Tag Overflow

Buffer (TOB) is proposed. This TOB uses reduced

number of tag bits thereby the power gets reduced.

The ETA can be activating only when the TOB hit is

occurred. Compared to the previous technique the

power consumption gets decreased up to 40%.

Key words- Cache, LSQ tag, LSQ TLB, LFSR, Comparator,

Hass table, Low Power

I. INTRODUCTION

In embedded processors the most common and
critical problem is to reducing the large power utilization
of cache memory. Because it focuses only the low-power
consideration in embedded processors. In the total chip
power, the cache consumes 40% [1]-[3]. Because of this
large power utilization, thermal effects and reliability
degradation issues may be generated in the cache.
Usually the caches are performed critically because of this
large power utilization. Therefore, reduce the large power
utilization in the cache is more important. To show the
tradeoff between the power and efficiency of the cache,

many cache design methods [4]-[13] have been designed
under various level of the design abstract. Here, to reduce
the high power utilization a new cache matching
mechanism termed as a CBF based TOB can be defined.
The CBF is area-effective probabilistic data structure; it is
used to check whether a tag bit is present in the cluster
or set. From which it can reduce the power consumption.
For sample, CBFs have been used to Increase the
action in multiprocessor snoop-coherent multi-core
system [14],[15]. It is also used to reduce the quick miss
decision at the L1 cache [16] and to increase the
adaptability of load/store ordering queues [17]. There are
two types of CBFs are present. That is SRAM CBF (S-CBF)
and LFSR CBF (L-CBF). Related to the S-CBF, the L-CBF is
more efficient one. Because the LFSR is high efficiency
feedbacks shift register. The TOB is the identical
mechanism that handles minimum address bits i.e., it use
only the most significant bits for matching [18]-[22].

On a hit in the TOB, the restricted-tag cache is
approached usually through the ETA. On a miss, common
miss method is used i.e., it goes to the L2 cache to searching
the particular tag. The following are the main strength of
the TOB: 1) In the cache it uses a planned count of address
bits. 2) It u s e s much smaller hardware, so it accomplishes
a tag power minimization similar to the other methods. 3) It
achieves a reduction of leakage power. In the ETA, the
Transition look ahead buffer (TLB) can perform the
conversion between the Physical address and the Virtual
address. During that conversion a portion of the physical
tag is saved in the tag array, in a physical tag and virtual
index cache. During the Load Store Queue (LSQ) stage by
approaching tag arrays and TLB, the target way can be
resolved previously approaching the L1 cache. At the final,
the energy consumption can be reduced significantly by
accessing single way in the L1 cache. Note that at the LSQ
stage the TLB can generate the Virtual addresses that can
also be used for succeeding cache approaches. The energy

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 698

utilities of way resolution at the LSQ stage can be decreased
by avoiding the TLB approaches over the cache approaches
stage for most of the memory instruction. At the LSQ stage
the destination cannot be determined for memory
instruction. For that an improved technique of the ETA
cache is designed at the cache access stage to minimize the
number of ways accessed. Note that approaching L2 cache is
complete correspond with the approaches to the L1 cache
in many high-end processors. Our CBF based TOB
technique is fundamentally performed at the L1 cache. For
embedded processors, the proposed TOB cache is more
effective to take advantage for reducing cache traffic and
power utilization by series approaches to the ETA and L1
cache. As correlated with the associated work the output
results determine that the considered TOB cache is higher
efficient in power minimization.

II. WORKING PRINCIPLE

A. Ear
ly Tag Access

In a conventional cache, based on the cache hit
the corresponding way of the data only activate. Other
ways gets inactive. But the cache miss occurring means
automatically it goes to the L1 cache to search the
address, so the power gets increase. In this segment, a
new cache matching mechanism termed as TOB will be
established. This method will decrease the power
consumption by reducing the number of tag bits.

Fig. 1 Operation flow of L1 cache under the ETA cache [1]

To get various powers and efficiency condition in

embedded processors, the ETA cache can be explored in
the Basic mode.

A.1 Basic Mode

Due to the possibility of memory addresses it is likely
to access an operation to the address arrays at the LSQ
stage. In the basic mode of ETA cache, a novel group of
address arrays and TLB (termed as LSQ tag arrays and LSQ
TLB) is executed; when the memory information is go to
the LSQ. This new group of LSQ tag array and LSQ TLB is
the reproduction of the tag array and TLB of the L1 cache
correspondingly, to ignore the data assertion with the L1
cache. In the course of the LSQ lookup performance if the
hit happen, that specific way can be used as a target way of
the information. If this target way is correct, then that
specific way can be activated and other ways get inactive.
This enables power saving. On the other hand, if the way
miss occurring in the LSQ tag array or in the LSQ TLB
during the lookup operation then the L1 cache will be
performed in the Normal mode, i.e., in the tag array and
data array of the L1 cache, all ways will be activated.
From Fig. 1, shows the operation flow of the L1 cache
under the ETA cache. Here by using the physical address
and the data, the particular way can be determined and
activated in the L1 cache.

A. Tag Overflow Buffer

The TOB is the matching mechanism; it uses
minimum number of address bit. The main thought of
this planned design is to send the most significant bit
of the address bits from the cache into an independent
register named as TOB, that act as an identifier of the
memory instructions present location. In majority of the
memory accreditation a minimized –tag cache can be
accessed to achieve the dynamic energy efficiency.
Various classes of methods are present to minimize the
power utilization of the cache by decreasing the number
of bits. In some cases a miss may be unfortunately
represented as a hit. Because in these cases a subset can
be used to compare the address. Therefore that case
must be compact with misinterpretation. Some authors
will use this design where the
misinterpretation cost is low, such as in branch
prediction engines [18], [19]. The approach designed by
Peng et al.[23] mingle the minimized data array power
induced by the modified way- predicting cache design
as proposed in [24] with the minimum tag power
achieved by restricted tag comparison.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 699

Fig. 2 CBF based TOB architecture

Fig.2 shows the Block Diagram of CBF based
TOB architecture. The dotted lines in the figure denote
the extra hardware needed to achieve the minimized-tag
architecture. For every memory references the TOB and
the cache are always performed compliment with each
other. The block diagram operates as follows. For each
memory references, the most significant bits of the
tag are sent to the CBF. If both the address are
equal (a CBF hit occurs), then we can easily perform the
minimized-tag cache.

B. Counting Bloom Filter

Fig. 3 shows the CBF architecture. A CBF is a
group of up/down linear feedback shift register and
local zero detectors listed via hash function of the
address in membership check. Fig. 4 shows the user
defined 32 bit hash table. Because of hashing, within
the same array entry, multiple element addresses are
mapped. Normally, the CBF is a limited cluster and the

tags are hashed onto this little cluster only.

Fig. 3 CBF architecture

Fig. 4 Hash table (32 bit)

In this hash table, the address present in the
cache is denoted as one and others are denoted as zero.
For example, 00001,00011,00101,01000 and 01010 are
present in the cache means that will be denoted as
one. If the particular input address tag is present in
cache, then the CBF will be activated. A CBF has three
function: 1) increment count (INC); 2) decrement count
(DEC); and 3) test if the count is zero or not (PROBE).
The INC and DEC operations can increment or
decrement the respective count by one based on the
hit, and the third one checks weather the count is zero
and returns true or false single-bit output. The first two
functions are referred as a updates and the third
operation will be consider as a probe. Based on the
number of inputs and the size of the count per entry, a
CBF is characterized. A CBF give any one of the two
answers: 1) “Definite no,” indicating that the particular
address is surely not a member of large set and 2) “I
dont know,” denote that a CBF cannot find the address in
the membership check, and must looking for the large
group. The CBF is capable of determine the required
answers to the membership check, it saves power and
much faster on two conditions. First, CBF serves most
membership tests. Second, compared to accessing the
large group, the CBF is much sooner and needs less
energy. The CBF is performed as follows, at first the
large group is empty and all the count is put into zero. In
the large set, when the address is added or deleted, the
respected CBF gets incremented or decremented by one.
The corresponding CBF denotes that in the large set,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 700

whether an element is exits or not. If the count is zero,
the large set does not have that particular element. If the
count is one, then the large set must be searched for that
element.

Fig.5 L-CBF architecture; LFSR holds the CBF count;

INC/DEC: read- modify-write sequences; PROBE: read-
compare sequence

Fig. 5 shows the L-CBF architecture. Here the
up/down Leaner Feedback Shift Register is used to
generate random number of addresses. By using the
comparator both the addresses are correlated to test
whether the address is member or not. Fig. 6
indicating the LFSR block diagram. The number of D-flip
flops and the XOR gates are used here to generate
different addresses. Every LFSR has the following limits:
1) the number of bits in the shift registers is parallel to
the width and size of the LFSR. 2) in the LFSR, taps are the
output of D-flip flop that have been connected with the
feedback loop. 3) at starting state, the LFSR can be any
value, except one. Here the total numbers of tag bits

are 5. So, the feedback polynomial will be X
5

+ X
3

+ 1. So, the output is taken from 3
rd

and 5
th

output of D-

flip flop and Xored both of them and feedback to the 1
st

flip flop. The input of the LFSR is Clock and reset. The
memory core is used to tell whether the element is
member or not in the large set.

Fig. 6 LFSR Block diagram

It is a single bit output. It can increment
the address bits and read the address bits. But
it cannot able to decrement it.

C. LSQ Tag Array and LSQ TLB

The LSQ tag array and LSQ TLB are the
reproduction of the tag array and TLB of L1 cache
accordingly, to ignore the data assertion with the L1
cache. In the LSQ tag array and LSQ TLB the lookup
operation can be takes place. When the address go to
the LSQ, both the LSQ tag array and LSQ TLB search the
early destination way by using the lookup operation. If
the hit is occur (the particular address present in the
LSQ tag array or TLB), then that particular way gets
activate in the L1 cache. Otherwise, the information will
be either an early tag miss or early TLB miss.

D. Way Decoder and Way Hit/Miss Decoder

Here the way decoder is used to decode the
early destination way from the recently accessed ways
by using the way enabling signal. Whether the
particular destination way will be correct or not can be
denoted by the way hit/miss decoder. The cache
performance can be considered as a hit only when both
the cache hit/miss and the way hit/miss signals denote
a hit. If both the cache hit/miss and the way hit/miss
indicating a miss signal means, then the cache process
will be consider as a miss. A cache connection problem
is found when the cache hit/miss denotes hit and the
way hit/miss denotes miss or the early target way
does not similar with the actual target way.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 701

III. OVER ALL FLOW OF THE CBF BASED TOB

Fig. 7 shows the flow diagram of the CBF
based TOB architecture. The dotted lines denote the CBF
based TOB architecture and the ETA. Here the TOB is
connected between the address generation part and the
ETA. The particular tag bit can be retrieved from the
ETA, only when it present in the TOB. If the tag bit not
present in the TOB, then the L2 cache or main memory
will be searched for the tag bits. It can reduce the search
time. So, automatically the power is also gets reduced.

Fig. 7 Flow diagram of CBF based TOB

By using the hash table the CBF can find
whether the address is member of a set or not. From
that information, the TOB can determine the output.
Each time when the address reaches the LSQ tag and
LSQ TLB, lookup operation can be takes place to find
the early destination way of that particular address in
L1 cache. Here the TLB is nothing but the Transition
Look ahead Buffer. It is used to convert the physical
address to the virtual address. Basically, the physical
address is used to find the data array and the virtual
address is used to find the tag array. If the particular
destination way can be found, then that way can be
activated in the L1 cache. From that way we can easily
retrieve the data of that particular address.

IV IMPLIMENTATION OF CBF BASED TOB

This segment furnish the VLSI
implementation of CBF based TOB cache. Fig. 8
shows the two-way set-associative L1 cache for
demonstration. The key component in the proposed
is CBF, TOB, Hash table, LFSR, LSQ tag array,
LSQ TLB, Information buffer, Way decoder, and way
hit/miss decoder.

Fig. 8 proposed CBF based TOB cache architecture

Initially the address generation can be takes
place by using the CAM. CAM is nothing but Content
Addressable Memory. It can generate the address for the
particular data. This address will be called as physical
address. This address only sent to the L1 cache. In the 8
bit address, the first 5 bits are consider as a tag bits, the
next 2 bits are consider as a index bits, and the final bit is
consider as a offset bit. The tag bits only sent to the
TOB. Because it uses minimum number of address bits to
matching the address. If the most significant bits are
equal, more over the other bits are also equal.

Then this tag bits are sent to the CBF. In the CBF
user defined hash table can be used to search the address
bits in the large group. If the address bit is currently in
the Hash table means, then it activates the CBF. In the
CBF, the LFSR is present to generate the random number
of tag bits to compare with the input tag bit. If both the
tag bits are equal means, then it sent the control signal
„1‟ to the memory core. In the memory core three types
of operations are present. 1) INC, 2) DEC, and 3) PROBE.
Increment is used to increase the tag bits in the CBF. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 702

PROBE is used to read the tag bits in the CBF. The CBF
cannot able to access the decrement operation.

If the output of LFSR is one means, then the
memory core said that “yes, the element is a member of a
set”. If the output of LFSR is not equal to „1‟ means, then
the memory core output will be “I don‟t know whether
the element is a member of a set or not”. Then the CBF
output will be compared with the input tag bits in the
TOB. If both the tag bits are equal means, TOB hit is
occurred. If the TOB miss occurring means, then that
particular tag bit is added to the CBF by using Locality
Change Detection (LCD). This LCD is based on both
the input tag bit and the TOB miss. If the TOB miss
occurring, then this tag bit is sent to the LCD. Here based
on the TOB miss, the counter gets increased by „1‟ and
compared with the maximum threshold value of the
cache. Compared to the threshold value, the input tag
bit is minimum means it will load to the CBF. After this
action, the cache will be flushed. Then the TOB hit
information and the particular tag bit can be sent to the
ordering logic. Here first in first out logic can be used. So,
the highest priority tag bit is first stored in the
information buffer and it is used for the temporary
storage of the tag bits. The dotted lines denote the ETA.
From the ETA the particular destination way can be
determined and it sent to the information buffer. From
the information buffer the way can be sent to the way
decoder. In the way decoder the recently accessed ways
are present. From that ways, the particular destination
way can be decoded by using the way enabling signal
produced by the comparison of the actual destination way
and the early destination way. Then the address of that
destination way can be correlated with the address of the
L1 cache. If both the addresses are equal the way hit is
occurred, and that will sent to the controller. From that
address, the data can be retrieved.

Fig. 9 Implementation of way decoder

Otherwise if the addresses are not equal,
then way miss will be occurred. Suppose, if the tag
bits are not present in the TOB means, it can
directly go to the L2 cache or main memory to
retrieve the data.

V. S
IMULATION RESULT AND COMPARISION
TABLE

Fig. 10 Simulation result of CBF Based TOB

Architecture

The following Table shows the time and power
variation between the Early Tag Access and the
Counting Bloom Filter based Tag Overflow Buffer.
Compared to the ETA technique, CBF based TOB
architecture give the better power and time

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 703

reduction.

TABLE I

COMPARISION TABLE

Methods Used Time

(ns)

Power

(mW)

ETA

11.409

141

CBF Based
TOB

6.420

133

IV CONCLUSION

A new power efficient cache design for low-power
embedded processors has been implemented here. By
using the reduced tag bits, The TOB can determine if the
address is existing in the cache or not. If the tag bits
existing in the TOB, it will go to the ETA and retrieve the
data. Suppose the tag bit not present in the TOB, and
then it directly goes to the L2 cache or Main memory to
search the address. This can automatically reduce the
power from compared to the ETA technique. Here the
high power utilization can be minimized with no
compromise in behavior. Simulation results show the
efficiency of the CBF based TOB architecture as well as
the performance impression and design utilities. The
TOB architecture has been implemented for the L1 cache
alone. Further work is being aimed toward extending
this design to other levels of the cache.

REFERENES

[1] Jianwei Dai, Menglong Guan, and Lei Wang, “
Exploiting Early Tag Access for Reducing L1 Data Cache
Energy in Embedded Processors,” in IEEE transaction on
very large scale integration (VLSI) systems, Vol. 22, No. 2,
Feb 2014, pp. 396-407.
[2] Intel XScale Microarchitecture, Intel, Santa Clara, CA,
USA, 2001.
[3] C. Zhang, F. Vahid, and W. Najjar “A highly-
configurable cache architecture for embedded systems,” in
Proc. 30th Annu. Int. Symp. Comput. Archit., Jun. 2003, pp.
136–146.
[4] S. Segars, “Low power design techniques for

microprocessors,” in Proc. Int. Solid-State Circuits Conf.
Tuts., Feb. 2001.

 [5] S. Manne, A. Klauser, and D. Grunwald, “Pipline
gating: Spculation conrol for energy reduction,” in Proc.
Int. Symp. Comput. Archit.,

 Jun.–Jul. 1998, pp. 132–141.
[6] M. Gowan, L. Biro, and D. Jackson, “Power
considerations in the design of the alpha 21264
microprocessor,” in Proc. Design Autom. Conf., Jun. 1998,
pp. 726–731.
[7] A. Malik, B. Moyer, and D. Cermak, “A Low power
unified cache architecture providing power and
performance flexibility,” in Proc. Int. Symp. Low Power
Electron. Design, 2000, pp. 241–243.
[8] T. Lyon, E. Delano, C. McNairy, and D. Mulla, “Data
Cache Design Considerations for the Itanium Processor,”
in Proc. IEEE Int. Conf. Comput. Design, VLSI Comput.
Process., 2002, pp. 356–362.
[9] D. Nicolaescu, A. Veidenbaum, and A. Nicolau,
“Reducing power consumption for high-associativity
data caches in embedded processors,” in Proc. Design,
Autom., Test Eur. Conf. Exhibit., Dec. 2003,
pp. 1064–1068.
[10] C. Zhang, F. Vahid, Y. Jun, and W. Najjar, “A way-
halting cache for low-energy high-performance systems,”
in Proc. Int. Symp. Low Power Electron. Design, Aug.
2004, pp. 126–131.
[11] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M.
Cooper, D. W. Dobberpuhl, P. M. Donahue, J. Eno, W.
Hoeppner, D. Kruckemyer, T. H. Lee, P. C. M. Lin, L.
Madden, D. Murray, M. H. Pearce, S. Santhanam, K. J.
Snyder, R. Stehpany, and S. C. Thierauf, “A 160-MHz 32-
b 0.5- W CMOS RISC microprocessor,” IEEE J. Solid-State
Circuits, vol. 31, no. 11, pp. 1703–1714, Nov. 1996.
[12] S. Santhanam, A. J. Baum, D. Bertucci, M.
Braganza, K. Broch, T. Broch, J. Burnette, E. Chang, C.
Kwong-Tak, D. Dobberpuhl, P. Donahue, J. Grodstein, K.
Insung, D. Murray, M. Pearce, A. Silveria,
D. Souydalay, A. Spink, R. Stepanian, A. Varadharajan, V. R.
van Kaenel, and
R. Wen, “A low-cost, 300-MHz, RISC CPU with attached
media processor,” IEEE J. Solid-State Circuits, vol. 33, no.
11, pp. 1829–1838, Nov. 1998.
[13] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch:
A framework for architectural-level power analysis and
optimizations,” in Proc. Int. Symp. Comput. Archit., Jun.
2000, pp. 83–94.
[14] A. Moshovos, “RegionScout: Exploiting coarse-grain
sharing in snoop- coherence,” in Proc. Ann. Int. Symp.
Comput. Arch., Jun. 2005, pp. 234–245. [15] A. Moshovos, G.
Memik, B. Falsafi, and A. Choudhary, “Jetty: Filtering
snoops for reduced energy consumption in smp servers,” in

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 704

Proc. Ann. Int. Conf. High-Performance Comput. Arch., Feb.
2001, pp. 85–96.
[16] J. K. Peir, S. C. Lai, S. L. Lu, J. Stark, and K. Lai, “Bloom
filtering cache misses for accurate data speculation and
prefetching,” in Proc. Ann. Int. Conf. Supercomput., Jun.
2002, pp. 189–198.
[17] S. Sethumadhavan, R. Desikan, D. Burger, C. R.
Moore, and S. W. Keckler, “Scalable hardware memory
disambiguation for high-ILP processors,” IEEE Micro, vol.
24, no. 6, pp. 118–127, Nov. 2004.
[18] B. Fagin, “Partial resolution in branch target
buffers,” IEEE Trans. Comput., vol. 46, no. 10, pp. 1142–
1145, Oct. 1997.
[19] B.-S. Choi and D.-I. Lee, “Cost-effective value
prediction micro- operation using partial tag and
narrow-width operands,” in Proc. IEEEPacific Rim Conf.
Commun., Comput. Signal Process., Aug. 2001, pp. 319–
322.
[20] L. Liu, “Partial address directory for cache access,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 2,
no. 2, pp. 226–240, Jun. 1994.
[21] R. Min, Z. Xu, Y. Hu, and W.-B. Jone, “Partial tag
comparison: A new technology for power-efficient set-
associative cache designs,” in Proc. 17th Int. Conf. VLSI
Des. (VLSID), Jan. 2004, pp. 183–188.
[22] P. Petrov and A. Orailoglu, “Data cache energy
minimizations through programmable tag size matching
to the applications,” in Proc. Int. Symp. Syst. Synth.
(ISSS), Sep./Oct. 2001, pp. 113–117.
[23] M. Peng, Y. Pan, and B. Liu, “Low energy partial tag
comparison cache using valid-bit pre-decision,” in Proc.
IEEE Region 10 Conf. (TENCON), Nov. 2006, pp. 1–4.
[24] H.-C. Chen and J.-S. Chiang, “Low-power way-
predicting cache using valid-bit pre-decision for parallel
architecture,” in Proc. 19th Int. Conf. Adv. Inf. Netw.
Appl., Mar. 2005, pp. 203–206.

