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Abstract - Software Defect Prediction (SDP) 

plays an important role in reducing the costs of 

software development and maintaining the high quality 

of software systems. The early prediction of defect-

proneness of the modules can allow software 

developers to allocate the limited resources on those 

defect-prone modules such that high quality software 

can be produced on time and within budget. It is a great 

challenge to address the class-imbalance and high-

dimensional data problems of software defect 

prediction. In this paper, three cost-sensitive boosting 

algorithms are analyzed to boost networks for software 

defect prediction. Most of the previously developed 

prediction models do not consider this cost issue. The 

cost sensitive prediction technique is considered as an 

effective means for the optimization of quality 

assurance activities. Cost will never be an independent 

term because there are too many variables involved in 

the calculation of cost estimation such as human, 

technical, environmental and political factors. When 

compared to cost-blind classifiers, the proposed cost-

sensitive boosting methods considering cost 

information in both feature selection and classification 

stages provide better solutions to deal with the class 

imbalance and high-dimensionality problems in SDP. 

Software Defect Prediction is extremely essential in the 

field of software quality and software reliability. These 

systems can be used to achieve timely fault prediction 

for software components. Then the software quality 

assurance team can utilize the predictions to use 

available resources for obtaining cost effective 

reliability enhancements. 

Key Words: Software Defect Prediction, Cost. 

1. INTRODUCTION 
 
Software Defect Prediction (SDP) is one of the most active 
research areas in software engineering. It plays an 
important role in reducing the costs of software 
development and maintaining the high quality of software 

systems. It allows software project managers to allocate 
limited time and manpower resources to defect-prone 
modules through early defect detection. Software defect 
prediction is the process of locating defective modules or 
data in software. To produce high quality software, the 
final product should have as few defects as possible. As the 
size of the software projects become larger, defect 
prediction techniques support developers as well as it 
helps to speed up time to market with more reliable 
software products.   

Defect Prediction studies are still have many 
challenging issues. Most of the previously developed 
prediction models do not consider the cost issue. The cost 
sensitive prediction technique is considered as an effective 
means for the optimization of quality assurance activities. 
Cost will never be an independent term because there are 
too many variables involved in the calculation of cost 
estimation such as human, technical, environmental and 
political factors. Here an enhanced cost sensitive boosting 
technique is proposed which achieves better performance 
in software defect prediction compared to existing 
techniques. 

A software defect is an error or failure in a system 
that prevents the software from generating the intended 
outcome. Data is also a part of software. To find defective 
data from huge dataset is a difficult task because the 
majority of defects in a software system are only found in 
a small portion of its modules. By considering the valuable 
cost information in the feature selection stage may further 
boost the performances of SDP models because features 
associated with the minority class are more likely to be 
selected. Here the enhanced feature selection and 
categorization algorithm develops an optimized method 
by considering three cost-sensitive feature selection 
algorithms by emphasizing samples with higher 
misclassification costs, and de-emphasizing those with 
lower misclassification costs in the feature selection stage. 
To fully utilize the valuable cost information, the proposed 
Cost-Sensitive boosting networks for software defect 
prediction uses the cost information in both feature 
selection stage and classification stage. The cost-sensitive 
feature selection aims to select features that are associated 
with the interesting class (i.e., defect-prone module), and 
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the cost-sensitive classification deems to make the SDP 
classifier not dominated by the majority class. 

Data is an important part of software system. To 
find the defective data enhances the overall system 
performance. Software development team tries to increase 
the software quality by decreasing the number of defects 
as much as possible. Here an enhanced technique is 
proposed for identifying fault prone data as well as this 
algorithm is compared with all previous methods to find 
out the best algorithm for defect prediction. 

Software Defect Prediction Model refers to those 
models that try to predict potential software defects from 
test data. Here the proposed system involves mainly two 
parts prediction and comparison. 

2. DISADVANTAGES OF EXISTING SYSTEM 
 
 The prediction accuracy of the existing techniques 

is low 
 The prior methods failed to provide a better 

solution for class imbalance problem. 
 Most of the prior methods has higher 

misclassification costs and error rates. 

 
3. PROBLEM DEFINITION 
  
 Software defect prediction still remains a difficult 
problem to be solved, and is faced with two challenges: 
high dimensionality, and class imbalance. As modern 
software systems grow in both size and complexity, the 
number of features extracted from software modules 
becomes much larger than ever before, and these features 
may be redundant or irrelevant. The second challenge for 
SDP is the class-imbalanced data, where the majority of 
defects in a software system are only found in a small 
portion of its modules. 

The solution for high dimensionality is an 
important pre-processing procedure, ie, feature selection 
is beneficial to facilitate data understanding, to reduce the 
storage requirements, and to overcome the curse of 
dimensionality for improved prediction performance. The 
solution for class imbalance is cost-sensitive learning, 
which explicitly considers those different error costs, and 
aims to minimize the total expected costs rather than the 
classification error rates. 

The goal of this developed solution is a cost-
sensitive boosting method for SDP by using cost 
information in both the classification and the feature 
selection stages. This Enhanced Feature Selection and 
Categorization method provides cent percent accuracy 
and sensitivity. 

4. ARCHITECTURE 
  

 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
-Fig 4.1- Architecture of Combined TSCS and EAFSC method 
 

To fully utilize the valuable cost information, a 
two-stage cost-sensitive learning (TSCS) method for 
software defect prediction where the cost information is 
used in both the feature selection stage and the 
classification stage. The cost-sensitive feature selection 
aims to select features that are associated with the 
interesting class (i.e., defect-prone module), and the cost-
sensitive classification deems to make the SDP classifier 
not dominated by the majority class (i.e., not-defect-prone 
module). The above two stages are used to solve the class 
imbalance problem in SDP. Fig 3.1 illustrates a general 
architecture of the combination TSCS and EAFSC method. 
As shown in Fig. 3.1, the historical data, including various 
software metrics captured from software systems, are 
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divided into two groups: the training data set, and the test 
data set. These data are pre-processed before being fed 
into the following feature selection and classification 
algorithms. In the second stage, cost-sensitive feature 
selection algorithms are applied to the training data to 
find the optimal features, and thus the dimension can be 
reduced. The next step is to train the cost-sensitive 
classification models based on the training data set with 
selected features. 

  As a part of first step of feature selection, a 
random selection approach namely Enhanced Algorithm 
for Feature Selection and Classification (EAFSC) have been 
used. EAFSC is a random search method, capable of 
effectively exploring large search spaces, which is usually 
required in case of attribute selection. Enhanced 
Algorithm for Feature Selection and Categorization 
combines the three filter type feature selection methods 
Variance Score, Laplacian Score and Constraint Score. 
Then Feature Selection and Categorization are done on the 
same stage using these methods. Finally, the two learned 
model is evaluated on the test data set. 
 
4.1 Data pre-processing 

Data preprocessing describes any type of 
processing performed on raw data to prepare it for 
another processing procedure. The data are pre-processed 
before being fed into the following feature selection and 
classification algorithms. The resultant data is complex. 

4.2 Cost Sensitive Feature Selection 

The aim of feature selection is to find the 
minimally sized feature subset that is necessary and 
sufficient for a specific task. Here, it introduces three 
popular filter-type feature selection methods including 
Variance, Laplacian Score, and Constraint Score, which are 
relevant to the proposed methods. Variance score (VS) is a 
simple unsupervised evaluation criterion of features. It 
selects features that have the maximum variance among 
all samples, with the basic idea that the variance among a 
feature space reflects the representative power of this 
feature. As another popular unsupervised feature selection 
method, Laplacian Score (LS) not only prefers features 
with larger variances which have more representative 
power, but also prefers features with stronger locality 
preserving ability. Constraint Score (CS) is a semi-
supervised feature selection method, which performs 
feature selection according to the constraint preserving 
ability of features. It uses must-link and cannot-link pair-
wise constraints as supervision information, where 
features that can best preserve the must-link constraints 
as well as the cannot-link constraints are assumed to be 
important. 

4.3 Cost Sensitive Classification 

The next step is to train the cost-sensitive 
classification models based on the training data set with 
selected features. In the SDP domain, many cost-sensitive 
classification methods have been applied and shown 
effective to deal with the class imbalance problem. Any 
kind of cost-sensitive classifiers can be used in the 
classification stage. Cost information is used to evaluate 
the misclassification costs from different types of errors. 
Other than focusing on lower classification error rates, 
cost-sensitive learning methods aim to minimize the total 
expected costs by utilizing the cost information. 

4.4 Enhanced Feature Selection and Categorization 

Further, unlike many search algorithms, which 
perform a local, greedy search, EAFSCs performs a global 
search. An Enhanced algorithm (EAFSC)) is a search 
algorithm inspired by the principle of natural selection. 
Here the basic idea is to evolve an optimized algorithm 
using Variance Score, Laplacian Score, and Constraint 
Score so that it can provide high accuracy rate. This three 
cost-sensitive feature selection algorithms by emphasize 
samples with higher misclassification costs, and de-
emphasizing those with lower misclassification costs in 
the feature selection stage. It is adopted in practice due to 
their simplicity and computational efficiency. The 
prediction model can predict whether a new instance is 
defect-prone (buggy or clean) or not. 

4.5 Performance Evaluation 

Finally, the two learned model is evaluated on the 
test data set. For better evaluating the performances in the 
cost-sensitive learning scenarios, the Total-cost of 
misclassification, which is a general measurement for cost-
sensitive learning, is used as one primary evaluation 
criterion. The results clearly depicts the relevant 
attributes as identified by the Enhanced Feature Selection 
and Categorization have indeed improved classification 
accuracy of the all the four classifiers used for validation 
when compared to classification accuracy with all the inputs. 

 Actual 

 

Predicted 

 Defect-

prone 

Not-defect-

prone 

Defect-prone TP FP 

Not-defect-prone FN TN 

-Table 4.1 Defect Prediction Confusion Matrix 
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A confusion matrix is a table that is often used 
to describe the performance of a classification model on a 
set of test data for which the true values are known. On the 
other hand, the classification results can be represented by 
the confusion matrix with two rows and two columns 
reporting the number of true positives (TP), false positives 
(FP), false negatives (FN), and true negatives (TN).  

From the confusion matrix, sensitivity and 
accuracy can be defined as:            

            

 

Sensitivity measures the proportion of defect-
prone modules correctly classified and Accuracy measures 
the proportion of samples correctly classified among the 
whole population. In addition to the Total-cost, it also 
adopts the Sensitivity and Accuracy of the classification 
results as evaluation measures. 

5. PERFORMANCE EVALUATION 

 Analysis is done on the four methods and 
selects the most appropriate one. Fig 5.1 shows the 
graphical representation of the four methods Variance 
score, Laplacian score, Constraint score and EAFSC  in 
terms of Accuracy, Sensitivity and Misclassification cost. 
Accuracy and Sensitivity of the EAFSC method is more 
than all other methods. Also the misclassification cost is 
almost zero in the case of EAFSC method. From this it will 
understand the proposed method outperforms all the 
methods. 

 
Fig 5.1 Algorithm Comparison in terms Sensitivity, Accuracy and 
Misclassification cost. 
 
 
 

To verify the efficiency of the proposed method, 
extensive experiments are performed in datasets. The 
experiment is conducted by comparing training data and 
test data by applying the four methods- Variance Score, 
Laplacian score, Constraint score and EAFSC. In terms of 
CPU utilization the proposed system scores high when 
compared to other independent methods. 
 

 

Fig 5.2 CPU Utilization Graph 

6. CONCLUSION 

 Here a novel architecture for software 
defect prediction is proposed. This architecture involves 
evaluation and prediction. In the evaluation stage, three 
filter type feature selection methods are evaluated and 
proved that the best one is the combination of three 
methods. Then in the prediction stage, the predictor is 
finally used to predict defect on the test data. To improve 
the sensitivity and accuracy cost sensitive boosting 
method is proposed, where the cost information is utilized 
not only in the advanced classification stage but also in the 
advanced feature selection stage. This architecture is more 
stable. Experimental results demonstrate that the 
proposed cost sensitive boosting method outperform TSCS 
methods. 

      In the current experiments, public software 
defect prediction data sets from NASA projects are used. 
Any other software defect data could be used to further 
validate the proposed methods. As a future work a 
generalized equation can be developed for Enhanced 
Algorithm for Feature Selection and Categorization. This 
may further improve the efficiency and reduce the 
complexity of the proposed method. Also a method can be 
developed to identify the reasons for the defective data 
and rectify that problem. 
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