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Abstract - A right ternary near-ring (RTNR) is an 

algebraic system which is a group under binary 

addition and a ternary semigroup under ternary 

multiplication satisfying the right distributive law. A 

right ternary N-group (RTNG) over a right ternary 

near-ring N is a generalization of its binary 

counterpart. In this paper realizing an RTNR as an 

RTNG NN, the condition for NN to be monogenic is given. 

The graph associated with monogenic RTNG is 

constructed and it is shown that NN is monogenic iff the 

graph associated with it is a complete graph. The 

condition for NN to be strongly monogenic is also given 

and the graph associated with it is shown as a complete 

graph. The values for some of the graph invariants 

namely the diameter, girth, maximum and minimum 

degree of both the graphs when N = Zn   are computed. 

 

Key Words: Right ternary near-ring, zero-symmetric 

RTNR, right ternary N-group, graph, girth. 

 
1. INTRODUCTION 
 
Graphs are mathematical structures used to model 
pairwise relations between objects. The powerful 
combinatorial methods found in graph theory are used to 
prove fundamental results in other areas of pure 
mathematics.  
In 1988, Beck [1] introduced the concept of a zero divisor 
graph in the study of commutative rings and later on 
Livingston [5] described more basic structure of these 
graphs. Satyanarayana et al [8] studied about prime 
graphs in rings. In 2013, Das et al [3] has obtained certain 
values for the diameter, girth, maximum and minimum 
degree, domination number etc. of the graphs of 
monogenic semigroups . 
In 2011, Daddi and Pawar [2] introduced right ternary 
near-ring which is a generalization of a near-ring in 
ternary context. A right ternary N-group (RTNG) [10] over 

a right ternary near-ring N is a generalization of its binary 
counterpart. In this paper realizing an RTNR as an RTNG 

NN, the condition for NN to be monogenic is given. The 
graph MG(NN) of a monogenic RTNG is constructed. It is 
proved that NN is monogenic iff MG(NN) is a complete 
graph. The graph SMG (NN) of a strongly monogenic RTNG 
is defined and if NN is strongly monogenic then it is shown 
that the graph SMG (NN) is a complete graph. As the graph 

theoretical approach is easier, the condition for NN to be 

monogenic and strongly monogenic if N = Zn is easily 
obtained. The values for some of the graph invariants 
namely the diameter, girth, maximum and minimum 
degree of both the graphs are also computed.  
 

2. PRELIMINARIES 
 
In this section the basic definitions and results on  RTNR, 
RTNG and graph theory are given. 
 
Definition 2.1 [2] Let N be a non-empty set together with 
a binary operation + and a ternary operation [ ] : N×N×N → 
N .Then ( N,+,[ ]) is a right ternary near-ring         ( RTNR) if 
(N, +) is a group , [[xyz]uv] = [x[yzu]v] = [xy[zuv]] 
=[xyzuv] for every x,y,z,u,v∈N and [(x + y) z w ] = [ x z w ] 
+ [ y z w ] for every x,y,z,w∈N. 
 
Definition 2.2 [9] If N is an RTNR then N0= {n ∈N | [n 0 0] 
= 0} is the zero-symmetric part of N .If N = N0 then N is 
called a zero-symmetric RTNR. 
 
Definition 2.3 [10] Let (N, +, [ ]) be an RTNR and (, +) be 
a group with additive identity 0Γ.  Then  is said to be a 
right ternary N-group if there exists a mapping   
[ ] : N  N  satisfying the conditions 
(RTNG-1) [(n + m) x ] = [n x ] + [m x ] 
(RTNG-2) [[n m u] x ] = [n [m u x] ] = [n m [u x ] ]for 
all  and n, m, u  N. 
Every RTNR is an N-group and is denoted by NN. 
A subgroup of Nis said to be an N-subgroup of Nif      
[NN 
Let Γ be a right ternary N-group. Then for x ∈ N and γ∈ Γ, 

N is monogenic by γ w.r.to x if [Nxγ]Γ = Γ and N is 
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monogenic by γ if there exists γ∈ Γ and for every    x ∈ N,  
[N x γ] Γ = Γ. 
A right ternary N-group Γ is strongly monogenic if Γ is 
monogenic(by γ) and [Nxγ]Γ = Γ or {0Γ} for every x ∈N and 
γ∈ Γ. 
An RTNG is N-simple if its only N-subgroups are [N00Γ]Γ 
and Γ. 
 
Definition 2.4 [4] A graph is an ordered pairG = (V, E) 
comprising a set V of vertices or nodes together with a 
set E of edges or lines, which are 2-element subsets of  V. 
The distance from u to v in a graph G, denoted dist(u, v), is 
the shortest length of a u-v path in G.  
 The diameter of a graph G is defined by  

diam(G) = v).dist(u,max
V(G)vu, 

  

The degree of a vertex is the number of vertices adjacent 
to it. A vertex with degree 0 is called an isolated vertex. 
The maximum degree of a graph G, denoted by Δ(G), and 
the minimum degree of a graph, denoted by δ(G), are the 
maximum and minimum degree of its vertices 
A walk of length k is a sequence of vertices v0, v1, . . . , vk, 
such that for all i > 0, vi is adjacent to vi −1.  A closed walk in 
any graph that uses every edge exactly once is called 
an Euler cycle. An Eulerian graph is a graph containing 
an Eulerian cycle. 
A graph is Eulerian if and only if it is a connected graph in 
which every vertex has even degree. 
A connected graph is a graph such that for each pair of 
vertices v1 and v2 there exists a walk beginning at v1 and 
ending at v2. 
A totally disconnected graph is a graph which has only 
isolated vertices. 
 A cycle of length k > 2 is a walk such that each vertex is 
unique except that v0 = vk. 
The girth of a graph is the length of its shortest cycle. If 
there is no cycle in G, then its girth is ∞. 
 A graph is r-regular if every vertex has degree r. 
A complete graph is a graph such that every pair of vertices 
is connected by an edge. 
 
Definition 2.5 [6] A dominating set of a graph G is a 
set D of vertices of G such that every vertex of V(G) - D has 
a neighbour in D. The domination number γ(G) is the 
minimum cardinality of a dominating set in G. 
 

3. A GRAPH OF A MONOGENIC N-GROUP 
 
In this section a zero-symmetric RTNR is regarded as a 
right ternary N-group and the condition for NN to be 
monogenic is given. The graph associated to monogenic 
RTNG denoted by MG(NN) is defined and it is proved that   

NN is monogenic iff MG(NN ) is complete. The diameter, 
girth, maximum and minimum degrees for MG(NN) are 
calculated when N = Zn.  
 

Definition 3.1 Let N be an RTNR and realizing N as a right 
ternary N-group the following definitions are given. 
(i) Let x , y N then N is said to be monogenic by y w.r.to x 

if   [Nxy] = N = [Nyx] where x  y 

(ii) N is said to be monogenic (by y) if [Nxy] = N = [Nyx]  
x  y) N. 

(iii) N is said to be monogenic if [Nxy] = N = [Nyx] for all 
non-zero distinct elements x,y  N . 

 
Example 3.2 (i) Let N = {0, a, b, c, x, y}be as given in [7, 
Scheme34, p.411] with +  is as defined in Table -1 and 
[abc] = (a.b).c where. is as defined in Table-2. Then NN is 
monogenic. 

Table-1 

+ 0 a b c x y 

0 0 a b c x y 

a a 0 y x c b 

b b x 0 y a c 

c c y x 0 b a 

x x b c a y 0 

y y c a b 0 x 

 
Table-2 

. 0 a b c x y 

0 0 0 0 0 0 0 

a 0 a a a a a 

b 0 b b b b b 

c 0 c c c c c 

x 0 x x x x x 

y 0 y y y y y 

 
(ii) Let N = S3 = {0, a, b, c, x, y} be as given in [7, Scheme39, 
p.411]]with + is as defined in Table - 1 and [abc] = (a.b).c 
where. is defined as in Table -3. Then NN is monogenic. 

Table-3 

. 0 a b c x y 

0 0 0 0 0 0 0 

a a a a a a a 

b b b b b b b 

c c c c c c c 

x x x x x x x 

y y y y y y y 
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Definition 3.3 Let N be an RTNR .Then define MG (NN) = 
(V, E) where V = N* = N - {0} and E = { │[Nxy] = N = 

[Nyx], x }. 

Note that to exclude the possibility of having an isolated 
vertex associated with the zero element the vertex 0 is not 
included. 
 
Example 3.4 MG (NN) for N in both the examples are 
complete and is given in Fig.1. 

                 
Theorem 3.5 If N is an RTNR then NN is monogenic iff   
MG(NN ) is complete. 
Proof: Let NN be monogenic. Then for all non-zero distinct 
elements x,y in N . 
 [Nxy]=N=[Nyx].This implies that there is an edge between 
any two distinct elements of N*, showing that the graph 
MG (NN) is complete. 
Conversely, if MG(NN)  is complete  then any two distinct 
non-zero elements x,y N  are connected  and hence by 

Definition3.3, [ Nxy ] = N = [Nyx]   x, y N*. This implies 

that NN is monogenic. 
It can be noted that MG(NN ) is totally disconnected iff NN 
is monogenic is not monogenic by an element w.r.to any 
other element. 
 
Theorem 3.6 In an RTNR  N,  [Naa] = N and [Nbb] = N for 
a, b N* with  a  b iff [Nab] = N = [Nba]. 

Proof: Consider N = [Nbb] = [N[xaa]b] = [[Nxa]ab] ⊆ 
[Nab]⊆N, which implies that [Nab] = N. Also N = [Naa] = 
[N[ybb]a] = [[Nyb]ba] ⊆ [Nba]⊆N, which implies that 
[Nba] = N. 
Conversely let[Nab] = N = [Nba]. 
Then N = [Nba] =[N[tba]a] =[[Ntb]aa] ⊆ [Naa]⊆N. Hence 
[Naa] = N. Similarly it can be proved that [Nbb] = N. 
 
Theorem3.7 (i) If [Naa] = N  a N* then MG(NN ) is 

complete.  (ii) If N is integral and NN is N- simple then 
MG(NN ) is complete. 
Proof: (i) Since [Naa] = N  a N* by the above lemma 

[Nab] = N = [Nba] a  b. 

Hence NN is monogenic and hence by Theorem3.5 MG(NN) 
is complete. 

(ii) We note that [Nxy]  {0} only if x = 0 or y = 0 as N is 

integral. Also [Nxy] = N = [Nyx] as NN is N- simple and 
integral. Hence MG(NN ) is complete. 
 
Algorithm to draw the graph MG (NN) 3.8: 
Input N* 
Output  The graph MG(NN)  
Step1: Find A={x N* | [Nxx] = N} 

Step2: For x  in A draw an edge between x and y  

Step 3: Denote the resultant graph as MG (NN). 
 

In the following we consider N = (3  n  10) and 

construct the corresponding graph MG (NN). 
 

Construction of MG (NN) where N =  (3  n  10) 

3.9: 
1. Let N =  = {0, 1, 2}. Then  is the only edge of MG 

(NN) and the graph is as in Fig.2.       
2. Let N =  = {0, 1, 2, 3}. Then   is the only edge of     

MG (NN)   and the graph is as in Fig.3 

3. Let N =  = {0, 1, 2, 3, 4}. Then the edges of MG (NN) 

are  ,  and the graph is as in Fig.4. 

4. Let N =  = {0, 1, 2, 3, 4, 5}.Then   is the only edge of 

MG (NN) and the graph is as in Fig.5. 
5. Let N =  = {0, 1, 2, 3, 4, 5, 6}. Then the edges of MG 

(NN) are 

 and 

the graph is as in Fig.6.  
6.Let N =  = {0,1,2,3,4,5,6,7}. Then the edges of MG(NN) 

are   and the graph is as in Fig.7. 

7.Let N =  = {0,1,2,3,4,5,6,7,8}. Then the edges of 

MG(NN)

  

and the graph is as in Fig.8. 
8.Let N =  = {0,1,2,3,4,5,6,7,8,9}. Then the edges of 

MG(NN)     and the graph is as in 

Fig.9. 

                         

1 2 

Fig.2 

a 

b y 

  c x 

Fig.1 
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The following properties are observed from the above 
constructions. 
 
Propertie 3.10 

1. MG (NN) is not a connected graph where N =  ( 3  

n  10). 

 
2.There is an edge between i and j iff (i,n) = 1 and (j, n) =1 
where n = 3,4,…,10. 
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Fig.9 
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3. If n = 5 or 7 then MG(NN) is complete. 
 
4. The other observations made from the above examples 
are given in Table-4 

Table-4 
n |E| Diam 

(MG(NN)) 
 δ Girth 

(MG(NN)) 

3 1 1 1 1 ∞ 

4 1 1 1 0 ∞ 
5 6 1 3 3 3 

6 1 1 1 0 ∞ 

7 15 1 5 5 3 
8 6 1 3 0 3 

9 14 1 5 0 3 
10 6 1 3 0 3 

 
For the rest of the section N denotes the RTNR Zn = 
{0,1,2,…, n-1} under the operations addition modulo n and 
the ternary product [xyz] = (x.y).z and . is multiplication 
modulo n. 
 
Lemma 3.11 If i, j ∈N* with (i, n) = 1 and (j, n) =1 then 
[Nij] = N  
Proof: Let i, j ∈  with (i, n) = 1 and (j, n) =1.Then we 

have the following three cases: 
(i) i.i = 1 ,  j.j =1 (ii) i.j = 1= j.i  (iii) i.k = 1 ,  j.l = 1where       
k.l ∈ for some (i, n) = 1 and (j, n) =1. 

Case (i): If (i) holds then [Nii] ={[nii] |n∈ } = {(n.i).i | 

n∈ } = {n.(i.i )| n∈ } =  N and [Njj] = N and therefore  

by Theorem 3.6 [Nij] = N. 
Case (ii): If (ii) holds then it is obvious that [Nij] = N.  
Case(iii): Let i.k = 1 ,  j.l = 1where k.l ∈ with (k, n) = 1 

and (l, n) =1.Then N = [N11] = [N i.k  j.l ] = [[N k l] i j]  [N i 

j] N.Hence [Ni j] = N. 

 
Now we give an algorithm to draw the graph MG (NN). 
Algorithm 3.12 
Algorithm to draw the graph MG (NN)  

Input N* = ℤn* = { 1, 2,… n-1}, n 3 

Output The graph MG(NN)  
Step1: List the units in N and call it as Un 

Step2: Draw an edge between i and j where i, j  Un and     

i  j. 

Step 3: Denote the resultant graph as MG (NN). 
 

Proposition 3.13 If N = ℤn  where n 3, then the number 

of edges of MG(NN)  is . 

Proof: For i j,an edge between i and j of N in MG(NN) is 

drawn if i and j are units in N and since in N there are 

 pairs of  such i and j’s it follows that the 

number of edges in MG(NN) . 

 

Proposition 3.14 If N = ℤn where n 3 then the 

diameter of the graph MG(NN)  is 1. 

Proof: Let N =ℤn , n 3. 

Case (i): If n= p then as each vertex is adjacent to all the 
other vertices, diam(MG(NN)) = 1. 

Case (ii): If n  p, there will be edges joining the vertices 

which are relatively prime to n.Hence diam(MG(NN)) = 1. 
 

Proposition 3.15 If  N = ℤn where n 3 then 

            gr(MG(NN)=  

Proof: Let N =ℤn={ 0,1, ... , n – 1}, n 3. 

Case (i):  If n = 3 then there is only one edge between 1 and 
2 ; If n = 4 then there is only one edge between 1 and 3; If n 
= 6 then there is only one edge between 1 and 5 and there 
is no cycle . Hence gr(MG(NN) = ∞. 
 
Case (ii): Suppose   n = 5. Then by Lemma 3.11, [N12] = N, 
[N23] = N and [N13]= N. Hence the edges 1─2─3─1 form a 
triangle. Hence gr(MG(NN)) = 3. 
 

Case (iii): If n 7 then (n)  4 and hence there exists i, j 

∈ ℤn such that (i, n) = 1 and (j, n) =1. Hence by Theorem3.6 
[N i j] = N. This implies that the edges 1─ i ─ j ─ 1 form a 
triangle. Hence gr(MG(NN) = 3. 
 
Proposition 3.16 If  N =ℤn  then 
 (i)(MG(NN)) = (n) – 1    

(ii) δ(MG(NN) ) =  

Proof: (i) Since the vertices of MG(NN) that are connected 
by edges are the elements of Un and the number of  
elements in Un is the Euler function (n)  ,                  
(MG(NN) =   (n) – 1. 
(ii) If n = p then as the vertices of MG(NN) that are 
connected by edges are the elements of Un and the number 
of  elements in Un is (p)  , (MG(NN) =  p –2.  

If n p then the degree of a non-unit is zero and hence 

δ(MG(NN) = 0. 
 
Lemma 3.17 If N =ℤp where p is a prime number then N is 
monogenic iff   MG(NN) is complete. 
Proof: Let N = ℤp= { [0], [1],….,[p – 1]}. Then any two 
distinct elements i,j in N* are relatively prime to p and 
hence by Lemma 3.11 it follows  [Nij] = N. Thus there is an 
edge between any two distinct non-zero elements of N 
showing that, MG (NN) is complete or (p – 1) - regular. 
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Conversely,  if  MG(NN ) is complete  then any two distinct 
i,j in N*  are connected  and hence by Definition3.3, [Nij] = 

N = [Nji  i, j N*. This implies that NN is monogenic. 

 

 
4. A GRAPH OF A STRONGLY MONOGENIC N-
GROUP 
 
In this section the graph of strongly monogenic N-group 
SMG(NN)  is constructed by drawing an edge between the 
vertices x and y such that  [Nxy] =  [Nyx] = {0} or N where 
x  and it is shown that if  N is strongly monogenic then 

the graph SMG(NN)  is a complete graph but the converse 
is not true. The diameter, girth, maximum and minimum 
degrees of SMG(NN) have been calculated where N = Zn. 
 
Definition 4.1 Let N be an RTNR and realizing N as a right 
ternary N-group NN is strongly monogenic if N is 
monogenic (by an element) and [Nxy] = [Nyx]= {0} or N  

x , y N and x  y. 

 
Example 4.2 Let N be as in Example3.2(i) and (ii).Then in 
both the cases NN is strongly monogenic. 
 
Definition 4.3 Let Nbe zero-symmetric RTNR. Then define 
SMG(NN) = (V, E) where   V = N and  E = { │ [Nxy ] = 

[Nyx] = {0} or N, x  }.  

 
Example 4.4 SMG (NN) for N in both the examples in 
Example4.2 are complete and is given in Fig.10. 

                
 
Theorem 4.5 If N is an RTNR and if NN is strongly 
monogenic then the graph SMG(NN) is complete. 
Proof: Let NN be strongly monogenic. Then 0 is connected 
to all the other vertices and any two distinct elements 
x,y N are  connected. Thus there is an edge between any 

two elements of N showing that the graph SMG(NN) is 
complete.  
 
Remark 4.6 The converse is in general not true. For if  N = 
S3 = {0, a, b, c, x, y} be as given in [7, Scheme1, p.411] with 

+  is as defined in Table - 1 and [abc] = (a.b).c where . is as 
in Table-5, then SMG(NN) is complete but is not strongly 
monogenic. 
 

 
Table-5 

. 0 a b c x y 

0  0  0  0  0  0  0 

a  0  0  a  a  a  a 

b  0  0  c  b  c  b 

c  0  0  b c  b c 

x  0  0  y  x  y  x 

y  0  0  x  y x  y 

 
Theorem 4.7 If N is zero-symmetric RTNR and NN is N-
simple then SMG (NN) is complete. 
Proof: We note that [Nxy]= {0} if x = 0 or y = 0 as N is zero-
symmetric. Also [Nxy] = [Nyx] = N or {0} as NN is N- 
simple. Hence SMG(NN ) is complete. 
 

In the following we consider N= (2  n  10) and 

construct the corresponding  graph SMG (NN). 
 

Construction of SMG (NN) where N =  ( 2  n  10) 

4.8  
1. Let N =  = {0, 1}. Then there is only one edge in 

SMG (NN) and the graph is as in Fig.11. 
2. Let N =  = {0, 1, 2}. Then the edges of SMG (NN) are 

and the graph is as in Fig.12. 

3. Let N =  = {0, 1, 2, 3}. Then the edges of SMG (NN) are 

 and the graph is as in Fig.13. 

4. Let N =  = {0, 1, 2, 3, 4}. Then the edges of SMG(NN) 

are  ,  and the graph is as 

in Fig.14. 
5.Let N =  = {0,1,2,3,4,5}.Then the edges of SMG(NN) are 

 and the graph is as in Fig.15 

6. Let N =  = {0,1,2,3,4,5,6}. Then the edges of SMG(NN) 

are 

 

 
and the graph is as in Fig.16. 
7.Let N =  = {0,1,2,3,4,5,6,7}. Then the edges of SMG(NN) 

are , ,  

and the graph is as in Fig.17. 
8.Let N =  = {0,1,2,3,4,5,6,7,8}. Then the edges of 

SMG(NN) 

,

a 

x   b 

       c 

y 

Fig.10 

 0 
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, , and the graph is as in Fig.18. 

9.Let N =  = {0,1,2,3,4,5,6,7,8,9}. Then the edges of 

SMG(NN)  

, ,

 and the graph is as in Fig.19. 
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The following properties are observed from the above 
constructions. 
 
Properties 4.9 

1. SMG(NN) is a connected graph where N = (2  n  

10). 
2. There is an edge between i and j iff (i, n) = 1 and (j, n) =1 
where n = 2, 3,4,…,10 
3. There is an edge between the pairs of zero divisors of  
N* whose product is     
   divisible by n.  
4. There is an edge between 0 and n ∈N*.   
5. SMG (NN) is complete and Eulerian if n = 5 or 7. 
6. The other observations made from the above examples 
are given in Table-6. 

 
 
 

Table -6 
 

n |E| diam ( SMG(NN) ))  δ girth( SMG(NN)) 

2 1 1 1 1  

3 3 1 2 2 3 

4 4 2 3 1 3 

5 10 1 4 4 3 

6 8 2 5 2 3 

7 21 1 6 6 3 

8 15 2 7 2 3 

9 23 2 8 2 3 
10 19 2 9 2 3 

 
Now we give an algorithm to draw the graph SMG(NN). 
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Algorithm 4.10 
Algorithm to draw the graph SMG(NN) where N = ℤn ={ 0,1, 
,…., n – 1} 

Input N = ℤn = {0,1,2, …, n-1} , n 2 

Output The graph SMG(NN)  
Step 1: Find  Un = {x∈N*| the g.c.d (x, n) = 1} 
 
Step3: For x,y  Un with x y , draw an edge between x and 

y  . 
Step 4: For any n N* draw an edge between 0 and n . 

Step 5: Draw an edge between the pairs of zero divisors of 
ℤn whose product is   divisible by n. 
Step 6: Denote the resultant graph as SMG(NN) 
 
In what follows N denotes the RTNR  = {0,1,2,…, n-1} 

under the operations addition modulo n and the ternary 
product [xyz] = (x.y).z and . is multiplication modulo n. 
 

Proposition 4.11 If  N = ℤn , n 2 then the number of 

edges in SMG(NN) is 

                               + d . 

where d is the number of pairs of zero divisors whose 
product is divisible by n. 
 
Proof: The following are the possibilities to draw an edge 
between i and j of N in SMG(NN) : 
(i) i and j are units in N* 
(ii) i = 0 and j  0  

(iii) i and j are zero divisors such that i.j  0 (mod n). 

 
Case (i): If i and j are units in N and since in N there are 

 pairs of such i and j’s ,  it follows that there are  

 edges. 

 
Case (ii): If i = 0 and  j is any other number then  there are 
(n -1) such edges. 
 
Case(iii): Let i and j be zero divisors whose product is 
divisible by n and let the number of  such pairs be denoted 
by d.Then in this case there are d edges. 
Hence the number of edges in SMG(NN) 

is  + d . 

 
Remark 4.12.  Using the table given in [6], the number of 
edges of SMG(NN) for specific values of n are given below: 
 
1. If n = p2 (p is a prime number greater than or equal to 5) 
then the number of edges of SMG(NN) is  

2  + (p - 1)C2. 

 

2. If n =22p, p is an odd prime then the number of edges of 
SMG(NN) is  

 + 4p – 4.  

 
3. If n = pq where p and q are distinct prime numbers then 
the number of edges of SMG(NN) is 

 + (p – 1) (q – 1). 

 

Proposition 4.13 If N = ℤn , n 2 is strongly monogenic 

then SMG(NN) is connected. 
Proof: Let N be strongly monogenic. Let i,j∈N. Then there 
are 4 cases namely : 
 (i) i = 0, j 0,  (ii) (i, n) = 1 ; (j, n) = 1, 

 (iii) (i, n) = 1; (j, n)  1, (iv) (i, n)  1  ; (j, n)  1. 

 
In Case (i) and Case (ii) there is an edge between i and j.  
In Case (iii) and Case (iv) i and j will be connected through 
0.  
Hence there is either one edge or two edges to connect any 
two elements of N. Thus SMG(NN) is connected. 
 

Proposition 4.14 If  N = ℤn ={ 0,1, ,…., n – 1} where n 2 

then   diam(SMG(NN)  

 

Proof : Let N = ℤn ={ 0,1, ,…., n – 1} where n 2 

Case (i): If n = p then as each vertex is adjacent to all the 
other vertices , diam(SMG(NN)) = 1. 
 

Case (ii): If n  p. Then as discussed in the above 

proposition there is either one edge or two edges to 
connect any two elements of N . Hence diam (SMG (N)) = 2. 
 

Proposition 4.15 If  N = ℤn ={ 0,1, ,…., n – 1} where n 2  

then  
 

          gr(SMG(NN)  

 

Proof: Let N = ℤn  ={ 0,1, ,…., n – 1} , n 2. 

 
Case (i): If n = 2 then there is only one edge between 0 and 
1 and there is no cycle. Hence gr(MG(N) = ∞. 
 
Case (ii): If n 3 then φ( 2 and therefore there exists 

i, j ∈ ℤn with i  j such that (i, n) = 1 and (j, n) =1 .Hence by 

Lemma3.11 [Nij] = N. This implies that the edges            0 ─ 
i ─ j ─ 0 form a triangle. Hence gr(SMG(N) = 3. 
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Proposition 4.16 If N=ℤn , n 2  then γ(SMG(N))= 1. 

Proof: Obviously {0} is the dominating set with least 
number of elements and hence γ (SMG(NN)) = 1. 
 
Lemma 4.17 If N = ℤp , p is a prime number then NN is 
strongly monogenic iff the graph SMG(NN) is complete . 
 
Proof: Let N = ℤp. Then 0 is connected to all the other 
vertices. Also (i, p) =1 and (j, p) = 1 where i  j . Therefore 

by Lemma3.11 and Definition 4.1 it follows that i and j are 
connected. Thus there is an edge between any two 
elements of N showing that the graph of N is complete. 
Moreover if i is any arbitrary vertex then as i is connected 
to all the other (p -1) vertices , SMG(N) is (p – 1) - regular. 
 
Conversely, if SMG(NN)  is complete then any two distinct 
non-zero elements i and j in N  are connected  and hence 
by Definition 4.1,  [Nij]  = N or {0}  i, j N but since 

[Nij]  {0}, [Nij] = N .This implies that N is monogenic. 

Moreover 0 is connected to all the other vertices and 
hence [N0j] = {0}.Thus [Ni j] = {0} or N   i, j N showing 

that N is strongly monogenic.  
 
Proposition 4.18 If N = ℤp, p is   

then SMG(NN) is Eulerian.  
 
Proof: By the above lemma SMG(NN) is complete and each 
vertex is of degree (p – 1) , an even number and hence 
SMG(NN) is Eulerian. 

. 
Proposition 4.19 If  N = ℤn  n then 

 
 1. (SMG(NN) = n-1 . 
 

2. δ(SMG(NN) )=  

 
Proof: 1. Since 0 is connected to all the other vertices of N, 
( SMG(NN)) = n - 1.   
 
 2. Case(i): If n = p then by Lemma 4.17, SMG(NN) is 
complete and hence  δ( SMG(NN) ) = Δ(SMG(NN)) = p - 1 . 
  If n = p2 then δ(SMG(NN)) = p – 1, as the prime number p 
will be incident only with 0, 2(n/p) , 3(n/p) ,…, (p - 1) 
(n/p). 
Case(ii): If  then δ(SMG(NN)) = p, as the 

 prime number p will be incident only with 0,  n/p, 2(n/p) , 
 3(n/p) ,…,  (p - 1) (n/p). 
The properties of MG(NN)  and SMG(NN) are summarized 
in the following table : 
 
 
 
 
 
 
 

Table-7 
 

Graph 
invariants 

MG(NN) SMG(NN) 

Number of 
edges 

. 

 

 + the no. of pairs of zero divisors 

whose product is divisible by n . 

Diameter 1  
 

 (n) – 1 n - 1 

δ  
  

girth 
 

 
 

γ nil 
1 
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5. CONCLUSIONS 
 
The graph associated with an RTNG NN enabled us to find 
whether NN is monogenic or not. Even though the 
conventional method can be used to check the 
monogenicity the graph theoretical approach is easier to 
visualise and the computation is simple. Some of the 
algebraic properties of N = ℤn are obtained by studying the 
graphs MG(NN) and SMG(NN). Some more graph properties 
of MG (NN) and SMG (NN) may be explored to know further 
about the algebraic properties of NN. 
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