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Abstract 

This paper   represent an effective method for 
removing artifacts & improving signal to noise ratio (SNR) 
of electroencephalography (EEG).With artifacts it is 
difficult to  analyze a EEG. It is extremely challenging to 
determine where this artifact added. For this reason it is 
necessary to design a filter so dual extended kalman filter 
(DEKF) is used here. This filter is used here for estimating 
parameters which are going to used in MVAR model. This 
model is used with brain connectivity measures. for 
comparative analysis two connectivity measures are used 
here i.e Partial Directed Coherence (PDC) & Generalized 
Orthogonalized Partial Directed Coherence (GOPDC).from 
comparison based on SNR it is proved  that  GOPDC 
method have better performance than PDC. 
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1 INTRODUCTION 
 

EEG is a voltage signal that is measured with 
placement of electrodes on the scalp. EEG signal contains 
information about the health status of a patient’s brain. [7] 
EEG signal is electrical signal which shows strength of flow 
of information. During the collection of EEG, artifacts can 
be added to EEG. For measurements of these artifacts are 
difficult & challenging task for skilled persons   
 The removal of artifact   an important aspect of 
EEG  in clinical research. . In this paper, We develop 
generalized version of OPDC to handle the numerical 
problem associated with potentially different variance of 
signal amplitudes .GOPDC is compared with the classical 
PDC on the basis of SNR.  Orthogonalized version of the 
PDC is combination of orthogonalization and imaginary 
part of coherence functions .Effect of this combination is 
reduces volume conduction effects. Partial Directed 
Coherence (PDC), which is used to determine the 
directional influences between channels in a signal. This 
connective measure designed with multivariate 
autoregressive (MVAR).  

 

2 Proposed Method 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-1:-Proposed method 
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2.1 EEG   signal 

 
Fig-2:-placement of electrodes 

 
We used 20-channel EEG recordings of four full-

term newborns with sampling rate of 256 Hz .We selected 
five monopolar channels (Cz as the reference) from left 
hemisphere (O1,C3,P3,T3,T5)  

 

2.2 Dual Extended Kalman Filter  
 

For  nonlinear model kalman filter is extended so 
this filter is called extended Kalman filter (EKF) & For dual 
estimation Dual extended kalman filter(DEKF) is used. 
There is sequential & iterative methods are 
developed.This filter is used to estimation of parameter i.e 
MVAR parameters (Ar(n)). 
 

2.3 MVAR Model 
 
A time-varying N-variate AR process of order p can be 
represented as:[15] 
 

 
where w is a vector white noise, the matrices Ar are given 
by:[15] 

 
for r = 1, …, p and A number of time-varying connectivity 
measures can be defined based on the following 
transformation of the MVAR parameters (Ar(n)) in 
frequency domain:[15] 
 

 
 

2.4 Connectivity Measures 
 
2.4.1 Partial Directed Coherence(PDC) 
 
The time-varying version of the PDC is by 

 
 
Akl shows the direction of the information flow. for  Eg. 
channel 1 affects channel 2 and channel 2 affects channel 
3, i.e., 2←1, 3←2,where the arrows shows direction of flow. 
 

2.4.2 Generalized Orthogonalized Partial 
Directed Coherence (GOPDC) 
 

 
 
Where where λkk are the diagonal elements of Σw 
 

2.5   Time-invariant Simulated Model 
 

This model is designed by adding random 
interactions between channels  

x(n)=Vy(n) 
This equation shows x(n) is EEG signal , v represents the 
lead field matrix and y(n) models the lagged source time in 
MVAR process. 
 
y1(n)=0.95√2y1(n-1)-0.9025y1(n-2)+10w1(n) 
y2(n)=0.5y1(n-2)+5w2(n) 
 y3(n)= -0.4 y1(n-3)+w3(n) 
y4(n)=-0.5y1(n-2)+0.25√2y4(n-1)+0.25√2y5(n-1)+1.5w4(n) 

y5(n)=-0.25√2y4(n-1)+0.25√2y5(n-1)+2w5(n)…………… [3]   

where w=[w1w2w3w4w5]T is a normally distributed white 
noise vector 
 
 
 

3 DISCUSSIONS AND INTERPRETATION OF THE 
RESULTS  
3.1 Time domain plot 
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Fig-3: Time domain analysis of EEG 
 

This is graph of EEG signal in time domain.EEG 
signal collected from five channel of left hemisphere of 
brain C3,P3,O1,T3,T5. 
 

3.2 T-F plot for PDC & GOPDC 
3.2.1 T-F plot for PDC 
 

 
Fig-4: T-F plot for PDC 

 
3.2.2 T-F plot for GOPDC 

 
 

Fig-5: T-F plot for GOPDC 

 
From above result In PDC mutual sources are 

there (from color bars ) .GOPDC much smaller magnitude 
than the PDC. Observation shows that extra sources are 
attenuated with GOPDC 
 

3.3 Time-invariant Simulation 
 

(a) 
 

 
(b) 
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(c) 

 
(d) 

 
Fig-6: Diagrams of a)PDC,  b)GPDC, c)OPDC and d)GOPDC 
 

From above fig it is cleared that GOPDC eliminate 
mutual sources & we can take   meaningful & necessary 
information  

Non-zero values in fig shows there is no 
connectivity between channels & each channel relates 
with another expect itself. 
 

3.3 Signal to noise ratio 
 
Table 1: SNR Values for connectivity analysis measures 
 

Sr.No
. 

connectivity analysis 
measures 

SNR 
values(db) 

1 Partial Directed Coherence  0.379666 

2 Generalized 
Orthogonalized Partial 
Directed Coherence 

2.336290  

 
 

Using signal to nose ratio formula SNR are 
calculated. Hence GOPDC have 2.336290db signal to noise 
ratio & PDC have 0.379666db. From result it is clear that 
GOPDC connectivity measure improves signal to noise 
ratio. 
 
4 CONCLUSION 
 
 The various artifacts added in EEG. The main aim 
of this paper is to get artifact removed EEG signal. For this 
different methodologies are used. In this methodologies. 
MVAR model is used with connectivity analysis the 
coefficients of MVAR model are estimated by Dual 
extended kalman Filter. 

There are two connectivity analysis used i.e 
Partial Directed Coherence & Generalized Orthogonalized 
Partial Directed Coherence. These two connectivity 

analysis are compared. Comparison based on Signal to 
noise ratio. The performance is evaluated by comparing 
their corresponding SNR. From result, it is observed that 
the SNR of the Generalized Orthogonalized Partial 
Directed Coherence is higher than the Partial Directed 
Coherence.  
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