
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1202

An Effective Approach for Automatic Bug Triage Techniques

Sonali Thaokar1, Prof. Pragati Patil2

1 Sonali Thaokar, Dept. of Compuiter Science & Engineering, AGPCE, Maharashtra, India
2 Prof. Pragati Patil, Dept. of Compuiter Science & Engineering, AGPCE, Maharashtra, India

---***---
Abstract - The process of fixing a bug is called bug triage
that goal is assigned to a developer for new coming bug. In a
software firm, they spend their time and price to manage
the bugs. So to reduce time and price of manual work in
software firm they use automatic bug triage. By automatic
bug triage, find predicted developer to resolve the bugs. In
proposed approach, we used data reduction techniques and
machine learning algorithm. To enhance standard of data,
we used data reduction techniques, for that feature selection
and instance selection techniques are used. We used feature
selection and instance selection techniques at the same time
to improve the accuracy of automatic bug triage. Also, we
used machine learning technique for bug triaging system.
We have added a new module here which will describe the
status of the bug like whether it assigned to any developer
or not and it is rectified or not. In addition, the load between
developers based on their experience is re-balanced. The
experimental result shows high prediction accuracy by using
data reduction techniques and machine learning algorithm.

Key Words: Bug data reduction, Feature selection technique,

Instance selection technique, Machine learning algorithm

technique, Bug Triage.

1.INTRODUCTION

In a software firm, bug fixing is very time consuming
process. Many open source software projects have an open
bug repository that makes it possible for each developer
and users to publish defects or issues in the software,
suggest possible enhancements, and remark on existing
bug reports. In large open source software project have the
bug repository that store the details of the bug. For large
open source software project, the quantity of every day
bugs is so substantial which makes the triaging process
more challenging and difficult.There are two challenges
associated with bug data that will have an effect on use of
bug repositories in software development
tasks, specifically the large scale data and low quality data.
In a bug repository, a bug is kept up as a bug report, which
record in the form of text that reproducing the bug and
update as per the status of bug fixing. Manual bug triage is
very time consuming for software firm because they spend
their time and cost to manages the bug. The process of
assigning a proper developer for fixing bug is the bug
triage. By using automatic bug triage, software firm

manages the bug easily and it save the time and cost of
manual work. For automatic bug triage we used machine
learning proposed data reduction techniques i.e. feature
selection and instance selection techniques. By using these
techniques reduce the bug data to save the labor price of
developer and enhance the quality of bug data and increase
the accuracy of bug triage. Section [2] describes
background and Section [3] describes the system
architecture of the proposed system. Section [4] describes
the data set collection. The details of instance selection,
feature selection is given in Section [5] implementation, the
snapshot of proposed system given in Section [6] and
concluded in Section [7].

2. BACKGROUND

Xuan et al. [1] proposed to reduce the bug data used
instance selection and feature selection techniques. Their
approach effectively reduced the data scale by using data
reduction techniques improved accuracy of bug triage.
Anvik et al. [2] they used supervised learning machine
algorithm to assignment of bug report to the potential
developer. They reached precision levels of 57% and 64%
on Eclipse and Firefox respectively.
Alenezi et al. [3] in this approach used term selection
method to recognize the good quality of bug report and
improve accuracy and used naïve bayes classifier to
predict the developer for each new bug report. They result
shows that improved F-score.
Anjali et al. [4] proposed Domain Mapping Matrix to
predicting the best suited developer to resolve the newly
bug reports. They achieved an efficiency of 86% for top-10
and 97% for top-20 developer ranking list.
Cubranic et al. [9] this approach used text categorization
dominates the existing bug triage. The first work of bug
triage is a supervised text categorization approach using
Naive Bayes. Their approach achieved 30% accuracy.
Nhan Minh Phuc [15] proposed To automatically detect
duplicate bug reports, used Class-Feature-Centroid (CFC).
The recall rate is improved by 10% for 20 predictions for
SVN and AgroUML.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1203

3. PROPOSED SYSTEM

Fig-1: System Architecture

The process of settling the bug is the bug triage, which
aim to correctly assign a potential developer to a new bug.

Figure 1 shows the architecture of the system. In the
proposed system we collect the data set from eclipse. The
input contains the bug data. Each bug data has the bug
report and every bug report contain the summary and
description. Bug reports are unstructured data which may
contain irrelevant words. Therefore, we apply the
traditional text processing approach to transform the text
data into a meaningful representation.

In this proposed system there are two users one is
developer and other is tester. In this proposed system use
the data reduction techniques for decrease the scale of
data and improve the accuracy of data. Data reduction
techniques are applied to the data preparation of bug
triage. Data reduction has two techniques, namely feature
selection and instance selection. Both techniques are used
for the data processing. The instance selection is used for
the bug reports in bug data and the feature selection is
used for words in the bug data. In the proposed system
both techniques are grouping to use.

 Artificial neural network classifier is more accurate as
compared to naïve Bayes. As there is no limitation to bug
data, testers can add huge number of bugs in the system.
This is one of the greatest preferences of the proposed
framework. Since the entire bug's data is interested in
every one of the developers, it takes less time for the
developer to take the choice. Developer can rapidly decide
to fix the bug.

The purpose of the bug triage is assigning a potential
developer to a new bug. Furthermore, in bug repositories,
numerous developers have only fixed very few bugs. Such
inactive developers may not provide adequate information
for predicting correct developers. In our work we improve
the more accuracy of the bug triage by using artificial
neural network classifier.

4. DATASET COLLECTION

We gather bug reports from Eclipse repository. An eclipse
link name is http://bugs.eclipse.org/bugs/show_bug
.cg?Id=413120. The bug reports stored in xml file. From
every bug report extract attributes like bug id, product
name, bug name, description and status (Solved, Unsolved,
Reopen, New). The given an example 1 show bug details
which are extract from eclipse link and store in xml file.
The example is given in xml format.

Example 1 the format of bugs store in xml files

<bug>
 <id>413120</id>
 <pname>EclipseLink</pname>
 <bname>Nested Embeddable Null pointer</bname>
 <desc>With weaving enabled for change tracking, a
null pointer exception is raised when you create an
object which references and embeddable, which in turn
references another embeddable and the second
embeddable is null. For example, I have a Contact Class
which references an Address embeddable which in turn
references a ZipCode Embeddable. Creating a new Contact,
with a new Address which has a Null Zip Code causes a
null pointer exception after persisting The Contact
(entitymanager.persist(newContact)) and exiting the
ManagerBean.</desc>
 <dev_assign></dev_assign>
 <status>NEW</status>
 </bug>
In Table 1 show the summary of bugs. The dataset collect
from eclipse repository. From eclipse 100 bug details are
extracted and for that bug data set 18 developers are
taken.

Table -1: Summary of Bugs

The snapshot of data set collection is given in section

[6] figure 2.

5. IMPLEMENTATION

5.1 Feature Selection Technique

Feature selection aims to obtain a subset of relevant
features (i.e., words in bug data). It is a preprocessing
technique used for selecting a reduced set of features for
large scale data sets. The preprocessing technique that we
used symbol removal, stop word removal and stemming.

 Symbol Removal: remove unnecessary unwanted
symbols

Name Bugs Developers

Eclipse 100 18

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1204

 Stop Words Removal: removing non-informative
words which include articles, articles,
prepositions, conjunctions and certain high
frequency words (verbs, adverbs and adjectives).
That does not give the meaning of the documents.
These words are treated as stop words. Example
for stop words such as the, in, a, an, with, etc.

 Stemming: Stemming is technique to reduce the
words to their grammatical roots so that they can
be represented with an only term.For example,
the words connect, connected, connecting,
connections all can be stemmed to the word
“connect”. The purpose of this method is to
remove various suffixes, to reduce the number of
words, to have accurately matching stems. We use
porter stemmer for stemming the words.

Algorithm1 Pre-processing

Input: Bugs, stop word list, stemming list.
Output: Features.

1: S [] = split space by space

2: If S [] contains any symbol

3: S [] = remove all symbols

4: End if

5: For each stop words list SLi

6: For each of Si

7: If SLi contains Si

8: Remove Si from S []

9: End if

10: End for

11: End for

12: For each stem list SMi;

13: For each Si

14: If SMi contains Si

15: Replace Si with SM [0]

16: End if

17: End for

18: End for

Example 2 Feature Extraction

Product Name = WTP Webservices

Bug Name= Axis2: Better error message with Axis2
scenario without installing Axis2 runtime

Bug Description= Since the Web services tools users are
not familiar with this requirement to install Axis2 runtime

first before going through any Axis2 Web service scenario,
they should be shown a meaningful error message to point
them exactly to what to do.

Feature Selection = [wtp, webservic, axi, better, error,
messag, scenario, instal, runtim, sinc, web, servic, tool, user,
ar, not, familiar, thi, requir, befor, ani, thei, shown, meaning,
point, exactli]

 The snapshot of the feature selection given in section
[6] figure 3 and figure 4.

5.2 Instance Selection Technique

In instance selection, reduce the number of instances.
By utilizing this technique original data sets are reduced by
removing non-representative instances. E.g. out of multiple
skills of developers find out proper developer skill.

The snapshot of an instance selection given in section
[6] figure 5.

6. SNAPSHOT OF PROPOSED SYSTEM

Fig -2: Bug data collection

Fig -3: Registration of bug

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1205

Fig -4: Feature selection

Fig -5: Instance selection

7. CONCLUSION

Bug triaging is crucial part in the various software
development companies. But the manually bug triaging is
very expensive in labor cost and time cost for software
maintenance. So the automatic bug fixing is helpful for the
developer to fix the bug.

In this paper, we proposed data reduction techniques
for minimize the bug data set. We used combination of two
reduction techniques they are feature reduction and
instance selection technique. In proposed system, we used
large open source project i.e. eclipse for data collection.

The proposed system provides the high quality of data
and increase the accuracy of bug triage.

REFERENCE

[1] Jifeng Xuan, He Jiang, “Towards Effective Bug Triage

with Software Data Reduction Techniques,” IEEE
Trans. on Knowledge and Data Engineering, vol. 27,
no. 1, Jan. 2015.

[2] J. Anvik, L. Hiew, G. C. Murphy, “Who should fix this
bug?,” in Proc. 28th Int. Conf. Softw. Eng., May 2006,
pp. 361–370.

[3] Alenezi and Kenneth Magel, “Efficient Bug Triaging
Using Text Mining” (2013).

[4] Anjali, Sandeep Kumar Singh, “Bug Triaging: Profile
Oriented Developer Recommendation” IJIRAE , 2349-
2163, Vol. 2, Issue 1 (January 2015)

[5] S. Shivaji, E. J. Whitehead, Jr., R. Akella, and S. Kim,
“Reducing features to improve bug prediction,” Proc.
IEEE/ACM. Intl. Conf. Automated Software
Engineering (ASE 09), IEEE, Nov. 2009, pp.600-604.

[6] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic
bug triage using semi-supervised text classification,”
in Proc. Intl. Conf. Software Engineering & Knowledge
Engineering, 2010, pp. 209–214.

[7] J. Anvik and G. C. Murphy, “Reducing the effort of bug
report triage: Recommenders for development-
oriented decisions,” ACM Trans. Soft. Eng. Methodol.,
vol. 20, no. 3, article 10, Aug. 2011

[8] Pankaj Gakare, Yogita Dhole, Sara Anjum et al , “Bug
Triage with Bug Data Reduction ”, IRJET on Computer
Science and Engineering, vol. 2, no. 4, July 2015.

[9] D. Cubranic and G. C. Murphy, “Automatic bug triage
using text categorization,” in Proc Sixteenth
International Conference on Software Engineering,
Citeseer, 2004, pp. 92–97.

[10]Ashwini Jadhav, Komal Jadhav, Anuja Bhalerao, Amol
Kharade, “A Survey on Software Data Reduction
Techniques for Effective Bug Triage”, IJCSIT on
Computer Science and Information Technologies, vol.
6 (5), 2015, 4611-4612

[11]S. Kim, E. W. Jr., and Y. Zhang, “Classifying Software
Changes: Clean or Buggy?” IEEE Trans. Software Eng.,
vol. 34, no. 2, pp. 181– 196,2008.

[12]R. Kumar, S. Rai, and J. Trahan, “Neural-Network
Techniques for Software-Quality Evaluation,”
Reliability and maintainability Symposium,1998.

[13] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals,
“Predicting the severity of a reported bug,” in Proc.
7th IEEE Working Conf. Mining Softw. Repositories,
May 2010, pp. 1–10.

[14]J. Anvik, L. Hiew G. C. Murphy, “Coping with an Open
Bug Repository,” OOPSLA Workshop on Ecllipse
Technology Exchange, 2005.

[15]Nhan Minh Phuc, “Improving Detection Performance
of Duplicate Bug Reports Using Extended Centroid
Features,” IJARCCE, vol. 3, issue 10, October 2014,
4611-4612

[16]Porter M.F, An algorithm for suffix stripping, Program.
1980; 14, 130-137.

[17]Porter M.F, Snowball: A language for stemming
algorithms. 2001.

