
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1161

OVERVIEW OF RISC PROCESSOR USING VHDL

Sangita Mohite1, Aarti Tirmare2, Priyadarshani Mali3

123 Assistant Professor, Electronics & Telecommunication, BVCOEK, Kolhapur, Maharashtra, India.

---***---

Abstract - This paper describes a design methodology
of a single clock cycle RISC Processor using VHDL to
ease the description, verification, simulation and
hardware realization. Known for their flexibility, Field
Programmable Gate Arrays (FPGA) are widely used for
ASIC emulation, as a solution for applications with high
volatility. FPGAs facilitate quick time to market, and
their incredible power of re-programmability often
makes them the heart of a system. This paper will
present the design of a Reduced Instruction Set
Computer (RISC) system described using VHDL and the
results of researching the implementation of this
system in an FPGA. The RISC processor is separated into
five stages: instruction fetch, instruction decode,
execution, data memory and write back. The control
unit controls the operations performed in these stages.
The top-level module connects all the stages into a
higher level. Once detecting the particular approaches
for input, output, main block and different modules, the
VHDL descriptions are run through a VHDL simulator,
followed by the timing analysis for the validation,
functionality and performance of the designated design
that demonstrate the effectiveness of the design. This
RISC is a 8-bit processor with high general-purpose
register (GPR) orthogonality and communicates to
peripheral devices via a serial bus.

Key Words: Arithmetic Logic Unit (ALU), Central
Processing Unit (CPU), Control Unit (CU),Field
Programmable Gate Array (FPGA),Program Counter (PC),
Reduced Instruction Set Computer (RISC).

1. INTRODUCTION

RISC stands for “reduced instruction set computer.” It is a
type of microprocessor architecture that utilizes a small,
highly optimized set of instructions rather than more
specialized set of instructions often found in other types of
architecture. Reduced Instruction Set Computer (RISC)
systems are a dramatic departure from the historical trend
in Central Processing Unit (CPU) architecture. An analysis
of the RISC architecture brings into focus many important
issues in computer organization and architecture. Reduced
Instruction Set Computer (RISC) is a design philosophy
that becomes mainstream in the last few years, as the
quest for raw speed has dominated the highly competitive
computer industry. There is a desire to increase the
processor's speed and simplify the hardware for reasons

of cost. RISC design resulted in computers that execute
instructions faster than other computers built of the same
technology [2].

There are three basic levels: 1) All instructions will be
executed in a single cycle.2) Memory will only be accessed
via load and store instruction.3) All execution units will be
hardwired with no micro-coding. Instruction set is the
“hardware language” in which software tells the processor
what to do. The vacated area of chip can be used in a ways
that accelerated the performance of more common
instruction. It becomes easier to optimize the design.

2. MATERIAL AND METHODS

Paragraph comes content here. Paragraph comes content
here. Paragraph comes content here. Paragraph comes
content here. Paragraph comes content here. Paragraph
comes content here. Paragraph comes content here.
Paragraph comes content here. Paragraph comes content
here. Paragraph comes content here. Paragraph comes
content here. Paragraph comes content here. Paragraph
comes content here. Paragraph comes content here.
Paragraph comes content here. Paragraph comes content
here. Paragraph comes content here.

2.1 RISC Processor data path

The basic data path of a RISC processor is shown below in
Figure 1. The Instruction Decoder loads the instruction
pointed to by the program counter (PC) from processor
memory. The Instruction Decoder then generates the
appropriate control signals for the Execute unit, which
performs the desired function (arithmetic, logic, etc.) on
the data. The Write back unit then updates the memory
with any new values.

Figure 1 RISC processor data path

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1162

2.2 System architecture
RISC processor consist three components, these are

CU, Data path and ROM.

 Figure 2. System architecture
The control unit design is based on FSM. We design it
in a way that allows each state to run at one clock
cycle, the first stage is reset which is initializes the
CPU, Internal registers and variables. The machine
goes to the reset state by enabling the reset signal for
a certain number of clocks.
Following the reset state would be the instruction
fetching and decoding state which will enable the
appropriate signals for reading instructions data
from the ROM then decoding the parts of the
instructions. The decoding stage will also select next
stage depending on the instruction, since every
instruction has its own set of state the control unit
will jump to the correct state based on instruction
given. After all states of a running instruction are
finished, the last one will return to the fetch state
which will allows us to process the next instruction
in program.

2.3 System level Block diagram

A more detailed look at the layout of the RISC

processor is shown below in Figure 3. The process

starts out at the branch selector, which loads the

program counter with either the next sequential

address or the address of a program branch

depending on the value of the branch select signal. In

the case of an interrupt, the branch address input

would contain the address of the appropriate

interrupt handler. The instruction is then fetched

from program memory and sent into the instruction

decoder, which loads the operand and function select

buses and generates control signals for the rest of the

processor. The execute stage performs an operation

or interacts with the data memory. After the execute

stage the result is written to the processor registers

if applicable.

Figure 3. System level Block diagram

2.4 Sub-System Block diagram

The focus of this project is the control unit of

the processor that is the section responsible for the

Fetch and Decode stages. A closer look at the control

unit is shown below in Figure 4.

A) Instruction Multiplexer Inputs:

1) BR [0...11] (Branch Address): Contains the

target address (PC + offset) for a branch. In the

case of a program branch, this address will

point to the appropriate instruction.

2) PC+1 (Incremented Program Counter): Unless a

program branch occurs the next instruction

executed is the sequential instruction in

program memory

3) BS (Branch Select): If this bit is set then the

instruction address Corresponding to a

program branch is selected, otherwise the

sequential (PC+1) instruction is selected.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1163

 Figure 4. Sub-System Block diagram

B) Instruction Multiplexer Outputs:

1) W (Instruction Address): The address of the next

location in program memory to be loaded into the

program counter.

C) Instruction Decoder Inputs:

2) IR (Instruction Register): The actual instruction,

containing the opcode, target offset in the case of

a branch, and possibly some immediate data

3) PC (Program Counter): In case of a branch the

target offset is added to This value

D) Instruction Decoder Outputs:

4) MW (Memory Write): Allows data to be written to

the processor registers

5) RW (Read-after-write): Allows read of processor

register

6) DA (Data Address): Address of processor register

data to read/write

7) DS (Data Select): Select Function output, data

output, or target offset

8) FS (Function Select Bus): Word which contains

the op-code which will tell the ALU what type of

operation to perform

9) A (A Data Bus): Word which contains data for the

A input of ALU

10) B (B Data Bus): Word which contains data for the

B input of ALU

E) Programmers Model:

From the programmer’s viewpoint the processor

provides a simple direct addressing mode and a

relatively large address space for a 8-bit processor

3. VHDL & FPGA

A) VHDL:
VHDL stands for VHSIC (Very High Speed Integrated
Circuits) Hardware Description Language. It has become
now one of industry’s standard languages used to describe
digital systems. The other widely used hardware
description language is Verilog. Both are powerful
languages that allow you to describe and simulate complex
digital systems. A third HDL language is ABEL (Advanced
Boolean Equation Language) which was specifically
designed for Programmable Logic Devices (PLD). ABEL is
less powerful than the other two languages and is less
popular in industry.

Simulation and synthesis are the two main kinds of tools
which operate on the VHDL language. The Language
Reference Manual does not define a simulator, but
unambiguously defines what each simulator must do with
each part of the language.

VHDL does not constrain the user to one style of
description. VHDL allows designs to be described using
any methodology - top down, bottom up or middle out!
VHDL can be used to describe hardware at the gate level
or in a more abstract way. Successful high level design
requires a language, a tool set and a suitable methodology.

Benefits of VHDL:

 Executable specification

 Validate spec in system context (Subcontract)

 Functionality separated from implementation

 Simulate early and fast (Manage complexity)

 Explore design alternatives

 Get feedback (Produce better designs)

 Automatic synthesis and test generation (ATPG for

ASICs)

 Increase productivity (Shorten time-to-market)

 Technology and tool independence (though FPGA

features may be unexploited)

 Portable design data(protect investment)

B) FPGA:
FPGA stands for “FIELD PROGRAMMABLE GATE ARRAY”.

This is chip which consists of programmable hardware

which can be used to design any digital circuit into it. It

consist of lot of programmable hardware in it like

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 07 | Oct-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1164

multiplexer, lookup table, gates and flip flops which all can

be connected using fuses and switches.

The fuses are basically programmable so that we configure

any type of hardware in FPGA within less designed time.

Advantages of FPGA:

1. It is used due to its flexibility. It facilitate quick

time to market and there incredible power at

reprogram ability often makes them heart of

system.

4. HAZARDS:

 1] Code Quality:

 The performance of a RISC processor depends

greatly on the code that it is executing. If the

programmer (or compiler) does a poor job of

instruction scheduling, the processor can spend

quite a bit of time stalling.

 Time stalling: Waiting for the result of one

instruction before it can proceed with a

subsequent instruction.

 2] Code expansion:

 Since CISC machines perform complex actions

with a single instruction, where RISC machines

may require multiple instructions for the same

action, code expansion can be a problem.

 Code expansion refers to the increase in size that

you get when you take a program that had been

compiled for a CISC machine and re-compile it for

a RISC machine. The exact expansion depends

primarily on the quality of the compiler and the

nature of the machine's instruction set

 3] System Design:

 Another problem that faces RISC machines is

that they require very fast memory systems to

feed them instructions. RISC-based systems

typically contain large memory caches, usually

on the chip itself. This is known as a first-

level cache.

5. CONCLUSION

In conjunction with other groups the VHSIC Hardware
Description Language (VHDL) will be used to design and
implement a functional 8-bit Reduced Instruction Set
Computer (RISC) Processor. This group is responsible for
constructing an instruction set architecture, determining
the structure of the internal registers and memory, and

designing the control unit of the processor. The control
unit of the processor reads an instruction from memory,
generates the appropriate control signals for the rest of
the processor, and handles program branches. Our VHDL
design and simulation will be done using Mentor Graphics
ModelSim software

ACKNOWLEDGMENT

 Sangita Mohite indebted to Principal Dr. S. R. Chougule,

for giving permission for sending the paper to the journal.

She is also thankful to the H.O.D. and colleagues for

support.

REFERENCES

[1]. John L. Hennessy, and David A. Patterson, “Computer
Architecture A Quantitative Approach”, 4th Edition; 2006.

[2] Charles E. Gimarc, Veljko M. Mhtinovic, "RISC
Principles, Architecture, and Design", Computer Science
Press Inc., 1989.

[3] "Design ware Components Datebook", Synopsys Inc.,
Version 1997.08. [Hennessy, Patterson "Computer
Architecture - A Quantitative Approach", Znd edition
1996, Morgan Kaufman Publishers Inc.
[4] Nurmi, J., Takala, J.: "A New Generation of
Parameterized and Extensible DSP Cores", 1997 IEEE
Workshop on Signal Processing Systems, SIPS97, Leicester,
U.K., November 1997, pp.320-329.

