
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 989

Reduction of Code Reuse Attacks Using Code Randomization and

Recursive Traversal Algorithm

K. Krishna priya1, Dr.P.Murugeswari2

1 PG scholar, Department of CSE, Sri Vidya College of Engineering & Technology, Virudhunagar, Tamilnadu , India

2 Professor, Department of CSE, Sri Vidya College of Engineering & Technology, Virudhunagar, Tamilnadu, India

---***--
Abstract – Return oriented programming (ROP) and

other code reuse attacks are a class of buffer overflow

attacks that shows the existence of executable code that

can be used for malicious purposes. They attack the

systems security by chaining the sequence of

instructions together to perform the expected logic of

attack. These attacks have a common feature; they rely

on executable code’s memory layout. The layout of the

executable code can be modified to avoid code reuse

attacks. In marlin we change the internal structure of

executable code by shuffling the target binary’s

function blocks in random manner. This will not allow

the attacker to gain information of the instruction

addresses, which will result in reduced possibility of

attacks. Marlin can be implemented with any ELF

binary code and every execution of the binary code will

be using different randomization techniques. The

target executable binary will be randomized before

launching by integrating marlin to the bash shell. Thus

our system reduces the vulnerability of security against

attacks based on code reuse.

Key Words: Code reuse attacks, return oriented
programming, code randomization

1. INTRODUCTION

Network security describes the policies and procedures
that are implemented through a network administrator,
for avoiding and tracking unauthorized access or usage of
network and its resources. If implemented properly
network security will block malware, viruses and hackers
from accessing the information in the system. Network
security’s first layer usually demands a username and
password, thus allowing authorized users with certain
privileges. Once the user is authenticated with certain
permissions to access the system, the firewall enables
network policies for the user, but they cannot detect
malware or viruses. So an intrusion prevention system or

antivirus is used for screening the user’s access. In
network security the main policy is to protect the assets,
i.e. information, user accounts, passwords, server
configurations etc. An attack in the system can be of two
types, the information can be monitored which is passive
attack and the information will be altered/destroyed or
the whole network can be corrupted which is active attack.
Without proper security the network can be attacked in
any way.

2. LITERATURE SURVEY

Marlin randomizes the internal structure of executable
code by shuffling the function blocks randomly and
increasing the security of the system against code reuse
attacks. In 2011 Tyler Bletsch et.al proposed a defense
system, Control Flow Locking (CFL) against code reuse
attacks. The control flow graph of the function cannot be
deviated more than once, so it cannot be used for system
call to attack the function. They perform a lock operation
before each control flow transfer, with an unlock
operation given at the valid destination of the function.
The lock ensures the accuracy of the applications control
flow. They insert a fragment of lock code in every indirect
control flow transfer and the code avows the lock, by
changing a certain lock value in memory. If the lock was
already emphasized, a control flow violation will be
detected and the program will be aborted or the execution
passes through the control flow transfer to the destination.
The Control Flow Locking reduces the code reuse attacks,
reduces the performance meekly. They are set to reduce
the code reuse attacks, which will reveal the programs
control data [1].

In 2013 C.Zhang et.al suggested a new protection method
CCFIR (Compact Control Flow Integrity and
Randomization). They deal with the difficulties in CFI
adoption. They collect the legal targets of indirect control
transfer instructions and put in a specific springboard
section in a random order and the gathered instructions
will be pushed to the indirect control flow transfer. They
validate the target with the springboard section and
provide support for on-site-target-randomization. CCFIR

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 990

prevents control flow hijacking attacks such as ROP and
return into ‘libc’ functions. There will be a chance to
modify pointers that flow to external modules that are
unprotected since CCFIR is applied only to parts of
program [2].

 In 2014 Y.Cheng et.al implemented ROPecker method, it
defends all types of ROP attacks which do not need access
to the source code. They use gadget chain detection
algorithm to detect the chain in execution flow and sliding
window mechanism triggers algorithm in proper time. The
ROP attacks are of two phases: offline preprocessing phase
and runtime detection phase. The instruction of the
protected applications and shared libraries will be
extracted and stored in database in the offline
preprocessing phase. In runtime detection phase the
events that trigger the detection logic will be executed
using the sliding window and uncertain system calls will
be processed. The application triggers page fault in sliding
window phase and they will try to execute the code from
the non-executable pages. The ROPecker module finds the
relevant faults using the process ID and page fault error
code. They verify the request and the pass it to the kernel
and then invoke the ROP checking algorithm, thus
guaranteeing there is no ROP gadget chain in the current
stack of instructions [3]. In 2011 L.Davi et.al proposed a
tool, ROPdefender which detects the conventional ROP
attacks which are based on return instructions. The
ROPdefender inspects the instruction type, during the
execution of instruction by the processor. They identify
the return address violations and prevent ROP attacks.
Detection of all buffer overflow attacks over write return
addresses of the instructions. They use instrumentation to
scrutinize ROP attacks that are performed during runtime
or compile time. The dynamic binary instrumentation is
executed for avoiding access to side information [4].

 In 2009 P.Chen et.al devised and employed
deROP(Detecting Return Oriented Programming) for
eradicating return oriented programming from instances
of malware and malicious instructions. They enable
malware analyzers, which in turn induces other malware
analysis tools to scrutinize ROP based malware. The
semantics of the original malware will be preserved in
deROP, since it is fully automated. deROP requires
execution of vulnerable application dynamically so that
the gadgets that can be attacked by ROP can be identified.
They emphasize dynamic analysis does not involve
executing any malicious instructions in the original ROP
exploit code. The limitation of deROP is that its output may
differ from the traditional shell code [5]. In 2012 V.Pappas
et.al proposed In-place code Randomization (IPR)
technique which offers probabilistic protection against
ROP attacks. They approach on narrow scope
modifications in code segments of executable code by
using an array of code transformation techniques. They

apply the transformations statically and modify code for
safely extracting from compiled binaries and they do not
rely on symbolic debugging information. The
modifications will not break the semantics of the code as
the length of the instructions and basic blocks are being
preserved. Also the randomization of stripped binaries
without complete disassembly coverage will be enabled to
avoid damage to the semantics. The purpose of this
randomization process is to eradicate or probabilistically
modify any number of gadgets which will be available in
the address space of an exposed process. ROP code relies
accurate execution of all chained gadgets, if there is
alteration in a few may result in ineffective ROP code. The
place code transformations can be done using (i) Atomic
Instruction Substitution (ii) Instruction Reordering (iii)
Register Reassignment In-place code randomization [6].

In 2013 L.V.Davi et.al explains the software diversity tool
XIFER. XIFER exactly mitigates code reuse attacks
assorting the structure of the application for each run. The
binary rewriting will be done at the load time of the
application. Binary rewriter is the main part XIFER, it
disassembles binary application easily and performs code
transformations and assembles new application instances
with new memory layouts. The XIFER seek to ideal
randomization tool in order to achieve instruction
granularity randomization. They randomize all sections of
executable information and the library diffuses fractions of
executable segments to ensure they do not stay put in one
block. By changing the code and data the leaked pointers
cannot be used to calculate relative addresses of
instruction. The randomization will take place dynamically
thus it will not require an off line static analysis. They are
not open to disclosure attacks as the diversification is
applied again for each application run. XIFER provide
memory overhead, as the possibility to write out ELF
executable or shared library files will increase the file size
[7].In 2012 R.Wartell et.al describes the Self Transforming
Instruction Relocation (STIR); which is fully automatic and
binary centric solution. They do not need any source code
or symbolic information for target binary program. Every
time STIR is launched the code reorders the basic blocks in
each binary code section randomly, thus disallowing the
attempts for predicting the location of the gadgets. They
ensure that there will be no modification to the operating
system or the compiler. A new binary is implemented and
the basic block addresses are determined dynamically at
load time. The system is fully transparent and it is enabled
to self randomize legacy codes. The main components in
STIR are: a conservative disassembler which transforms a
target binary in to a randomized representation and a
lookup generator. The address map of the randomizable
representation will be encoded to the new binary. The
lookup table generator and a load time reassembler will
have the address map of the randomizable representation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 991

encoded in it. The performance overhead will be reduced
with the static code transformation approach [8].

In 2012 J.Hiser et.al explains a new technique Instruction
Location Randomization (ILR). This technique can be
easily and efficiently applied to binary programs. Every
instructions location in the program will be randomized in
ILR, preventing the attacker to reuse program
functionality. They operate on arbitrary executable
programs and will not require compiler support without
user interaction. Post deployment ILR can be
automatically functional and eases frequent re-
randomization. The preliminary prototype that works on
32-bit x86 Linux ELF libraries are described and it
provides a high degree of entropy. They consign the
individual instructions within a 31-bit address space
randomly. They are not practical for the attacks that rely
on prior knowledge of the location code or
derandomization. The ILR is cost-effective and most
realistic mitigation technique [9].

In 2010 T.Bletsch et.al proposed a new class of code reuse
attack, Jump Oriented Programming (JOP). They eliminate
the dependence on the stack and ret instructions. They
build and chain the functional gadgets, with each of them
executing certain primitive operations. The attack
depends on the dispatcher gadget for dispatching and
executing the functional gadgets. They use a dispatch table
to hold the address and data of the gadget. The virtual
program counter is maintained and the JOP program is
executed by progressing it through the gadget. The entry
of the functional gadget into the dispatch table is spotted
with the help of program counter. All functional gadgets
executed by the dispatcher must conclude by jumping
back, for maintaining control of execution so that the next
gadget can be initiated [10]. In 2009 R.Hund et.al
proposed that, protecting the kernel of an operating
system against attacks, specifically injection of malicious
code. It is an important factor for implementing secure
operating system. The design and implementation of the
system automates the process of constructing instruction
sequences which can be used by attacker for malicious
computations. The kernel must be protected from the
malevolent attacks. The basis of this mechanism is called
as reference monitor, and it controls all accesses to the
system resources and grants access to the verified
systems. Kernel module signing provides the kernel
integrity protection mechanism. Kernel code integrity can
be achieved using this technique. Every kernel module
must contain embedded and valid digital signature that
can be checked against a trusted root certification
authority (CA), if the kernel module signing is enabled.
Loading of the code fails if this verification fails. The basic
security guidelines that are to be followed by kernel code
software developers will be established with the help of
kernel module signing [11].

 In 2009 L.Davi et.al devised a system to mitigate return
oriented programming attacks. This system proposes a
new runtime integrity monitoring technique which uses
tracking instrumentation of program binaries that are
based on taint analysis and dynamic tracing. Dynamic
Integrity Measurement Architecture (DynIMA) is used to
employ these techniques. This framework offers load time
and runtime integrity for the program binaries and their
source code location is not revealed even under the
attacks of return oriented programming. The load time
integrity measurement is combined with dynamic tracking
techniques in DynIMA. The programs code will be loaded
with the tracking code that presents integrity related
runtime checks. The tracking code must contain new
component that will rewrite the code of programs that is
to be loaded for including special tracking code that
monitors dynamic events of program and tracking data is
maintained. The tracking code will be in the program
binaries generically since we look to track common
patterns of ROP attacks. So the source code of program
need not be monitored by the DynIMA [12].

3.1 Proposed system and Objectives

The code reuse attack makes use of the existing code of the
system for malicious purpose. They make assumptions
and hold the information about the memory layout of the
executable code. The executable binary code will be
shuffled with every execution of the binary in the
randomization technique of Marlin. They shuffle the
binary code at the function level and this coarse level
granularity will not give any chance for brute force attack.

Executable Code

Memory Layout
 Functional Block

F1

F2

F3

Shuffling Function Block

<F1>

<F2>

<F3>

 Randomization Approach
Internal Structure

Not Priori Knowledge for
Instruction Address

Preprocessing Stage

Randomization Stage

ELF Loader

ELF Header

(Store Address)

Store Patch TableCall Function
Jump Function

F1

F2

F3

Original Function Block

1. Extract Function Symbol
2. Location
3. Length of Function Block

Code Reuse Attacker

Compiler Finished Function

Truncate Shuffle
Address

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 992

The target application will be randomized in Marlin before
the control is conceded to the application for execution.
There are two stages for randomization: preprocessing
and randomization.

3.2 Preprocessing Stage

The binary address will be disassembled and the
information about the function blocks is extracted in the
preprocessing stage. The symbol, location, length and
binary address of the function blocks are gathered for each
function.

Randomization Stage
Approach

Preprocessing Stage

Disassembling All Functions

1) Function Symbol
2) Exact Location
3) Length of Function Block
4) Binary Address

3.3 Randomization Stage

Randomization will be done in jump and call stages. The
function blocks will be shuffled with respect to certain
random permutation in the jump stage. A record of the
original address of the functions and the new address
where the function will exist in after the randomization of
the binary will be maintained during the time of shuffling.
The information will be stored in the jump patching table
and it is discarded prior to the process where the binary is
given control. In the call stage, the actual jump patching is
executed and for every jump the jump patching table will
be examined.

Jump Patching table

Original Binary
Address

Shuffling Address

Function Block

Function Start

Random Permutation

Jump
Call

New Binary Address

Complete Function Remove

4. CONCLUSIONS

In this paper we consider a solution, for defending code
reuse attacks. We can achieve this through code
randomization of function blocks. Function level
randomization is the coarse level granularity. This
technique randomizes the binary code and provides
different randomization for every execution of the binary
code. Thus it makes the brute force attack infeasible. The
compiler will be confused for executing randomized
instructions if their target binaries are obfuscated, so
recursive traversal algorithm is implemented in sequencer
to avoid confusion.

REFERENCES

[1] T. Bletsch, X. Jiang, and V. Freeh, “Mitigating code-reuse
attacks with control-flow locking,” in Proc. 27th Annu.
Comput. Security Appl. Conf., New York, NY, USA, 2011, pp.
353–362.
[2] C.Zhang, T. Wei, Z. Chen, L. Duan, L.Szekeres, S.
McCamant, D. Song, and W.Zou, “Practical control flow
integrity and randomization for binary executables,” in
Proc. IEEE Symp. Security Privacy, 2013, pp. 559–573.
[3] Y.Cheng, Z. Zhou, M. Yu, X. Ding, and R. Deng,
“ROPecker: A generic and practical approach for defending
against ROP attacks,” in Proc. 21st Annu. Netw. Distrib.
Syst. Security Symp., 2014.
[4] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender:
A detection tool to defend against return-oriented
programming attacks,” in Proc. 6th ACM Symp. Inf.
Comput. Commun. Security, 2011, pp. 40–51.
[5] P.Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie,
“DROP: Detecting return-oriented programming malicious
code,” in Proc. 5th Int. Conf. Inf. Syst. Security, 2009, pp.
163–177.
[6] V.Pappas, M. Polychronakis, and A. D. Keromytis,
“Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization,” in Proc.
IEEE Symp Security Privacy, 2012, pp. 601–615.
[7] L.V.Davi, A.Dmitrienko, S.N€urnberger, and A.-R.
Sadeghi, “Gadge me if you can: Secure and efficient ad-hoc
instructionlevel randomization for x86 and arm,” in Proc.
8th ACM SIGSAC Symp. Inf. Comput. Commun. Security,
2013, pp. 299–310.
[8] R.Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary
stirring: Self-randomizing instruction addresses of legacy
x86 binary code,” in Proc.ACMConf. Comput. Commun.
Security, 2012, pp. 157–168.
[9] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson, “ILR: Where’d my gadgets go?” in Proc. IEEE
Symp. Security Privacy, 2012, pp. 571–585.
[10] T. Bletsch, X. Jiang, and V. Freeh, “Jump-oriented
programming: A new class of code-reuse attack,” Dept.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 993

Comput. Sci., North Carolina State Univ., Raleigh, NC, USA,
Tech. Rep. TR-2010-8, 2010.
[11] R.Hund, T. Holz, and F. C. Freiling, “Return-oriented
rootkits: Bypassing kernel code integrity protection
mechanisms,” in Proc. 18th Conf. USENIX Security Symp.,
2009, pp. 383–398.
[12] L.Davi, A.-R. Sadeghi, and M. Winandy, “Dynamic
integrity measurement and attestation: Towards defense
against return-oriented programming attacks,” in Proc.
ACM Workshop Scalable Trusted Comput., 2009.

