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Abstract:

In this paper, the new method is
proposed for recognizing B-mode ultrasound
(US) imaging of common carotid artery (CCA)
in longitude. Automatic segmentation of the
arterial lumen from ultrasound images is an
important task in clinical diagnosis. Carotid
artery recognition, the first task in lumen
segmentation, should be performed in a fully
automated, fast, and reliable way to further
facilitate the low-level task of arterial
delineation. In this paper, a user-independent,
real-time algorithm is introduced for carotid
artery localization in longitudinal B-mode
ultrasound images. The proposed method has
four major steps. The process starts with
image area selection, vertical intensity profile
(VIP) signal selection, lumen center point
detection; the proposed method classifies
center points using fuzzy logic classifier. This
provides a medial axis with efficient lumen
recognition data. The data sets used included
2,149 images from 100 subjects taken from
three different institutions and covering a
wide range of possible lumen and
surrounding tissue representations. Using the
optimized values, the carotid artery was
recognized in all the processed images in both
multi-frame and single-frame data. Thus, the
introduced technique will further reinforce

automatic segmentation in longitudinal B-
mode ultrasound images.

Index Terms—Lumen recognition, carotid artery,
segmentation, ultrasound, fuzzy logic

I.INTRODUCTION

The common carotid artery (CCA) is the
artery that supplies the human head, specifically the
front part of the brain and neck, with oxygenated
blood. Like other arteries, it is known for its paired
structure: one for left part (with origin in the aortic
arch) and another one for the right part of the
human body (with origin in the neck). Vascular
non-invasive ultrasound (US) allows the estimation
of morphological and dynamic parameters of
arteries, such as diameter and distension (Reneman
et al., 2005) or intima-media thickness (IMT) (Van
Bortel et al., 2001). To perform these
measurements fast, accurately and reliably with
minimal inter and intra-user variability, the
segmentation of the underlying ultrasound image
should be computerized.

Image segmentation may be thought as
consisting of two related processes (Udupa et al.,
2006): recognition, i.e. the high level task of
determining roughly where a specific structure is
located, and delineation, i.e. the low level task of
determining the precise spatial extent of such
structure. The topic of this paper concerns CA
recognition through lumen medial axis detection.
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So far, the various methods are introduced
for CA segmentation requires manual user
assistance in arterial lumen recognition (see [5]–
[9]).few algorithms offer full automation in CA
segmentation (see [16],[2],[3]). The user-induced
artifacts were limited by completely automated CA
recognition [1], thus providing (i) better accuracy
in recognizing the random-shaped arterial lumen
and (ii) repeatability, whereas it provides (iii)
increased productivity compared to the manual one.
Moreover, focusing on recognition alone, which
remains the most challenging task in image
segmentation, may also (iv) improve overall
segmentation accuracy by facilitating the
measurement procedure [1], (v) reduce overall
computational cost, (vi) provide better flexibility,
and (vii) offer better error control, because it is
evaluated independently.

II.RELATED WORK

To our knowledge, previous work focused
solely on automatic arterial recognition in
longitudinal B-mode images is relatively limited
compared to the work on CA delineation. Delsanto
et al. [14] introduced an automatic region of
interest (ROI) identification approach as
initialization for a user-independent segmentation
algorithm. However, the proposed algorithm may
be deceived by wall calcium plaque presence, and
it is not well-suited for real-time applications.
Rossi et al. [1] developed a real-time algorithm for
the automatic recognition of the common Carotid
Artery (CCA) that acts directly on the envelopes of
received radio frequency echo signals.

However, their method can be exploited to
its full extent when applied to multi-frame data.
Wan et al. [15] suggested two different methods for
CCA recognition; a single-frame, and a multi-
frame approach. However, both their methods are
also prone to low Signal-to-Noise Ratio (SNR) in
the lumen and to jugular vein presence. Benes et al.
[19] proposed an automatic CA localization
approach based on a support vector machine
(SVM) classifier and a novel random sample
consensus (RANSAC) method [18] to suppress
misclassified points. However, their approach is not

appropriate for real-time applications. Emmanouil
G. Sifakis et al. [4] proposed carotid artery
recognition based on Vertical intensity profile(VIP)
for medial axis formation in lumen. The drawback
of this method uses a basic classification for CA
recognition.

The main aim of this paper was to develop
a fully automated and real time technique for CA
recognition in longitudinal B-mode ultrasound
images. The method operates efficiently on a single
ultrasound image without the need of utilizing any
subsequent frame information. Our CA
Recognition approach based on a Fuzzy logic
classifier to suppress misclassified points. It was
also systematically compared on an equal footing
with another, promising method for CCA
localization.

III.MATERIALS AND METHODS

A. Image Datasets
In this study, a total of 2,149 longitudinal

B-mode ultrasound images of the CA recorded
from 100 subjects, and collected from three
separate datasets namely St. Mary’s Hospital
Dataset (SMH), Aretaieion University Hospital
Dataset (AUH), SPLab Dataset (SPL) were used
for performance evaluation of the proposed
algorithm. Fig. 1 shows an simple CCA and Fig 2
shows longitudinal B-mode ultrasound image
example of the tested ultrasound images. All
images are depicting CCA in longitudinal scan of

different volunteers.

Fig 1. Diagram of common carotid artery wall
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The images were scanned with different settings
of acquisition hardware (frequency, depth, gain)

and different positioning of a probe. The images

cover a wide spectrum of (i) CA sites (e.g.
common, internal, external, bulb), (ii) subject
profiles (e.g. age, sex, weight), and (iii) clinical
conditions, and they were acquired using different
(iv) ultrasound image acquisition systems and
linear array transducers, (v) sonographers, and (vi)
settings (e.g. depth, gain, time gain compensation
(TGC)).

Fig 2. Longitudinal B-mode ultrasound image of
common carotid artery with layer description.
The lumen is the region where the blood flows

B. Algorithm Architecture
The overview of the proposed algorithm,

which was developed and evaluated within Matlab
® 7.9 R2009b (The MathWorks Inc., Natick, MA,
USA), is shown in Fig. 3. Briefly, a finite number
of equally spaced, vertical intensity profiles (VIP)
is considered in a single image. For every VIP
signal, a statistics-based procedure is used for a
single lumen center point identification. Then, a
subset of the resulting lumen center points,
designated as the ‘backbone’, is further processed
to accurately estimate the CA lumen position.

1) Image Area Selection
In US longitudinal scans, the CCA appears as a
structure oriented in horizontal direction, often
covering the entire frame width. In the vertical
dimension of the US frame, the artery is usually
located at depths between 10 and 30 mm with a
diameter between 4 and 9 mm, depending on age
and sex of the subject. The artery structure appears

as a region having very low echogenicity (the
lumen) surrounded by two bright bands (the arterial
walls).The lumen center position may vary over the
frame, consistent with a curved or inclined artery or
with local narrowing’s of the lumen due to a
stenosis.

A vascular US image may contain many
patterns mimicking the appearance of an artery of

interest, e.g. actual tissue structures, artifacts,
reverberations and other vessels (Fig. 3).The upper

Fig 3. Ultrasound B-mode image of the common
carotid artery (CCA).
part of each frame (the first 2–3 mm) contains
particulars that are of no interest for the lumen
localization task (the gel skin interface for
instance). Moreover, users often tend to have the
region of interest in the center of the image.
Therefore, we ignore the information contained in
the upper 3 mm and in the lateral 4 mm on each
side (10% of the image width).whereas preserving
the entire image height.

2) VIP Signal Selection
In the reduced image, the concept of

lateral interspacing adapted by Rossi et al. [1] for
vertical signal selection [3], [1], [14] was followed.
Specifically, a finite number (N) of VIP signals was
considered every Sstep mm (Fig. 4(b)), thus reducing
its 2D information content to a series of 1D signals.
The lateral interspacing of Sstep=0.5 mm was
selected, because it provides a rather adequate
sample size for robust and accurate CA
recognition, and has a step relatively low



International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
Volume 2 Issue 7, October 2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET                                       ISO 9001:2008 Certified Journal Page 4

1. IMAGE AREA
SELECTION

2. VIP SIGNAL
SELECTION

3. SINGLE LUMEN
CENTER POINT

DETECTION

A) VIP LOCAL MEAN AND VARIANCE COMPUTATION

B) LUMEN AND WALL SEGMENTS IDENTIFICATION

C) SEGMENT FILTERING

D) LUMEN CENTER POINT DETECTION
(FUZZY LOGIC CLASSIFICATION)

STEP 3 REPEAT
FOR EVERY VIP

SIGNAL

4. BACKBONE
PROCESSING

D) BACKBONE INITIALISATION

C) BACKBONE FILTERING

B) BACKBONE EXTENSION

A) BACKBONE SMOOTHING

FINAL OUTPUT IMAGE OF
ARTERY WALL RECOGNITION

Fig 4 Block diagram of proposed system
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Fig 5. VIP signal selection with swl=0.5,arrow
indicates 10th VIP signal from left.

computational cost. After testing, any
value of sstep in the interval (0 0.5] mm yielded the
same success rate, while smaller values were only
at the expense of increased computational cost.

3) Single Lumen Center Point Detection:
For each selected VIP signal (Fig. 4(b)), a

statistics-based, multistep procedure was used for
the estimation of a single lumen center point. The
CA anatomical characteristics were used for this its
process from the bottom of the image and moving
upwards, first one ordinarily encounters the
procedure. In particular, the ultrasound image starts
(usally brightest) far wall region, then the (usually
darkest) lumen, and then the (usually second
brightest) near wall.

The proposed procedure consists of the
following sequential steps:

3.1 VIP local mean and variance computation
During this step, a sliding window of fixed

length swl is used to calculate the smoothed local
mean and variance of the VIP signal. The selection
of
swl is a result of a trade-off between including a
relatively large number of intensity points to
improve the  estimated statistics, and following the
intensity-dependent ‘steepness’ observed close to
the lumen borders more effectively. The length of
swl = 0.5 mm was initially selected, equal to half of
the mean adventitia thickness [18], i.e. accounting
also for extreme cases where only the adventitia
appears bright in the ultrasound image, while the
other layers appear dark.

3.2 Potential lumen and wall segments
identification

This step is followed to identify ROIs
belonging to the vessel lumen, and ROIs belonging
to the vessel wall. This approach divides the
distributions of the local mean and variance vertical
intensities using percentile-based thresholds to
recognize the potential corresponding ROIs. Thus,
because vessel lumen pixels typically have low
mean intensities and low variances. The VIP
signal’s potential vessel lumen segments are
selected only if local mean intensity (LLoc = lower
25th percentile), and, at the same time, (ii) local
variance intensity distribution (Ldisp = lower 25th

percentile).
Similarly, because vessel wall pixels

should have relatively high mean intensities, a VIP
signal’s segment is considered as possibly
belonging to the vessel wall if its corresponding
local mean intensity distribution belongs to its
upper quartile (W loc = 75th percentile).

Fig. 6(a) shows the potential lumen and wall
segments superimposed on the original ultrasound
image.
3.3 Segment filtering

The identified lumen and wall segments
proceeds with two cascade routines of filtering.
The first one fills the small gaps between two
consecutive segments. The second one discards
short length segments. Thus, at the beginning, the
distance between two consecutive segments is
calculated and if it is found lowers than a user-
defined distance threshold, the two segments are
merged into a single segment. Subsequently,
segments shorter than a user-specified threshold are
rejected.

Fig 6(a) lumen and wall segments identified output
(b) Segment filtered image

T
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The four cut-offs for the lumen and wall
segments, namely the two distance thresholds
(Lfillgap and Wfillgap) and the two length thresholds
(L minlength and Wfillgap), are selected considering (i)
that the mean adventitial thickness is about 1 mm
[18], and (ii) two worse-case scenarios. The
adventitia (of either the near, or the far wall)
appears bright in the ultrasound image, while the
other layers of the vessel wall appear dark; appear
dark; that is, they cannot be discriminated from
background (e.g. blood).

In this extreme case, two consecutive
segments possibly belonging to the vessel lumen
should be merged only if their distance is not
greater than the adventitial thickness. Thus, the
minimum distance threshold for the lumen

segments Lfillgap should be equal to 1 mm. potential

wall segments should have minimum length equal
to the adventitial thickness; thus, the length
threshold for the wall segments Wminlength was also
set equal to 1 mm. In the other worse-case scenario,
the vessel lumen is heavily occluded such that the
lumen diameter locally becomes very small.
Defining this minimum lumen diameter as 1 mm,
the two remaining cut-offs may be set in a similar
manner. Specifically, two consecutive segments
possibly belonging to the vessel wall should be
merged only if their distance is not greater than the
lumen diameter. Thus, the minimum distance
threshold for the wall segments Wfillgap should be
equal to 1 mm. Furthermore, the potential lumen
segments should have minimum length equal to the
minimum lumen diameter; thus, the length
threshold for the lumen segments Lminlength was also
set equal to 1 mm. Accordingly,Wminlength = Lfillgap

and Lminlength = Wfillgap.
Fig. 6(b) illustrates the filtered potential

lumen and wall segments superimposed on the
original ultrasound image.
3.4 Potential lumen center point identification

To automatically identify the VIP signal’s
potential lumen center point, a heuristic search of
fuzzy logic classifier [23] is applied to the filtered
lumen and wall segments. In particular, the VIP
signal is searched for (i) the first wall-lumen
segment pair starting from the bottom of the image
(Group U), or, instead, for (ii) the last wall-lumen
segment pair starts from the top of the image
(Group D).To facilitate the classifier, the midpoint

of each line segment is taken as its representative.
Thus, at the end of the procedure the output would
be a single potential lumen center point for each
VIP signal. Each point is resulted either from
Group U or Group D (or none of them), and thus it
is designated accordingly.

Fig.7(a) shows the output of this step for a
low-quality ultrasound image.

Fig 7(a) Lumen center point detection output,
where a potential point is selected for each
corresponding VIP signal. Each point belongs
either to Group U (upward pointing triangles),
or to Group D (downward pointing triangles).
The backbone is initialized as the subset of
Group U points (appearing as white-filled,
upward-pointing triangles). (b) Backbone
filtering output. (c) Backbone extension output
(circles indicate the filtered, while dots the
extended points). (d) Backbone smoothing
output.

Fuzzy Classifier
The classification was performed on the

basis of image local features obtained from a
neighborhood of particular pixels. The appropriate
selection of features is crucial for the performance
of the classifier.[23] It is important to select
features that separate both classes. In this
implementation, appropriate features were selected
according to our local mean and variance of VIP
signal.
4) Backbone Processing

At the end of the application of the lumen
center point detection algorithm to all VIP signals,
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a number of Group U and/or Group D points that
equals or is smaller than N is generated.[4]
However, due either to artifacts in some VIP
signals, or to the impossibility to find
segments/points meeting the imposed constraints,
the resulting set of points needs to be further
processed to substantially increase the success rate.
Therefore, another multi-step procedure is
followed, the input of which consists of a subset of
these points. This subset of points, designated as
the ‘backbone’, is suitably initialized, filtered,
extended and smoothed, so as to extract a robust
and accurate arterial lumen center representation.
More specifically:

4.1 Backbone initialization
Because the far wall region appears

typically brighter than the near wall [21], points
belonging to Group U are considered with higher
confidence than those belonging to Group D.
Hence, the backbone is initialized as the Group U
points. However, Group D points are also
preserved for potential usage in the backbone
extension step described below.

4.2 Backbone filtering
The initial backbone needs to be filtered

for outliers. However, this is an extremely
challenging task, due to the fact that the CA can be
slightly inclined and/or curved within the image,
which implies variations in the lumen center
position over the image. These variations, which
correspond to true lumen points, cannot be easily
discriminated from outliers.

To overcome this, a two-stage procedure
is introduced that comprises an adaptive filtering
that becomes more severe in more ambiguous cases
(i.e. in cases where backbone points are very
disperse) gradually. The goal of the proposed
approach is to output a filtered backbone that
consists solely of true lumen estimates. Apparently,
this also comes at the expense of discarding a few
or a relatively larger number of true lumen center
points, too (in particular, the more disperse the
backbone points are, i.e. the more inclined and/or
curved the lumen is, the more true backbone points
will be eliminated). However, to compensate for
this effect, a heuristic backbone expansion
algorithm is applied afterwards (see, the following
step).

In ultrasound longitudinal images, it is
quite common to encounter CA-mimicking
patterns, which (i) appear in a different depth
range, and (ii) are usually more localized, spanning
a smaller part of the image width (Fig. 4(a)).
Therefore, most of the CA center points are
distributed around a specific depth level, which is
also different from that of all other vessel-like
structures’ center points.

Based on the hypothesis that the majority
of the true backbone points is located in a similar
depth within the ultrasound image [1], the two-
stage filtering algorithm considers the distribution
of the initial backbone’s y-coordinates (depth
values), along with its initial mean and standard
deviation (SD). At the first stage, points with y-
values greater than f SD0 = 1.5 SD from the mean (a
common selection for filtering outliers in statistics)
are identified and excluded.

If the initial backbone points are highly
disperse, i.e. the initial SD exceeds a maximum
acceptance threshold, the process is repeated until
convergence. At the second stage, the new
distribution of points is calculated, along with its
new mean and SD. In the case where the new SD
exceeds a maximum acceptance threshold, i.e. the
filtered points are still highly disperse, the first
stage is repeated until convergence, however, this
time a new SD is computed and the initial threshold
of fSD0 = 1.5 SD is reduced by f SDstep = 0.1 SD at
the end of every cycle (any value of f SDstep in the
range [0.05 0.5] does not significantly affect the
algorithm’s final success rate). The second process
is repeated until SD does not exceed the maximum
acceptance threshold anymore. Thus, the more
scattered the new point distribution, the more
severe the filtering.

To select an appropriate value for the
maximum acceptance threshold used in both
filtering stages, the probability density function
(pdf) of SD was estimated. Particularly, the pdf of
the initial backbone points’ SD (initial SD) of ~103

ultrasound images was estimated using a Gaussian
kernel density estimator [11]. The image set used
for the pdf estimation of SD included images from
all the datasets to ensure a wide range of possible
SD values. Specifically, we included all the images
from datasets AUH and SPL, and 10 recordings
from dataset SMH (5 healthy young, 2 healthy
elderly, and 3 stenotic subjects).
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Fig. 8. Probability density function of SD of (a)
the initial backbone (light gray, dotted line), (b)
the output backbone at the end of filtering stage
1 (dark gray, dash-dotted line), and (c) the
output backbone at the end of filtering stage 2
(black, solid line), resulting from a non-
parametric kernel density estimation, and using
a maximum acceptance threshold of 1.

As illustrated in Fig. 8(a), the probability
of the initial SD to fall within region (0, 1) is
relatively higher than to take on values that exceed
the upper limit of that range. The higher SD values
correspond to more dispersed backbone point
distributions that may result either from a relatively
large number of false-positive points, or from a
highly inclined and/or curved CA. Therefore, the
value of f maxSD = 1mm was chosen for the
maximum acceptance threshold (any value smaller
than the selected one does not significantly alter the
algorithm’s final success rate). Fig. 8(b), (c) show
the SD’s pdf estimates at the end of filtering stages
1 and 2, respectively.

The filtered backbone of the low-quality
image is shown in Fig. 7(b).
4.3 Backbone extension

During this step, a heuristic extension
algorithm is applied with the purpose of either (i)
correcting/tuning the backbone initialization step,
thus accounting for cases where part(s) of the
initial backbone is missing (resulting from e.g. low-
quality images with far wall part(s) appearing faint,
as in Fig. 7(a)), or (ii) expanding the severely
filtered backbone, thus accounting for a potential
true backbone point(s) elimination (resulting from
ambiguous cases, e.g. due to high lumen inclination
and/or presence of CA mimicking structure(s)).

Fig.9. Example of the background
extension algorithm concept. The circles
correspond to a filtered backbone left end, while
the horizontal line to its local depth level. The
arrow indicates the VIP position where the
discontinuity begins, thus the search initiation
for potentially filtered out backbone points. For
this first VIP position, a candidate point should
be located within the range indicated by the
vertical line, i.e. should be maximum up to Te1

mm distant from the local depth level. If this is
not the case, the search moves to the next VIP
position, and so on (until a maximum number of
20% of N), each time using an exponentially
decreasing threshold Te. The vertical lines,
formulating a discrete funnel-like area,
represent this new point’s search range. In this
example, the new point is located within the
range of the first VIP position (indicated by the
square), thus it is included in the backbone
extension set. The same procedure is initiated
for all the neighboring VIP positions, until no
more new points enter the backbone.

More specifically, given the existence of
at least one discontinuity (void) in the output of the
backbone filtering procedure (created after the
backbone initialization and/or filtering steps, as in
Fig. 7(b)), at the left and/or the right of every
filtered backbone end, the superset of the
corresponding Group U and Group D points is
searched for a potential neighboring lumen center
point. To specify this ‘adjacency’, firstly, a
corresponding small window of fixed length xwl
(equals 10% of N) is applied at the vicinity of the
backbone end, and a local depth level value is
determined. The latter is defined as the mean of the
depth values of all the filtered backbone points
located within the specified window. Then, the
potential neighboring point is included in the
extended backbone, only if its distance from the
local depth level is smaller than a step-wisely
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decreasing threshold Te, which is initialized with
the maximum value of 2 mm.

In particular, if the candidate lumen point
is not located within the initial value of Te1 = 2 mm
from the local depth level (in the y direction), the
algorithm searches for the next candidate point at
the next VIP position, and so on (within an interval
that equals 20% of N in the x direction), each time
using the exponentially decreased value of Te
( ( ) = . λ (n − 1),n= 1,….,~ 0.2N) and a
decay constant of λ = 5 (even though parameters
xwl and Te should be kept relatively small and
parameter λ relatively large, the algorithm’s final
success rate is not significantly affected over a
broad range of their corresponding values).

An exponential decrease with a relatively
large decay constant was preferred over e.g. a
linear decrease in order to be more stringent, and
hence minimize the potential of false positive
points inclusion. Thus, a discrete funnel-like search
area is formulated within which a potential
backbone extension point should be located (Fig.
9). The procedure is repeated for each ‘missing’
backbone point, calculating an updated local depth
level each time a new point enters the backbone.
The backbone extension algorithm output is
illustrated in Fig. 7(c).

4.4 Backbone smoothing:
As a final step, the extended backbone is

further smoothed to account for potential spike
points, emanating e.g. due to speckle content
and/or localized artifacts. To smooth the backbone
without altering its local traits, the locally weighted
least squares regression loess method was applied,
using a 1st degree polynomial model and a
smoothing window mwl equal to 20%. Any value
for mwl in the range [10 30] % could be used.
However, it is recommended not very large
values (e.g. mwl 40%) to be used in order not to
alter the natural curvature of the identified
backbone.

The final result of the automated CA
recognition algorithm is illustrated in Fig. 7(d).

IV RESULTS

To validate our algorithm, as well as to
fine tune some of its preselected parameters, a
procedure based on 3-fold cross-validation was
performed. Specifically, completely independent

image sets were used for (i) parameter tuning, and
(ii) testing and evaluating the proposed method.
Moreover, instead of segmenting the original
dataset, another initial instead of segmenting the
original dataset, another initial image set was
formed that contained the complete AUH and SPL
datasets, and only the first frame of each recording
of the SMH dataset, in order to eliminate any
potential favorable bias during the different subset
formation. This dataset was first partitioned into
three nearly equally sized subsets. Subsequently,
three iterations of parameter tuning and evaluation

Fig. 10. Demonstration of the robust nature of
the proposed CA recognition algorithm (a)-(d)
in very low-quality B-mode images from the
SMH dataset and  the AUH dataset.

were performed such that within each
iteration a different subset of the data was held-out
for algorithm’s testing and evaluation (testing set),
while the remaining two subsets were used for
algorithm parameter tuning (training set).

In each task (parameter tuning and
evaluation), the automatic CA recognition outputs
were compared with semiautomatic lumen center
delineations made by an expert sonographer.
Specifically, for an image, the user manually
identified (i) the intima-lumen interface of the near



International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056
Volume 2 Issue 7, October 2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET                                       ISO 9001:2008 Certified Journal Page 10

wall and (ii) the lumen-intima interface of the far
wall, from where the reference arterial centerline
was computed.

The semi-automatic delineation was
performed on each image for the AUH and SPL
datasets, and on the first image of each sequence
for the SMH dataset. For the rest of the images in
the sequence, the two aforementioned interfaces
were automatically tracked using the adaptive
block matching technique ABM_FIRF2, described
in detail in [22]. The algorithm’s automatic CA
recognition output was considered correct if it did
not deviate more than 2 mm from the reference
tracing [3], [1].

To rate the results of the automatic CA
recognition, three performance metrics were
considered, namely (i) the success rate SR (%),
which indicates the success percentage in the total
number of images in the set, (ii) the mean frame
coverage FC(%), which is expressed by the ratio of
the distance between the outermost VIP signals
with a correctly identified centerline and the resized
image width [1], and (iii) the mean distance D
(mm) between the automatic and the reference
centerline position. The mean FC and D values
were derived after averaging over all the processed
images.

The algorithmic parameters that were
selected from tuning results shown in [4].The
optimized values of the tuned algorithm’s
parameters overall are (swl, Ldisp , Lloc , Wloc )= (0.5
mm, 25th,50th,75th).

Fig. 10 shows some automatic lumen
recognition examples using the above optimized
parameter values.

V. DISCUSSION

In this study, a novel algorithm was
introduced for the automatic recognition of the CA
in longitudinal B-mode ultrasound images. The
proposed algorithm consists of multiple cascaded
steps with fuzzy logic classifier and exploits basic
statistics along with arterial anatomical knowledge.
The validity of the technique was investigated by
direct comparison with expert’s results over a
completely diverse dataset range on a 3-fold cross
validation basis. Through this process (training
phase), a fixed optimized parameter set was

derived, capable of successfully localizing CA with
full automation in a wide range of possible arterial
representations.

The developed method performed very
effectively and successfully localizes the CA based
on a low computational complexity algorithm,
whereas operating directly on the raw image, e.g.
without the need of any time consuming 2D image
processing techniques. wide range of parameter
value combinations.

Furthermore, the examples of Fig. 10
illustrate the algorithm’s effectiveness using the
same optimized thresholds in images (i) of poor
quality (ii) with atherosclerotic plaques, (iii) with
CA-mimicking
structures appearing above and/or below the CA,
(iv) with relatively high and/or varying luminal
gray level, and (v) with different arterial
inclinations and/or curvatures. All of the above
indicate the high performance and high robustness
of the introduced approach and its tolerance
parameterization.

The algorithm was designed based mainly
on the fact that the arterial lumen has (i) lower
mean intensity and lower variance (apart from the
adventitia layer) compared to its surroundings, and
(ii) a smoothly curved shape. In some images, a
relatively low FC was observed, probably due to a
combination of more than two of the following
factors: (i) a high (and/or variant) luminal intensity,
(ii) CA mimicking structure presence covering a
significant part of the entire image width
(especially below the CA), (iii) a poor far wall
representation, and (iv) an abruptly curved arterial
shape (e.g. due to a relatively large plaque). In
these cases, a certain percentage of backbone
points was missing (discarded during the backbone
filtering step), resulting in a shorter final backbone
(e.g. Fig. 10(a)).

Furthermore, in cases of non-uniform luminal
intensity, caused e.g. by high speckle content
and/or artifacts residing within the arterial lumen,
the backbone appeared slightly affected. Also, the
algorithm may not be able to distinguish between
lumen and hypo echoic tissue, e.g. when increased
speckle content and/or a highly stenotic hypo
echoic plaque are present, which is generally
believed to be associated with soft and unstable
tissue. These limitations, however, are considered
of minor significance, in the context of this study,
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given that the purpose of the suggested
methodology was the unambiguous identification
of a ROI that includes the CA [1]; objective which
is fulfilled.

VI CONCLUSION

In summary, the algorithm described in
this paper provides a simple, fast, robust and highly
efficient way to locate the CA in longitudinal B-
mode ultrasound images. Applied directly to the
raw image, it managed to recognize the CA with
high robustness and reliability. Moreover, the
method’s particularly low computational cost, its
single frame sufficiency, along with its
extendibility, facilitates both a wider range of on-
line and off-line applications. All these render the
introduced technique a suitable and reliable tool for
lumen recognition that will further reinforce the
completely user independent segmentation of the
CA in longitudinal B-mode ultrasound images.
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