
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1461

Enhanced Cost Sensitive Boosting Network for Software Defect

Prediction

Sreelekshmy. P

M.Tech, Department of Computer Science and Engineering, Lourdes Matha College of Science & Technology,
Kerala,India

---***---
Abstract - Software Defect Prediction (SDP)

plays an important role in reducing the costs of

software development and maintaining the high quality

of software systems. The early prediction of defect-

proneness of the modules can allow software

developers to allocate the limited resources on those

defect-prone modules such that high quality software

can be produced on time and within budget. It is a great

challenge to address the class-imbalance and high-

dimensional data problems of software defect

prediction. In this paper, three cost-sensitive boosting

algorithms are analyzed to boost networks for software

defect prediction. Most of the previously developed

prediction models do not consider this cost issue. The

cost sensitive prediction technique is considered as an

effective means for the optimization of quality

assurance activities. Cost will never be an independent

term because there are too many variables involved in

the calculation of cost estimation such as human,

technical, environmental and political factors. When

compared to cost-blind classifiers, the proposed cost-

sensitive boosting methods considering cost

information in both feature selection and classification

stages provide better solutions to deal with the class

imbalance and high-dimensionality problems in SDP.

Software Defect Prediction is extremely essential in the

field of software quality and software reliability. These

systems can be used to achieve timely fault prediction

for software components. Then the software quality

assurance team can utilize the predictions to use

available resources for obtaining cost effective

reliability enhancements.

Key Words: Software Defect Prediction, Cost.

1. INTRODUCTION

Software Defect Prediction (SDP) is one of the most active
research areas in software engineering. It plays an
important role in reducing the costs of software
development and maintaining the high quality of software

systems. It allows software project managers to allocate
limited time and manpower resources to defect-prone
modules through early defect detection. Software defect
prediction is the process of locating defective modules or
data in software. To produce high quality software, the
final product should have as few defects as possible. As the
size of the software projects become larger, defect
prediction techniques support developers as well as it
helps to speed up time to market with more reliable
software products.

Defect Prediction studies are still have many
challenging issues. Most of the previously developed
prediction models do not consider the cost issue. The cost
sensitive prediction technique is considered as an effective
means for the optimization of quality assurance activities.
Cost will never be an independent term because there are
too many variables involved in the calculation of cost
estimation such as human, technical, environmental and
political factors. Here an enhanced cost sensitive boosting
technique is proposed which achieves better performance
in software defect prediction compared to existing
techniques.

A software defect is an error or failure in a system
that prevents the software from generating the intended
outcome. Data is also a part of software. To find defective
data from huge dataset is a difficult task because the
majority of defects in a software system are only found in
a small portion of its modules. By considering the valuable
cost information in the feature selection stage may further
boost the performances of SDP models because features
associated with the minority class are more likely to be
selected. Here the enhanced feature selection and
categorization algorithm develops an optimized method
by considering three cost-sensitive feature selection
algorithms by emphasizing samples with higher
misclassification costs, and de-emphasizing those with
lower misclassification costs in the feature selection stage.
To fully utilize the valuable cost information, the proposed
Cost-Sensitive boosting networks for software defect
prediction uses the cost information in both feature
selection stage and classification stage. The cost-sensitive
feature selection aims to select features that are associated
with the interesting class (i.e., defect-prone module), and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1462

the cost-sensitive classification deems to make the SDP
classifier not dominated by the majority class.

Data is an important part of software system. To
find the defective data enhances the overall system
performance. Software development team tries to increase
the software quality by decreasing the number of defects
as much as possible. Here an enhanced technique is
proposed for identifying fault prone data as well as this
algorithm is compared with all previous methods to find
out the best algorithm for defect prediction.

Software Defect Prediction Model refers to those
models that try to predict potential software defects from
test data. Here the proposed system involves mainly two
parts prediction and comparison.

2. DISADVANTAGES OF EXISTING SYSTEM

 The prediction accuracy of the existing techniques

is low
 The prior methods failed to provide a better

solution for class imbalance problem.
 Most of the prior methods has higher

misclassification costs and error rates.

3. PROBLEM DEFINITION

 Software defect prediction still remains a difficult
problem to be solved, and is faced with two challenges:
high dimensionality, and class imbalance. As modern
software systems grow in both size and complexity, the
number of features extracted from software modules
becomes much larger than ever before, and these features
may be redundant or irrelevant. The second challenge for
SDP is the class-imbalanced data, where the majority of
defects in a software system are only found in a small
portion of its modules.

The solution for high dimensionality is an
important pre-processing procedure, ie, feature selection
is beneficial to facilitate data understanding, to reduce the
storage requirements, and to overcome the curse of
dimensionality for improved prediction performance. The
solution for class imbalance is cost-sensitive learning,
which explicitly considers those different error costs, and
aims to minimize the total expected costs rather than the
classification error rates.

The goal of this developed solution is a cost-
sensitive boosting method for SDP by using cost
information in both the classification and the feature
selection stages. This Enhanced Feature Selection and
Categorization method provides cent percent accuracy
and sensitivity.

4. ARCHITECTURE

-Fig 4.1- Architecture of Combined TSCS and EAFSC method

To fully utilize the valuable cost information, a
two-stage cost-sensitive learning (TSCS) method for
software defect prediction where the cost information is
used in both the feature selection stage and the
classification stage. The cost-sensitive feature selection
aims to select features that are associated with the
interesting class (i.e., defect-prone module), and the cost-
sensitive classification deems to make the SDP classifier
not dominated by the majority class (i.e., not-defect-prone
module). The above two stages are used to solve the class
imbalance problem in SDP. Fig 3.1 illustrates a general
architecture of the combination TSCS and EAFSC method.
As shown in Fig. 3.1, the historical data, including various
software metrics captured from software systems, are

Historical data

Testing data

Cost Sensitive

Feature

selection

Data pre

processing

Training

data

Data pre

processing

Dimension

reduction
EAFSC

Selected

Features

Test Data

Cost Sensitive
Classification

Classifier Prediction

Performance

Evaluation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1463

divided into two groups: the training data set, and the test
data set. These data are pre-processed before being fed
into the following feature selection and classification
algorithms. In the second stage, cost-sensitive feature
selection algorithms are applied to the training data to
find the optimal features, and thus the dimension can be
reduced. The next step is to train the cost-sensitive
classification models based on the training data set with
selected features.

 As a part of first step of feature selection, a
random selection approach namely Enhanced Algorithm
for Feature Selection and Classification (EAFSC) have been
used. EAFSC is a random search method, capable of
effectively exploring large search spaces, which is usually
required in case of attribute selection. Enhanced
Algorithm for Feature Selection and Categorization
combines the three filter type feature selection methods
Variance Score, Laplacian Score and Constraint Score.
Then Feature Selection and Categorization are done on the
same stage using these methods. Finally, the two learned
model is evaluated on the test data set.

4.1 Data pre-processing

Data preprocessing describes any type of
processing performed on raw data to prepare it for
another processing procedure. The data are pre-processed
before being fed into the following feature selection and
classification algorithms. The resultant data is complex.

4.2 Cost Sensitive Feature Selection

The aim of feature selection is to find the
minimally sized feature subset that is necessary and
sufficient for a specific task. Here, it introduces three
popular filter-type feature selection methods including
Variance, Laplacian Score, and Constraint Score, which are
relevant to the proposed methods. Variance score (VS) is a
simple unsupervised evaluation criterion of features. It
selects features that have the maximum variance among
all samples, with the basic idea that the variance among a
feature space reflects the representative power of this
feature. As another popular unsupervised feature selection
method, Laplacian Score (LS) not only prefers features
with larger variances which have more representative
power, but also prefers features with stronger locality
preserving ability. Constraint Score (CS) is a semi-
supervised feature selection method, which performs
feature selection according to the constraint preserving
ability of features. It uses must-link and cannot-link pair-
wise constraints as supervision information, where
features that can best preserve the must-link constraints
as well as the cannot-link constraints are assumed to be
important.

4.3 Cost Sensitive Classification

The next step is to train the cost-sensitive
classification models based on the training data set with
selected features. In the SDP domain, many cost-sensitive
classification methods have been applied and shown
effective to deal with the class imbalance problem. Any
kind of cost-sensitive classifiers can be used in the
classification stage. Cost information is used to evaluate
the misclassification costs from different types of errors.
Other than focusing on lower classification error rates,
cost-sensitive learning methods aim to minimize the total
expected costs by utilizing the cost information.

4.4 Enhanced Feature Selection and Categorization

Further, unlike many search algorithms, which
perform a local, greedy search, EAFSCs performs a global
search. An Enhanced algorithm (EAFSC)) is a search
algorithm inspired by the principle of natural selection.
Here the basic idea is to evolve an optimized algorithm
using Variance Score, Laplacian Score, and Constraint
Score so that it can provide high accuracy rate. This three
cost-sensitive feature selection algorithms by emphasize
samples with higher misclassification costs, and de-
emphasizing those with lower misclassification costs in
the feature selection stage. It is adopted in practice due to
their simplicity and computational efficiency. The
prediction model can predict whether a new instance is
defect-prone (buggy or clean) or not.

4.5 Performance Evaluation

Finally, the two learned model is evaluated on the
test data set. For better evaluating the performances in the
cost-sensitive learning scenarios, the Total-cost of
misclassification, which is a general measurement for cost-
sensitive learning, is used as one primary evaluation
criterion. The results clearly depicts the relevant
attributes as identified by the Enhanced Feature Selection
and Categorization have indeed improved classification
accuracy of the all the four classifiers used for validation
when compared to classification accuracy with all the inputs.

 Actual

Predicted

 Defect-

prone

Not-defect-

prone

Defect-prone TP FP

Not-defect-prone FN TN

-Table 4.1 Defect Prediction Confusion Matrix

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1464

A confusion matrix is a table that is often used
to describe the performance of a classification model on a
set of test data for which the true values are known. On the
other hand, the classification results can be represented by
the confusion matrix with two rows and two columns
reporting the number of true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN).

From the confusion matrix, sensitivity and
accuracy can be defined as:

Sensitivity measures the proportion of defect-
prone modules correctly classified and Accuracy measures
the proportion of samples correctly classified among the
whole population. In addition to the Total-cost, it also
adopts the Sensitivity and Accuracy of the classification
results as evaluation measures.

5. PERFORMANCE EVALUATION

 Analysis is done on the four methods and
selects the most appropriate one. Fig 5.1 shows the
graphical representation of the four methods Variance
score, Laplacian score, Constraint score and EAFSC in
terms of Accuracy, Sensitivity and Misclassification cost.
Accuracy and Sensitivity of the EAFSC method is more
than all other methods. Also the misclassification cost is
almost zero in the case of EAFSC method. From this it will
understand the proposed method outperforms all the
methods.

Fig 5.1 Algorithm Comparison in terms Sensitivity, Accuracy and
Misclassification cost.

To verify the efficiency of the proposed method,
extensive experiments are performed in datasets. The
experiment is conducted by comparing training data and
test data by applying the four methods- Variance Score,
Laplacian score, Constraint score and EAFSC. In terms of
CPU utilization the proposed system scores high when
compared to other independent methods.

Fig 5.2 CPU Utilization Graph

6. CONCLUSION

 Here a novel architecture for software
defect prediction is proposed. This architecture involves
evaluation and prediction. In the evaluation stage, three
filter type feature selection methods are evaluated and
proved that the best one is the combination of three
methods. Then in the prediction stage, the predictor is
finally used to predict defect on the test data. To improve
the sensitivity and accuracy cost sensitive boosting
method is proposed, where the cost information is utilized
not only in the advanced classification stage but also in the
advanced feature selection stage. This architecture is more
stable. Experimental results demonstrate that the
proposed cost sensitive boosting method outperform TSCS
methods.

 In the current experiments, public software
defect prediction data sets from NASA projects are used.
Any other software defect data could be used to further
validate the proposed methods. As a future work a
generalized equation can be developed for Enhanced
Algorithm for Feature Selection and Categorization. This
may further improve the efficiency and reduce the
complexity of the proposed method. Also a method can be
developed to identify the reasons for the defective data
and rectify that problem.

REFERENCES

[1] B. T. Compton and C. Withrow, “Prediction and control
of ada software defects,” J. Syst. Softw., vol. 12, no. 3, pp.
199–207, 1990.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 1465

[2] J. Munson and T. M. Khoshgoftaar, “Regression
modelling of software quality: empirical investigation,” J.
Electron. Mater., vol. 19, no. 6, pp. 106–114, 1990.
[3] N. B. Ebrahimi, “On the statistical analysis of the
number of errors remaining in a software design
document after inspection,” IEEE Trans. Softw. Eng., vol.
23, no. 8, pp. 529–532, 1997.
[4] S. Vander Wiel and L. Votta, “Assessing software
designs using capture-recapture methods,” IEEE Trans.
Softw. Eng., vol. 19, no. 11, pp. 1045–1054, 1993.
[5] P. Runeson and C. Wohlin, “An experimental evaluation
of an experience-based capture-recapturemethod in
software code inspections,” Empirical Softw. Eng., vol. 3,
no. 4, pp. 381–406, 1998.
[6] L. C. Briand, K. El Emam, B. G. Freimut, and O.
Laitenberger, “A comprehensive evaluation of capture-
recapture models for estimating software defect content,”
IEEE Trans. Softw. Eng., vol. 26, no. 6, pp. 518–540, 2000.
[7] K. El Emam and O. Laitenberger, “Evaluating capture-
recapture models with two inspectors,” IEEE Trans. Softw.
Eng., vol. 27, no. 9, pp. 851–864, 2001.
[8] C. Wohlin and P. Runeson, “Defect content estimations
from review data,” in ICSE ’98: Proceedings of the 20th
International Conference on Software engineering.
Washington, DC, USA: IEEE Computer Society, 1998, pp.
400–409.
[9] Q. Song, M. Shepperd, M. Cartwright, and C. Mair,
“Software defect association mining and defect correction
effort prediction,” IEEE Trans. Softw. Eng., vol. 32, no. 2,
pp. 69–82, 2006.
[10] A. Porter and R. Selby, “Empirically guided software
development using metric-based classification trees,” IEEE
Software, vol. 7, pp. 46–54, 1990.
[11] J. C. Munson and T. M. Khoshgoftaar, “The detection of
faultprone programs,” IEEE Trans. Softw. Eng., vol. 18, no.
5, pp. 423–433, 1992.
[12] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation
of objectoriented design metrics as quality indicators,”
IEEE Trans. Softw.Eng., vol. 22, no. 10, pp. 751–761, 1996.
[13] T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl, and S. J.
Aud, “Application of neural networks to software quality
modeling of a very large telecommunications system,”
IEEE Trans. Neural Networks, vol. 8, no. 4, pp. 902–909,
1997.
[14] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P.
Hudepohl, “Classification tree models of software quality
over multiple releases,” in Proceedings of the 10th
International Symposium on Software Reliability
Engineering, Washington, DC, USA, 1999, p. 116.
[15] K. Ganesan, T. M. Khoshgoftaar, and E. Allen, “Case-
based software quality prediction,” Int’l J. Software Eng.
and Knowledge Eng., vol. 10, no. 2, pp. 139–152, 2000.
[16] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai,
“Comparing case-based reasoning classifiers for predicting

high risk software components,” J. Syst. Softw., vol. 55, no.
3, pp. 301–320, 2001.
[17] T. M. Khoshgoftaar and N. Seliya, “Fault prediction
modeling for software quality estimation: Comparing
commonly used techniques,” Empirical Softw. Engg., vol. 8,
no. 3, pp. 255–283, 2003.
[18] “Analogy-based practical classification rules for
software quality estimation,” Empirical Softw. Engg., vol. 8,
no. 4, pp. 325–350, 2003.
[19] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust
prediction of fault-proneness by random forests,” in ISSRE
’04: Proceedings of the 15th International Symposium on
Software Reliability Engineering, Washington, DC, USA,
2004, pp. 417–428.
[20] T. Menzies, J. Greenwald, and A. Frank, “Data mining
static code attributes to learn defect predictors,” IEEE
Trans. Softw. Eng., vol. 33, no. 1, pp. 2–13, 2007.

