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Abstract-We express the database community's impression 
of a a SQL Interface for data aggregation, which can be 
applied to ad-hoc wireless sensor networks. Here, we are 
showing group aggregations can be effectively processed 
where they reduce data duplication. Network Traffic. Based 
on these queries, we shown SQL Interface that can execute 
queries within ad-hoc sensor networks. 
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I.INTRODUCTION 
 
At UC Berkeley,researchers have developed small sensor 
devices called motes, and an operating system, called Tiny 
OS, that is especially suited to running on them. Motes are 
equipped with a radio, a processor, and a suite of sensors. 
TinyOSmakes it possible to deploy ad-hoc networks of 
sensors that can locate each other and route data without 
any a priori knowledge of network topology. 
 
As various groups around the country have begun to deploy 
large networks of sensors, a need has arisen for tools to 
collect and query data from these networks. Of particular 
interest are aggregates operations which summarize current 
sensor values in some or all of a sensor networks. For 
example given a dense network of thousands of sensors 
querying temperature, users want to know temperature 
patters in relatively large regions encompassing tens of 
sensors individual sensor readings are of little value. 
 
Sensor networks are limited in external bandwidth, i.e. how 
much data they can deliver to an outside system. In many 
cases the externally available bandwidth is a small fraction 
of the aggregate internal bandwidth. Thus computing 
aggregates in network is also attractive from a network 
performance and longevity standpoint: extracting all data 
over all time from all sensors will consume large amounts of 
time and power as each individual sensor’s data is 
independently routed through the network. Previous studies 
have shown that aggregation dramatically reduces the 
amount of data routed through the network, increasing 
throughput and extending the life of battery powered sensor 
networks as less load is placed on power hungry radios. 
 
In this paper, we discuss the challenges associated with 
implementing the five basic database aggregated with 
grouping in adhoc networks of sensors. We show how our 
generic approach leads to a significant power savings. 

Further, We show that sensor network queries can be 
structured as time series of aggregates, and how such 
queries adapt to the changing network structure. We have 
implemented earlyversions of these techniques and are in 
the process of experimentally validation them. 

 
1.1MOTES 
 
These devices are equipped with a 4Mhz Atmel 
microprocessor with 512 bytes of RAM and 8KB of 
codespace,a 917 MHz RFM radio running at 10 KB OF CODE 
SPACE, A 917 mhz rfm RADIO RUNNING AT 10KB/S, AND 
32KBEPROM. Current temperature options include light, 
temperature, magnetic field, acceleration, vibration, sound, 
power. The effective lifetime of the sensor is determined by 
its power supply. In, Motes we will use Tuny OS. TinyOS 
provides a number of services like simplifying the programs, 
process the capture data, transmitting radio messages over 
radio. 
 

1.2 Ad-Hoc Sensor Networks. 
 
Messages in the current generation of TinyOS area fixed size 
preprogrammed into sensors, by default, 30 byte messages 
are used. Each message type has a message id that 
distinguishes it fromother types of messages. Sensor 
programmers write message id specific handlers that are 
invoked by Tiny OS when a message of the appropriate id is 
heard on the radio. Each sensor has a unique sensor id that 
distinguishes it from other sensors. All messages specify 
their recipient, allowing sensors to ignore messages not 
intended for them, although non-broadcast messages must 
still be received by all sensors within range –unintended 
recipients simply drop messages not addressed to them. 
 
Given this brief primer on wireless sensor communication, 
we now show how sensors route data. The technique we 
adopt is to build a routing tree. We appoint one sensor to be 
the root. The root is the point from which the routing tree 
will be built, and upon which aggregated data will converge. 
Thus, the root is typically the sensor that interfaces the 
querying user to the rest of the network. The root broadcasts 
a message asking sensors to organize into a routing tree; in 
that message it specifies its own id and its level, or distance 
from the root, which is zero. Any sensor that hears this 
messages assigns its own level to be the level in the message 
plus one, if its current level is not already less than or equal 
to the level in the message. It also chooses the sender of the 
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message as its parent, through which it will route messages 
to the root. Each of these sensors then rebroadcasts the 
routing message, inserting their own ids and levels. The 
routing, message floods down the tree in this fashion, with 
each node rebroadcasting the message until all nodes have 
been assigned a level and a parent. Nodes that hear multiple 
parents choose one arbitrarily, although we will discuss 
approaches in below where multiple parents can be used to 
improve the quality of aggregates. These routing messages 
are periodically broadcast from the root, so that the process 
of topology discovery goes on continuously. This constant 
topology maintenance makes it relatively easy to adapt to 
network changes caused by mobility of certain nodes, or to 
the addition or deletion of sensors; each sensor simply looks 
at the history of received routing messages, and chooses the 
“best” parent, while ensuring that no routing cycles are 
created with that decision. 
 
This approach makes it possible to efficiently route data 
towards the root. When a sensor wishes to send a message to 
the root, it sends the message to its parents, which in turn 
forwards the message on to its parent, and so on, eventually 
reaching the root. This approach doesn’t address point-to- 
point routing; however, for our purposes, flooding 
aggregation requests and routing replies up the tree to the 
root is sufficient., as data is routed towards the root, it can be 
combined with data from other sensors to efficiently 
combine routing and aggregation. First, however we 
describe how aggregates are expressed in database systems. 

 
II. AGGREGATION IN DATABASE SYSTEMS 
 
Aggregation in SQL based database systems is definedby an 
aggregate function and a grouping predicate. The aggregate 
function specifies how a set of values should be combined 
tocompute an aggregate; the standard set of SQL aggregate 
functions is COUNT, MIN, MAX, AVERAGE, and SUM. These 
compute the obvious functions; for example, the SQ 
statements. 

 
SELECT AVERAGE FROM ALL_sensors 
 
Computes the average temperature from some table sensors, 
which represents a set of sensor readings that have been 
read into the system. Similarly, the COUNT functions 
compute minimal and maximal values and SUM calculates 
the total of all values. Additionally, most database systems 
allow user-defined functions that specify more complex 
aggregates than the five listed above. 
 
Grouping is also a standard feature of database systems. 
Rater than merely computing a single aggregate value over 
the entire set of data values, a grouping predicate partitions 
the values into groups based on some attribute. For example, 
the query; 
 

SELECT TRUNC, DATA_AVERAGE  
FROM ALL sensors 
GROUP BY TRUNC 
HAVING DATA_AVERAGE> 60 
 
Partition sensor readings into groups according to their 
temperature reading and computes the average light reading 
within each group. The HAVING clause excludes groups 
whose average light reading are less than or equal to 60. 
 
In the rest of this paper, we discuss the challenges associated 
with implementing the five basic aggregates with grouping 
in ad-hoc networks of Tiny OS sensors. We start by 
considering a single aggregate being computed at a time, and 
then argue that often users are interested in viewing 
aggregates as sequences of changing values over time. 
Throughout this work, we will assume the user is stationed 
at a desktop- class PC with ample memory. Despite the 
simple appearances of this architecture, there are a number 
of difficulties presented. 

 
III. GENERIC AGGREGATION TECHNIQUES 
 
 A native implementation of sensor network aggregation 
would be to use a centralized, server-based approach where 
all sensor readings are sent to the host PC, which then 
computes the aggregates. However, as was shown in a 
distributed, in wireless network approach where aggregates 
are partially or fully computed by the sensors themselves as 
readings are routed through the network towards the host-
PC can be considerably more efficient. In this section, we 
focus on the in network approach, because, if properly 
implemented, it has the potential to be both lower latency 
and lower power than the server based approach. 
 
To illustrate the potential advantages of the in network 
approach; consider the simple example of computing an 
aggregate over a group of sensors arranged as shown in 
figure1. Dotted lines represent connection between sensors; 
solid lines represent the routing tree imposed on top of this 
graph to allow sensors to propagate data to the root along a 
single path. In the centralized approach, each sensor value 
mist be routed to the root of the network; for a node at depth 
m, this requires n-1 messages to be transmitted per sensor. 
The sensors in figure 2 have been labeled with their distance 
from the root; summing these numbers gives a total sixteen 
messages required routing all aggregation information to the 
root. Combine their own readings with the readings of their 
reading to their parents. Intermediate nodes combines their 
own reading with the reading of their children via the 
aggregation function f and propagate the partial aggregate, 
along with any extra data required to update the aggregate, 
up the tree. 
 
The amount of data transmitted in this solution depends on 
the aggregate. Consider the AVERAGE function. at each 
intermediate node n, the sum and count of all children’s 
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sensor readings are needed to compute the assume that, in 
the case of AVERAGE, both pieces of information will easily 
fit into a single 30 byte message. Thus a total of 5 messages 
needed to be be sent for the average function. IN the case of 
the other standard SQL aggregates, no additional state is 
required: COUNT, MIN, MAX and SUM can be computed by a 
parent node given sensor or partial aggregate values at all of 
the child nodes. 
 
Aggregates can be expressed as an aggragte function f over 
the sets a & b such that  
 

f(a U b) = g(f(a), f(b)) 
 

IV. INJECTING A QUERY 
 
Computing Aggregation consist of two phases: a propagation 
phase in which aggregations are pushed down into sensor 
networks, and an aggregation phase, where the aggregate 
values prop aged from the children to parents. The basic 
approach to propagation works just like the network 
discovery algorithm, except that leaf nodes that propagates 
to their parents. Thus, when a sensor p receives an aggregate 
a, either from another sensor or from the user, it transmit a 
and begins listening. If p has any children, it will hear those 
children re-transit a to their children, and will know it is not 
a leaf. If, after some time interval t, p has heard no children, it 
concludes is is a leaf and transmit its current sensor value up 
the routing tree. If p has children, it assumes they will al 
report within time t, and so after time t it computes the value 
of applied to its own value and the values of its children and 
forwards this partial aggregate to its parent. 
 

IV. STREAMING AGGREGATES 
 
Sensor networks are inherently unreliable: individual radio 
transmission can fail, nodes can move, and so on. Thus, it is 
very hard to guarantee that a significant portion of a sensor 
network was not detached during a particular aggregate 
computation. Consider, for example, what happens when a 
sensor, p, broadcast a and its only child c, somehow misses a 
message P will never hear c rebroadcast, and will assume 
that it has no children and that it should forward only its 
own sensor value. The entire network below p is thus 
excluded from the aggregation computation, and the end 
result is probably is in correct. Indeed, when any sub tree of 
the graph can full in this way, it is impossible to give any 
guarantees about the accuracy of the result. 
 
One solution to this problem is to double-check aggregates 
by computing them by multiple times. The simplest way to 
do this would be request the aggregate be computed 
multiple times at the root of the network; by observing the 
common-case value of the aggregate, the client could make a 
reasonable guess as to its true value. The problem with this 
technique is that it requires retransmitting the aggregate 
request down the network multiple times, at a significant 

message overhead, and the user must wait for the entire 
aggregation interval for each additional result. 
 
Better approach is pipelined aggregate, in the pipe lined 
approach, time is divided into intervals of duration I, during 
each interval, every sensor that has heard the request to 
aggregate transmit a partial aggregate by applying a to its 
local reading and the values its children reported during the 
previous interval. Thus, after the first interval, the root hears 
from the sensors one and two missed the request to begin 
aggregation, a sensor that hears another sensor reporting 
the its aggregate values can assume it too should begin 
reporting its aggregate value. 
 

VI. GROUPING  
 
The basic technique for grouping is to push down a set of 
predicates that specify group membership, ask sensors to 
choose the group they belong to, and then, as answers flow 
back, update the aggregate values in the appropriate groups. 
Group predicates are appended to requests to begin 
aggregation. If sending all predicates requires more storage 
than will fit into a single message, multiple messages are 
sent. Each group predicate specifies a group id, a sensor 
attribute (e.g. light, temperature), and a range of sensor 
values that define membership in the group. Groups are 
assumed to be disjoint and defined over the same attribute, 
which is typically not the attribute being aggregated. 
Because the number of groups can be large enough such that 
information about all groups does not fit into the RAM of any 
one sensor, sensors pick the group they belong to as 
messages defining group predicates flow past and discard 
information about other groups. Messages containing sensed 
values are propagated just as in the pipelined approach 
described above. When a sensor is a leaf, it simply tags the 
sensor value with its group number. When a sensor receives 
a message from a child, it checks the group number. If the 
child is in the same group as the sensor, it combines the two 
values just as above. If it is in a different group, it stores the 
value of the child’s group along with its own value for 
forwarding in the next interval. If another child message 
arrives with a value in either group, the sensor updates the 
appropriate aggregate. During the next interval, the sensor 
will send out the value of all groups it collected information 
about during the previous interval, combining information 
about multiple groups into a single message as long as the 
message size permits. Figure shows an example of 
computing a query grouped by temperature that selects 
average light readings. In this snapshot, data is assumed to 
have filled the pipeline, such that results from the bottom of 
the tree have reached the root. Recall that SQL queries also 
contain a HAVING clause that constrains the set of groups in 
the final query result by applying a filtration predicate to 
each group’s aggregate value. We sometimes pass this 
predicate into the network along with partitions. The 
predicate is only sent into the network if it can potentially be 
used to reduce the number of messages that must be sent: 
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for, example, if the predicate is of the form MAX(attr)<x, then 
information about groups with MAX(attr)>= x need not be 
transmitted up the tree, and so the predicate is sent down 
into the network. However, other HAVING predicates, such 
as those filtering AVERAGE aggregates, or of the form 
MAX(attr)>x, cannot be applied in the network because they 
can only be evaluated when the final group-aggregate value 
is known. Because the number of groups can exceed 
available storage on any one sensor, a way to evict groups is 
needed. Once an eviction victim is selected, it is forwarded to 
the sensor’s parent, which may choose to hold on to the 
group or continue to forward it up the tree. Because groups 
can be evicted, the user workstation at the top of the 
network may be called upon to combine partial groups to 
form an accurate aggregate value. Evicting partially 
computed groups is known as partial pre-aggregation, as 
described in the database literature. There are a number of 
possible policies for choosing which group to evict. We 
believe that policies which incur a significant storage 
overhead (more than a few bits per group) are undesirable 
because they will reduce the number of groups that can be 
stored and increase the number of messages that must be 
sent. Evicting groups with low membership is likely a good 
policy, as those are the groups that are least likely to be 
combined with other sensor readings and so are the groups 
that benefit the least from in-network aggregation. Evicting 
groups forces information about the current time interval 
into higher level nodes in the tree. Since in the standard 
pipelined scheme presented above, aggregates are computed 
over values from the previous time interval, this presents an 
inconsistency. We believe, however, that this will not 
dramatically effect aggregates; verifying this remains an area 
of future work. Thus, we have shown how to partition sensor 
readings into a number of groups and properly compute 
aggregates over those groups, even when the amount of 
group information exceeds available storage in any one 
sensor. 
 

VII. CONCLUSION  
 
We have explained techniques for applying database style 
aggregates with groups to sensor readings flowing through 
ad hoc sensor networks. By applying generic aggregation 
operations in the tradition of database systems, our 
approach offer the ability to query arbitrary data in a sensor 
network without custom building applications by pipelining 
the flow of data through the sensor network, we are able to 
robustly compute aggregates while providing raid and 
continuous updates of their value to the user. 
 
Finally, by snooping on messages in the shared channel and 
applying techniques for hypothesis testing, we are able to 
substantially improve the performance of our basic 
approach. we have  
 
This work mars a first step towards a generic, in network 
approach for collecting and computing over sensor data. 

SQL, as it has developed over many years, has proven to 
work well in the context of database systems. When properly 
applied to sensor networks, will offer similar benefits as 
SQL: ease of use, expressiveness, and a standard on which 
research and industry can build. 
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