
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

© 2015, IRJET ISO 9001:2008 Certified Journal Page 222

Review on GPU in MATLAB as MATCUDA
Santosh Kumar Sahu1, Chetan Pise2, Rahul Sathawane3, Sandip Kamble4

1Asst. Prof., Dept. of IT, RGCER, Nagpur Maharashtra, INDIA
2Asst. Prof., Dept. of CT, YCCE, Nagpur, Maharashtra, INDIA
3Asst. Prof., Dept. of IT, RGCER, Nagpur Maharashtra, INDIA
4Asst. Prof., Dept. of CT, RGCER, Nagpur Maharashtra, INDIA

Abstract: Nowadays GPU is very frequent word in the
market for tremendous computing within a short span of
time. GPU means Graphics Processing Unit; it is a co-
processor of CPU. The establishment of co-processor (GPU)
is nearer to the Processor (CPU). This High Performance
supercomputing have found the technology cost effective in
domains as diverse as seismic imaging, electromagnetics,
molecular dynamics, financial valuation, medical imaging
and others, so it is called as General Purpose Graphical
Processing Unit (GPGPU).

MATLAB means MATrixLABoratory is a high-level
programming tool and user-friendly environment makes to
write technical code. MATLAB is extensively used in a
number of scientific fields, such as mathematics, digital
signal processing, digital image processing. MATLAB uses
an interpreter which slows down the processing, especially
while executing loops. This becomes a performance
bottleneck in programs that make excessive use of loops. In
the field of digital image processing, for example, the
operations performed on a matrix usually involve many
nested loop structures. To accelerate MATLAB's processing,
we can refer NVIDIA's CUDA(Compute Unified Device
Architecture) parallel processing architecture. We
mentioned that interfacing MATLAB with CUDA and
parallelizing the most time-consuming portions of
MATLAB's code, the processing can be speeded up
significantly.
Keywords: CUDA, GPU, MATLAB, MATCUDA, NVIDIA.

1. Introduction

Parallel programming is a generic concept describing a
range of technologies and approaches. However in general
it describes a system whereby threads of instruction are
executed truly in parallel over a shared or partitioned data
source. General Purpose computation on Graphics
Processing Units (GPGPU) is a new and active field. The
main goal in GPGPU is to find parallel algorithms capable of
processing concurrently huge amounts of data over a
number of Graphic Processing Units (GPU). GPGPU involves
using the advanced parallel Graphics Processing Unit
devices now readily available for general purpose parallel
programming. [1]
GPU computation has provided a huge edge over the CPU
with respect to computation speed. Hence it is one of the

most interesting areas of research in the field of modern
industrial research and development.
CPU it is a single-chip processor and the GPU has hundreds
of cores as compared to the 4 or 8 in the latest CPUs. The
primary job of the GPU is to compute 3D functions. Because
these types of calculations are very heavy on the CPU, the
GPU can help the computer run more efficiently. Though,
GPU came into existence for graphical purpose, it has now
evolved into computing, precision and performance. [2]

Figure 1: Comparison between CPU and GPU [2]

The evolution of GPU over the years has been towards a
better floating point performance. NVIDIA introduced its
massively parallel architecture called “CUDA” in 2006- 2007
and changed the whole outlook of GPGPU programming.
The CUDA architecture has a number of processor cores
that work together to munch the data set given in the
application. GPU computing or GPGPU is the use of a GPU
(graphics processing unit) to do general purpose scientific
and engineering computing. The model for GPU computing
is to use a CPU and GPU together in a heterogeneous co-
processing computing model. The sequential part of the
application runs on the CPU and the computationally-
intensive part is accelerated by the GPU. From the user’s
point of view, the application is faster because it is using the
better performance of the GPU to improve its own
performance.

Now a days CPU is capable of crunching more numbers than
before. Still processing huge data or crunching large
numbers puts a lot of burden on CPU. This can be done
powerfully using Graphics Processing Unit. If we do
complex calculations using GPU then we can free CPU time

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

224

cycles which can be used for other higher priority tasks. [1,
4]

On the other hand, MATLAB is a powerful tool for
prototyping and analysis. MATLAB could be easily extended
via MEX files to take advantage of the computational power
offered by the latest NVIDIA graphics processor unit (GPU).
[3]

2. MATLAB?

MATLAB (Matrix Laboratory) is a multi-
paradigm numerical computing environment andfourth-
generation programming language. A proprietary
programming languagedeveloped by MathWorks, MATLAB
allows matrix manipulations, plotting offunctions and data,
implementation of algorithms, creation of user interfaces,
and interfacing with programs written in other languages
including C, C++, Java, Fortran and Python.Although
MATLAB is intended primarily for numerical computing, an
optional toolbox uses the MuPAD symbolic engine, allowing
access to symbolic computing capabilities. [3]
MATLAB can be used toanalyze data, develop algorithms,
and create models in a variety of appli nation areas such as
image and video processing, signal processing and
communications, computational finance, machine learning,
and computational biology.
MATLAB supports CUDA kernel development by providing
a language and development environment for prototyping
algorithms and incrementally developing and testing CUDA
kernels. [11, 12, 13]

2.1 The Problem with MATLAB
MATLAB is a convenient but inefficient programming
language of choice for scientists. There are two major
problems with MATLAB as

Interpreted language

The fact that MATLAB is compiled language is not relevant
to people who are using it as a user point of view but as a
researcher its necessary to know that interpreted languages
are often slower than compiled languages. The interpreted
languages are optimized by JIT compiler which is
approximately 2x slower than C

Most of the existing code and libraries are single-
threaded
Since most of the MATLAB code is executed on a single
thread, it is unable to harness the processing power of
multiple cores which can allow us to process information
and produce results at a much faster rate.

3. CUDA

CUDA (Compute Unified Device Architecture) is NVIDIA’s
GPU architecture featured in the GPU cards, positioning

itself as a new means for general purpose computing with
GPUs. CUDA C/C++ is an extension of the C/C++
programming languages for general purpose computation.
CUDA gives advantage of massive computational power to
the programmer. This massive parallel computational
power is provided by Nvidia’s graphics cards.[5]

Figure 2: Flow of execution of GPU [5]

CUDA provides 128 co-operating cores. For running
multithreaded applications there is no need of streaming
computing in GPU, because cores can communicate also can
exchange information with each other. CUDA is only well
suited for highly parallel algorithms and is useful for highly
parallel algorithms. If you want to increase performance of
your algorithm while running on GPU then you need to have
many threads. Normally more number of threads gives
better performance. For the most of the serial algorithms,
CUDA is not that useful. If the problem cannot be broken
down into at least a thousand threads then using CUDA has
no overall advantage. In that case we can convert serial
algorithm into parallel one but, it is not always possible. As
mentioned above to get best optimization you need to
divide your problem into minimum thousand threads. Then
performance of algorithm increases rapidly.

One advantage is that there is no need to write the whole
programme using CUDA technology. If you are writing a
large application, complete with a user interface, and many
other functions, and then most of your code will be written
in C++ or whatever your language of choice is. When you
really want to do large mathematical computations then,
you can simply write kernel call to call CUDA functions you
have written. In this way instead of writing complete
programme you can use GPU for some portion of the code
where we need huge mathematical computations. [11, 12,
13]

© 2015, IRJET ISO 9001:2008 Certified Journal Page 223

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

225

3.1 Basic units of CUDA

CUDA Architecture splits the device into grids, blocks and
threads in a hierarchical structure as shown in Figure 3.
Since there are a number of threads in one block and a
number of blocks in one grid and a number of grids in one
GPU, the parallelism that is achieved using such a
hierarchical architecture is immense.

Figure 3: Units of CUDA [2]

4. GPU Acceleration using MATLAB

Using MATLAB for GPU computing lets you accelerate your
applications with GPUs more easily than by using C or
Fortran. With the familiar MATLAB language you can take
advantage of the CUDA GPU computing technology without
having to learn the intricacies of GPU architectures or low-
level GPU computing libraries.

You can use GPUs with MATLAB through Parallel
Computing Toolbox, which supports:

1. CUDA-enabled NVIDIA GPUs with compute capability

2.0 or higher. For releases 14a and earlier, compute
capability 1.3 is sufficient.

2. GPU use directly from MATLABGPU-enabled MATLAB
functions suchas fft, filter, and several linear algebra
operations

3. GPU-enabled functions in toolboxes: Image Processing
Toolbox, Communications System Toolbox, Neural
Network Toolbox, Phased Array Systems Toolbox, and
Signal Processing Toolbox

4. CUDA kernel integration in MATLAB applications, using
only a single line of MATLAB code

5. Multiple GPUs on the desktop and computer clusters
using MATLAB workers in Parallel Computing Toolbox
and MATLAB Distributed Computing Server

Figure 4: Implementing MEX files using CUDA

4.1 Implementation using CUDA

The Figure 4 depicts how MATLAB functions are
accelerated using GPU. We first create the MEX(MATLAB
EXE) files which are later converted into relative CUDA files.
These files are then executed on the CUDA capable GPU and
then the results are returned to the CPU. This process is
much more efficient and streamlined as compared to other
approaches. The same is shown in the figure 6 below.

It is atwo step process where in we proceed in the following
order:

Translation:
- convert MATLAB to C
 Parallelization:
- C for multi-core CPU
- CUDA for GPU

Figure 5: Implementation on CPU and GPU end

5. Applications

CUDA provided benefit for many applications implemented
with MATLAB. Here list of some:
1. Seismic Database - 66x to 100x speedup
2. Molecular Dynamics - 21x to 100x speedup
3. Medical Imaging- CUDA programming is effectivelyused

in the medical field for image processing. Using CUDA,
MRI machines can now compute images faster than
ever possible before.- 245x to 415x

4. Atmospheric Cloud Simulation - 50x speedup.

© 2015, IRJET ISO 9001:2008 Certified Journal Page 224

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 02 Issue: 08 | Nov-2015 www.irjet.net p-ISSN: 2395-0072

226

5. Fast video transcoding -raw computing power of GPUs
can be harnessed in order to transcode video much
faster than ever before.

Video Enhancement-Complicated video enhancement
techniques often require an enormous amount of
computations. Ex: ArcSoft was able to create a plug-in for its
movie player which uses CUDA in order to perform DVD up
scaling in real time!
And many more applications in different domains are
present. The figure below shows how efficient is CUDA in
varied applications:

Figure 6: Speedups using GPU as compared to CPU [6]

6. Conclusions:

After the comparison between CUDA and the other
paradigms of parallel computing and its application in
numerical computations for image processing using
MATLAB, it is clear that the future of parallel processing is
very much in the hands of the Nvidia’s.
The future work could be aimed to extend the set of
applications to cover even more areas of image and video
processing with MATLAB and CUDA.

References:

[1]. ChetanPise, ShailendraShende, “NVIDIA Graphics Card
for Parallelization of BFS Graph Algorithm using CUDA,”
Elsevier Proceedings of 3rd International Conference
on Recent Trends in Engineering & Technology
(ICRTET’2014).

[2]. RajdeepKaur, “Survey on Medical Image Registration
using Graphics Processing Unit,” International Journal
of Advanced Research in Computer Science and
Software Engineering ISSN: 2277 128X, Volume 5,
Issue 9, September 2015.

[3]. MassimilianoFatica, Won-Ki Jeong, “Accelerating
MATLAB with CUDA,” By NVIDIA.

[4]. ChetanPise, ShailendraShende, “Parallelization of Graph
Algorithms on GPU using CUDA,”IJCAT International
Journal of Computing and Technology, ISSN : 2348 –
6090, Vol. 1, Issue 3, April 2014.

[5]. PreetiKaur, “Implementation of image processing
algorithm onthe parallel platform using MATLAB,”
International Journal ofComputer Science &
Engineering Technology (IJCSET), ISSN:2229-3345, Vol.
4 No. 06 Jun 2013.

[6]. Sarah Tariq, “An Introduction to GPU Computing and
CUDAArchitecture,”NVIDIA Corporation 2011.

[7]. Dan Connors, “Exploring Computer Vision and Image
Processing Algorithms in Teaching Parallel
Programming,” Department of Electrical Engineering
University of Colorado Denver.

[8]. Rafael C. Gonzalez, Richard E. Woods, “Digital
ImageProcessing,” University of Tennessee, MedData
Interactive.

[9]. Nvidia: https://developer.nvidia.com/cuda-zone

[10]. AntoninoTumeoPolitecnico di Milano”, “Massively
ParallelComputing with CUDA”, © NVIDIA Corporation
2008.

[11]. Book: Jason Sanders, Edward Kandrot,
“Programming based on CUDA”.

[12]. Book: CUDA C Programming Guide.

[13]. Book: David B. Kirk, Wen-Mei W. Hwu,
“Programming Massively Parallel Processors”.

BIOGRAPHIES:

Santosh Kumar Sahu working as Asst.
Prof. in Dept. of IT, RGCER, Nagpur
Maharashtra, INDIA. Specialization
Design and analysis of algo., Data
Structure, Parallel computing.

Chetan Pise Working as a Asst. Prof in
Dept. of CT, YCCE, Nagpur, Maharashtra,
INDIA. Specialization Parallel
computing and GPU-CUDA.

Rahul Sathawane working as Asst. Prof.
in Dept. of IT, RGCER, Nagpur
Maharashtra, INDIA. Specialization
DataBase Mngt. System Computer
Graphics, AI.

Sandip Kambleworking as a Asst. Prof.
in Dept. of CT, RGCER, Nagpur
Maharashtra, INDIA. Specialization
Programming, Data Structure,
Algorithms.

© 2015, IRJET ISO 9001:2008 Certified Journal Page 225

