
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1450

Network Based Peer-To-Peer Botnet Detection

Yonas Alehegn1, Dr. T. Pandikumar2, Abdulkadir Hassen3

1Information System Security Office, Bank of Abyssinia
2 Department of CIT, College of Engineering, Defense University, MoD, FDRE
3 Department of ICT, College of Engineering, Defense University, MoD, FDRE

---***---

Abstract - Attacks such as spam, DDoS and phishing are
common problems on the Internet nowadays. In the past,
attackers tended to use a traditional botnets that used a
central communication architecture where all bots connect
to command and control servers. In recent years, peer-to-
peer (p2p) structured botnets have emerged as a new
advanced form of botnets. Compared with traditional
botnets, p2p botnets are difficult to detect, because they
have no single point of failure. The objective of this research
is to study and implement network based peer-to-peer
botnet detection by means of network flow analysis. This
helps to detect individual peer-to-peer bots in a network. A
detection algorithm, which is based on behaviors that
isolate malicious from legitimate p2p traffic, is proposed to
detect p2p botnet in a live netflow data. These behaviors
were identified by analyzing the behaviors of two legitimate
p2p applications and Zbot p2p botnet. After the
implementation of detection algorithm, the evaluation of
result shows 0% false-alarm rate.

Key Words: Botnet, Netflow, Nfdump, Nfsen, P2P Botnet,
Zbot

1. INTRODUCTION

We live in a world where computer technology is ever
growing at an exponential rate every two years, according
to Moore's law. Besides from computer technology ever
growing, security is known to fall behind. The security
experts at Mandiant [10] call this the "Security Gap", where
criminals are always one step ahead of the security experts.
Computers can also be used in a more sinister manner;
criminals can use computers to extract money and
information out of businesses and computer users. They
can use software known as Botnets to accomplish these
goals. A botnet is a collection of bots typically controlled by
a bot master. A bot is a piece of software that conceals itself
on a computer system acting on instructions received or
programmed by the bot master(s). Botnets are becoming
more elaborate and efficient over time and thus the use of
Botnets is growing at an exponential rate, threatening the
average user and businesses alike [1].

Botnets may be used in a wide range of applications,
including malicious and benign ones. For instance, [13]

mentioned one of the original botnets, Eggdrop (1993),
was developed to facilitate the Internet Relay Chat (IRC)
management. However, typical applications of botnets
include Distributed Denial-of-Service (DDoS) attacks,
identity theft, proxy, spreading of malware or spamming.

The typical botnet consists of a bot server (C&C server
controlled by botmaster) and multiple botclients.
Botclients are also referred to as zombies or drones.
Botnets are problem which is spread across the Internet,
spans individual administrative domains and therefore, a
problem that requires a solution which scales for whole
Internet [11].

According to many research papers on botnets, botnets can
vary from networks of just few infected machines up to
tens of thousands. The shape of such networks varies in the
same way. As [7], traditionally botnet administrators
manage their bots through central Command and Control
(C&C) servers. A central architecture has a number of
disadvantages. The C&C servers can easily be identified and
there are organizations that actively keep track of C&C
servers on the Internet. C&C servers of large botnets are
often taken down by the police in order to dismantle the
botnet. In response to this, some botnets now use a peer-
to-peer architecture for their communications.

2. BACKGROUND
2.1 Peer-to-Peer Botnet

 Peer-to-Peer botnet is a new approach of botnet that
use the advantage of P2P technology to accomplish a
certain task. The idea of P2P botnet is that all the bots
connect & communicate with to each-other in order to
remove the need for a centralized server.

 In P2P, each node acts as client-server which provides
bandwidth, storage and computational power. Using this
approach, bots are able to communicate with each bots by
downloading files or commands from other bots’ machines
and performing different activities. In comparison to IRC
structures, everyone can join a peer-to-peer network, thus
the more peers acting as bots, and the more powerful the
botmaster can be. In addition, it will be hard to detect and
shut down the botnet as security people would need to
isolate each machine [20]. Fig -1 shows the P2P botnet
operation.

There are different types of p2p botnets nowadays which
uses for many illegal activities. Among them, the new

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1451

variant of Zbot is one of the dangerous p2p botnet. Zbot
p2p malware was selected for this study due to it’s in the
list of top dangerous malwares [2].

Fig -1: P2P botnet operation

2.1.1 Zbot

 Zbot is a malware which infects Windows users and
tries to retrieve confidential information from the infected
computers. Once it is installed, it also tries to download
configuration files and updates from the Internet [2]. It has
been designed primarily to steal confidential information
from the computers it compromises. It specifically targets
system information, online credentials, and banking
details, but can be customized through the toolkit to
gather any sort of information [18]. Zbot spreads mostly
via email but can also utilize autorun capabilities of
removable media, or install via a drive-by infection when
the user visits a compromised or malicious webpage [12].

 Zbot have introduced the concept of p2p C&C network
[12]. Unlike the earlier variant of Zbot which uses a central
C&C network, the recent variants of Zbot uses
decentralized network for their operation. Once a system
is infected with this p2p variant of Zbot, each infected
system is capable of communicating to any other infected
system and is capable of receiving and passing on
commands, updates and malware downloads to other
infected systems.

2.2 NetFlow

 NetFlow is a traffic profile monitoring technology
developed by Darren Kerr and Barry Bruins at Cisco
Systems, back in 1996. NetFlow data provides important
information about network conversations and behaviors.
Each unique flow is recorded by the network devices or
probes, and the flows are then reported to a data
collection server [16]. To monitor suspect Internet
botnet’s activities by analyzing the source data from the
router, NetFlow is helpful for network managers. The data
that generates from NetFlow represents the information
gathered from the network by sampling traffic flows and

obtaining information regarding source and destination IP
addresses and port numbers.

 Several different formats for flow records have evolved
as NetFlow has matured. Since the first development of
NetFlow at Cisco, multiple versions were introduced, but
not all of them released. Only two versions, NetFlow v5
and NetFlow v9, are more popular.

 Version 5 of NetFlow protocol was (and still is) very
common protocol for exporting NetFlow data. V9 is one of
the most recent versions of NetFlow record [11]. It is
template based, providing extensible design but not
widely used in the enterprise network as v5. V5 is the
most common and usable protocol in different enterprise
networks. Therefore, we will use the NetFlow v5 protocol
for this research.

3. RELATED WORK

Peer-to-Peer botnet have recently recognized as one of the
most threats to the Internet security. Many researches
have been conducted to analyze and detect peer-to-peer
botnets and the results of these researches contributed to
security enhancement and draw new idea on strengthening
the protection of botnets from propagating to network.
Some of these researches that are related to ours are [14],
[7], [5] and [8].

P. Narang, et al. [14] explains about PeerShark, a novel
methodology to detect P2P botnet traffic and differentiate
it from benign P2P traffic in a network. Instead of the
traditional 5-tuple flow-based detection approach, they use
a 2-tuple conversation based approach which is port-
oblivious, protocol oblivious and does not require deep
packet inspection (DPI).

In [7], the author discussed about the detection of
individual p2p bots within a network perimeter. The work
is done by looking at the communications with their p2p
overlay network. The author used NetFlow protocol to gain
insight in all traffic within the network. The study was
analyzed and test GameOver Zeus p2p malware. In this
work, the experiment has a limited access to the external
network. Therefore, there were no incoming requests from
outside the network. Our work provides a solution for
some limitations of this work and considers its future
direction.

On the explanation of C. Rossow, et al. [5], a formal graph
model to capture the intrinsic properties and fundamental
vulnerabilities of p2p botnets are presented. The authors
have applied their own model to current p2p botnets to
assess the botnets resilience against attacks.

D. Zhao, et al. [8] presents an approach to detect p2p
botnet activity by classifying network traffic behavior using
machine learning classification techniques. In this research,
the authors have been studied the feasibility of detecting
botnet activity without having seen a complete network
flow by classifying behavior based on time intervals and

Communications among the bots
Hackers control computers or steal confidential information
Attacks such as DDoS

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1452

they have examined the performance of two popular
classification techniques with respect to this data.

Since p2p botnets have a distributed architecture, which
make them more robust, the detection method should
focus on individual p2p bots. This can be done by
observing at the communications with their p2p overlay
network using the NetFlow protocol. Therefore, our study
focuses on this method.

4. METHODOLOGY AND SAMPLE DATA
SELECTION

In this section, we will discuss how our work is organized.
We provide a detailed description of the materials and
methods used to get our results. The next four sub-sections
discuss the experimental setup of our study and the tools
that we used and the sample data selections of this work.

4.1 Experimental Setup & Tools

 Today, any research experiments involving advanced
malware and p2p botnets should ensure that the malware
or bot does not unintentionally infect the computer
outside the experimentation setup. Failure to do so have
huge implications on the security and privacy of the
concerned persons and organization. Hence virtual
machines are preferred to real world machines so that we
would be conduct the experiment in a controlled and
secure manner. In this experimentation setup, we have
made use of VMware [19] to create virtual machines
representing real world hosts and GNS3 [9] to connect the
virtual machines (VM)together, to monitor and export
netflow data. The tools and experimental settings used in
this work are listed below.

 VMware Workstation Pro: Four virtual machines
were created. Ubuntu Server 14.04 LTS installed on the
first VM. Windows XP SP3 installed on the other three
virtual machines. Traffic flows were collected and
observed on this environment. The system setup of
these virtual machines provided in Table 1.

Table -1: System Setup of Virtual Machines

VM1 (NFC) VM2 (PC1) VM3 (PC2) VM4 (PC3)

Operating
System

Ubuntu Server
14.04 LTS (Linux)

Windows XP Windows XP Windows XP

Memory 2048 MB 256 MB 256 MB 256 MB

Hard disk 150 GB 40 GB 40 GB 40 GB

 GNS3: is a software emulator for networks that allows

the combination of virtual and real devices to simulate
complex networks. We used this to create a network
for the virtual machines in order to enable the
NetfFlow cache and export the NetFlow data to the
collector. We used Cisco’s 7200 router IOS to configure
NetFlow and NDE. The screenshot of network setup is
shown in Fig - 2.

Fig -2: Network Setup

 Nfdump: is a set of tools to collect and process
NetFlow data. It's fast and has a powerful filter pcap
like syntax. It supports NetFlow versions v1, v5, v7, v9
and IPFIX as well as a limited set of sflow. We used
this tool to collect and process the exported NetfFlow
data from a router IOS.

 NfSen: is the web based front end for the Nfdump
NetFlow tools. We used this tool to display the
NetFlow data in a graphical form within a specific
period or protocol.

4.2 NetFlow Data Exporter (NDE)

 In this section, we will describe the configuration of
Cisco 7200 router IOS on GNS3. A router R1 (rtr-nde) was
configured to send NetFlow data to our NetFlow collector.
For this experiment, the most important source of statistic
was a router which forwards all the traffic on the network.
The configuration of Cisco Netflow and NDE was done on a
router “rtr-nde” according to [17]. We configured the
router to capture the netflow data from the interface fa0/1
and then send these data to the netflow collector (NFC).

4.3 NetFlow Collector

 As the name suggests, a NetFlow collector is simply a
device that gathers network statistics/data using Cisco's
NetFlow network protocol [15]. Depending on how the
network is designed and also the size of the network,
NetFlow collectors can be one or more. A NetFlow
collector can be a device such as a switch, router, server,
or even a workstation. In order to test our detection
technique, we used one server for NetFlow collector as on
Fig -2 shown. NetFlow collectors store data according to
guidelines configured by an administrator, so that the data
can be accessed for analysis. Depending on the software
used, the collection process can be initiated by a couple of
commands.

 Our study utilizes Nfdump as the flow tool. We used the
current version that is nfump-1.6.13. Two of the reasons
why this tool was selected are:

 Nfdump is distributed under BSD license

 Nfdump tools support multiple versions of
NetFlow: v5, v7 and v9

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1453

 NfSen, a graphical web-based front end for the nfdump
netflow tools is also used. We are using NfSen for
displaying NetFlow data and processing data within the
specific time periods, and alerting based on various
conditions. NfSen has the possibility to extend its
functionality by using plugins which we leverage for p2p
botnet detection. It is released and distributed under BSD
license so we can use it as well as nfdump. For our study
purpose, we have modified the Perl and php scripts of the
existed NfSen file.

4.4 Sample Data Selection

For experiments to be conducted different legitimate
p2p applications and live p2p malware are needed. The
sample data sets need to be in the following types.

 Legitimate p2p file sharing program: These are
legitimate programs such as uTorrent, and eMule.

 Live p2p malware: This is a malware in the wild that
can generate malicious traffic.

4.4.1 Legitimate traffic

In order to conduct this research, legitimate traffic was
generated from Windows XP testing machines in the
experiment. The dataset comprises web traffic generated
by manual activities. These includes data stream from
YouTube, Internet radio, company websites and web-
applications. The dataset also includes p2p traffic
generated from two file sharing applications on different
p2p networks. The overview of the p2p applications are
depicted in Table -2.

Table -2: Legitimate p2p applications

Application Description

eMule A free peer-to-peer file sharing application for Microsoft

Windows.

uTorrent A program that uses the bittorrent protocol to share files.

4.4.2 Malicious traffic

 For our research, one binary of Zbot p2p malware was
obtained from public malware site [3]. Its md5 binary is
3d6046e1218fb525805e5d8fdc605361. This malware
was downloaded and extracted on windows XP virtual
machine in our research experiment. Traffic generated
from this machine were collected and stored in netflow
collector as nfdump binary format.

5. DATA ANALYSIS AND IMPLEMENTATION
5.1. Data Analysis

 This section shows the data analysis of the experiment.
Legitimate normal & p2p traffic, and p2p malicious traffic
was generated from the three testing PCs in a virtual
environment and observed their traffic behavior for more
than seven hours in different scenarios. Each scenario has

taken one hour. A one hour portion size was chosen,
because the Zbot malware generates relatively little traffic.
It must thus be monitored for a longer time before its
behaviors become visible. More than one hour would
unreasonably increase the amount of data that needs to be
processed when working with flow data in real time.

 At the beginning of the analysis, we used PC1 to
produce normal traffic, PC2 to be infected by Zbot p2p
malware, and PC3 to generate legitimate p2p traffic. This
helps us to identify the behavior of each traffic variants.
And gradually, we have infected all three testing machines
with Zbot and observe the network flow data.

 From this analysis, we have observed the network flow
data for more than seven hours. During this time, more
than 72,000 flows were generated. The following charts &
figure: Chart -1, Fig -3 and Chart -2 shows the whole graph
that was displayed on NfSen web during the analysis, the
top three IP addresses and the total amount of flows that
was generated from each scenario respectively.

Chart -1: The whole graph displayed on the web during
the analysis

Fig -3: Top 3 IP address ordered by flow

Chart -2: Total amount of flow generated from each
scenario

8,648

1,622

9,658
12,256

9,729
13,446

16,511

0

5000

10000

15000

20000

N
o

. o
f

Fl
o

w

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1454

5.1.1 Findings of the Analysis

Based on the data that we got during this analysis, we
can easily identify the difference between normal traffic
and p2p traffic. Normal or non-p2p traffic which was
generated primarily from PC1 has low traffic than p2p
traffic that was generated from PC3. This is because p2p
traffic generates a high traffic volume when downloading
or uploading files.

Zbot infected PC, which is PC2, generates traffic within
non-fixed time interval. As the behavior of Zbot, it
communicates with peers and updates itself from other
peers in every 15 up to 25 minutes. From our experiment,
a PC infected with this malware generated malicious
traffic three times in one hour duration. This indicates that
there were communication &/or updates among PC2 and
other peers outside the network.

As we have seen above, when we run PC2 together with
other PCs or run all testing machines at the same time, we
can’t identify the Zbot communication separately from the
total netflow data or graph on NfSen web. But when we
process the netflow which generates from PC2 separately,
we can look its data on the NfSen web in text format. So,
we can verify that it is running on the network.

One of the differences between Zbot and legitimate p2p
applications is traffic volume. Zbot generates very little
traffic when we compare with legitimate p2p application.
Legitimate p2p applications are generally used for file
sharing and thus exchange a huge amount of data,
especially with multimedia files. The average bytes per
packet (avg bpp) of the legitimate and malicious traffic
that we got from the above analysis were 811 and 834.
Chart -3 shows this data. But it is clear that relying on the
traffic volume alone for detection would result in false
positive.

Chart -3: Traffic volume

The other difference is connection failure. From the
analysis, we found that three and more number of failed
connections occurred on each malicious and legitimate
P2P traffic. This was happened cause of peers
unreachability due to many reasons such as peers may or
available online or placed on behind a firewall. In the
normal traffic which was generated from PC1, we didn’t
observe zero (no) responses or incoming packet for each
flows’ outgoing packets. For each outgoing packet, there

were almost equivalent incoming packets. This was one
difference that we found among non-p2p traffic and p2p
traffic in our experiment. Table -3 shows some number of
failed connections observed from the analysis.

Table -3: Number of failed connection

Source IP Destination IP Outgoing
Packets

Incoming
Packets

192.168.0.26 195.154.109.X 2 0

176.103.48.X 2 0

91.200.42.X 4 0
77.120.115.X 3 0

192.168.0.24 109.169.93.X 3 0

23.51.251.X 3 0
184.168.131.X 4 0

In addition, there is also difference in packet symmetry.
Packet symmetry is the relation between the outgoing and
incoming packets. Analyzing packet symmetry has shown
to be effective for detecting high volume DDoS attacks, as
these attacks generate a lot of incoming traffic without
outgoing traffic [6]. But it can also be useful for detecting
malicious traffic in general [4]. The packet ratio is
calculated by dividing the outgoing packets by incoming
packets. Protocols that rely on TCP for transmitting
packets have a packet ratio close to 1, as packets need to
be acknowledged. Packet ratios for UDP protocols can be
more varying, because UDP does not provide an
acknowledgement mechanism. However, most benign
protocols that use UDP implement their own mechanism
for acknowledgements to ensure reliability.

 Chart -4 shows the measured packet ratio for traffic
flow that generate from each PC in the analysis. Both
legitimate traffics have a ratio that is between 0.5 and 1.0.
A high ratio for p2p applications can be explained by the
high number of failed connections, as this result in
outgoing packets without incoming packets. The malicious
traffic has ratio of 0.26, which is close to 0.3. Zbot has a
relatively low amount of failed connections which results
in a lower packet ratio. Zbot also does not implement an
acknowledgement mechanism. So when it requests data
from other peers, it receives a high amount of packets with
only a single outgoing request packet. This greatly reduces
the packet ratio should be balanced out by requests from
other peers, because those will result in more outgoing
packets.

Chart -4: Packet Symmetry

800

810

820

830

840

PC2 (Zbot) PC3 (P2P)

av
g

b
yt

e
s

p
e

r
p

ac
ke

t

Average bytes per packet over an hour

0.0

2.0

PC1 (Normal) PC2 (Zbot) PC3 (P2P)

P
a
ck

e
t

ra
ti
o

PCs that generate legitimate & …

Packet ratio (out packets divided by in

packets over an hour)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1455

5.2. The Proposed Detection Method and
Algorithm

 Based on the information gained during studying p2p
botnet structures, behavior and gathering of existing
approaches, methods for p2p botnet detection were
proposed and implemented as described below. Our
detection method leverage NfSen plugins.

 Plugins allow to extend NfSen for additional
functionality. There are two types of plugins: backend
plugins and frontend plugins. First type, backend plugins
are loaded into background process and can provide
several functions. Actions which can be performed are
periodic data processing, alerting conditions and alerting
actions. Backend plugins must be written as Perl modules.

 Frontend plugins, which are second type of plugin
available, can display any results of the backend
processing. Frontend plugins are PHP scripts. There is a
communication channel provided by NfSen for
communication between channels. Concept of plugins and
their cooperation in NfSen is depicted in Fig -4 [15].

Fig -4: Plugin Concept

 For the purposes of our work, we have modified and
use the backend and frontend module of NfSen plugin [15]
to filter and display suspicious host in our experimental
network.

 For the detection algorithm, we have used two key
differences that we got from the findings of the data
analysis, which are the number of failed connection and
packet ratio. In the p2p traffic, there were more than 3
failed connections to different destination hosts. We used
this difference to filter p2p traffic from non-p2p traffic as
it is.

 The other one, which is the packet ratio, is close to 0.3
for Zbot infected PC and between 0.5 and 1.0 for the
legitimate PCs. In order to increase the detection
performance of Zbot infected PC(s) and minimize the
possibility of false-negative, we compare the packet ratio
of collected traffic to 0.4.

 From this ground, we have designed and implemented
the detection algorithm which is described below.

1. Get group of flow data

 Group of flows by source socket and
destination socket taken as input

2. Isolate peer-to-peer traffic

 Source with more than three failed
connections to different destination hosts
are considered as p2p traffic

3. Detect Zbot p2p botnet based on

 Packet ratio: If the sum of outgoing packets
divided by the sum of incoming packets is
less than 0.4, source is detected as bot
infected.

Fig -5: Detection Algorithm Flowchart

5.3 Implementation of the proposed algorithm
 The proposed detection method or algorithm was
implemented in the backend module of NfSen written in
Perl. The backend plugin provides a framework to extend
the NfSen usability by adding effective algorithms which
can be suitable to detect different malicious activities in a
network. Once the nfdump netflow collector deals with
live data and keeps a table of flows grouped by source
socket and destination socket in memory, NfSen backend
plugin uses these data for further processing. When a new
flow comes to the plugin, it will filter the p2p traffic from
non-p2p traffic. And then, p2p traffic will be processed to
identify the Zbot p2p botnet. Once the Zbot p2p malware
detected, it displayed the events caused by this malicious
traffic on NfSen web, plugin tab.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1456

5.3.1 Isolate P2P Traffic

 Get the set of unique destination IPs that have a failed
flow. A failed flow is a flow with 1 or more outgoing
packets and 0 incoming packets. If the set contains more
than 3 IPs, the source is considered p2p.

sub p2p_detect{

 my($flows) = @_;

 $noreply = set($flow->{dst_ip}) foreach

my $flow($flows)

 if($flow->{out_pkts} > 0 and $flow-

>{in_pkts}==0)} {

 if(length($noreply) > 3) {

 return True;

}

 }

}

5.3.2 P2P Packet Symmetry Detection

Calculate packet ratio by dividing the sum of all outgoing
packets by the sum of all incoming packets. If the ratio is
less than 0.4, the source is considered Zbot p2p botnet.

sub p2p_ratio_detect{

my($flows) = @_;

$out = sum ($flow->{out_pkts} foreach

$flow ($flows));

$in = sum ($flow->{in_pkts} foreach

$flow ($flows));

if $out / $in < 0.4 {

 return True;

}

}

6. EXPERIMENTAL RESULTS AND DISCUSSION
6.1 Experimental Results

 After the implementation of the proposed detection
method, we have done similar activities as we did on the
analysis and lastly, we infected all PCs with Zbot malware
and made a test of our detection method by running them
together at similar time for one hour. During this testing,
seven malicious events cause by Zbot from the three PCs
were detected and reported on the Events Plugin. These
results are shown below on Fig -6.

Fig -6: Results of detected Zbot p2p botnet from all PCs

6.2 Evaluation of the detection method

We have evaluated our detection approach how it
performs accurately its task. The accurate performance of
this detection method was measured in terms of its false
alarm rate, i.e., false-positive and false-negative rates. A
false-positive (FP) is defined as a legitimate host
mistakenly identified as Zbot infected host and a false-
negative (FN) means Zbot infected host fails to be detected
or identified as a legitimate host.

Table -4 depicts our evaluation results where the average
number of FP or FN hosts is calculated during the entire
period of evaluation. The average FP or FN rate is the
number of FP hosts divided by the total number of
legitimate hosts, which were 3, or the number of FN hosts
divided by the total number of Zbot infected host(s).

Our detection approach performs well in terms of false-
positives. It identifies all Zbot infected hosts, which means
100% and almost didn’t detect uninfected hosts wrongly.
The highest false-positive rate was 33%. There was only
PC3 which detected mistakenly as Zbot infected host when
all PCs run together. We verified that this PC didn’t have
malicious activity and failed to form suspicious filtering.
When the number of Zbot infected PCs increased, the
false-positive rate becomes 0%.

Table -4: False alarm detection rate

Traced
Testing

Machines
(VMs)

Average
FP

Average
FN

Duration Description

PC1

0

0

1 HR

Legitimate non-
p2p traffic was
generated

PC2

0

0

1 HR

Traffic from Zbot
infected PC was
generated

PC3

0

0

1 HR

Legitimate p2p
traffic was
generated

PC1 & PC3

0

0

1 HR

Legitimate non-
p2p & p2p traffic
were generated

PC2 & PC3

0

0

1 HR

Legitimate &
malicious p2p
traffic were
generated

PC1, PC2 &
PC3

0.33

0

1 HR

PC2 was the only
infected by Zbot

PC1, PC2 &
PC3

0

0

1 HR

All PCs were
infected by Zbot

7. CONCLUSION

P2P Botnets are considered as the biggest threat to the
internet security today. Day by day millions of computers
are compromised on the internet. In this research, we have
studied and implement network based solution for Zbot

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1457

p2p botnet. Our contribution might be nothing for the
internet security but has a good significance for the small
organizations and home network which has no firewall or
no more security to detect this p2p malware. Our
contributions in this work can be summarized as follows.

1. Proposed and implement a detection method for
Zbot malware.

2. Extend the netflow collector functionality by
incorporating our detection approach on the existed
plugin.

As the previous discussion on the analysis, Zbot behaves
differently from legitimate p2p applications. Number of
failed connection and packet symmetry were the two main
differences that we found from the analysis. So, based on
these findings, the algorithm has designed to detect Zbot
malware. First, number of failed connection used to filter
the p2p traffic from non-p2p traffic. This reduces the
scope of the traffic and the chance of false positive. Then,
the output of packet symmetry used to filter and detect the
Zbot malicious event. This algorithm has implemented on
the netflow collector plugin.

The detection method implemented as a result of this
research verified that it can able to detect malicious events
in a network. The result was displayed on NfSen web
plugin tab. To determine how it performs well, its
performance was evaluated by measuring in terms of
false-alarm rate. From the evaluation, its false positive rate
was 0% when three machines were running after infecting
them and the false negative rate was 0%.

To sum up, we put two future research directions which
needs a more extensive investigation from the point of this
work. This study was made on and evaluated by limited
number of testing machines. Evaluating the performance
of this detection approach with a high number of nodes in
a real network will be interesting. In addition, the scope of
this study is limited to detection. Therefore, study and
implementation of a prevention mechanism for Zbot and
other p2p botnet with a similar behavior needs further
investigation.

REFERENCES

[1] A. Shaikh, “Botnet Analysis and Detection System,”

Nov. 2010.

[2] A. Zaharia, “The Top 10 Most Dangerous Malware
That Can Empty Your Bank Account,” Blog, 2016.

[3] Avcaesar. Retrieved from
https://avcaesar.malware.lu/

[4] C. Kreibich, A. Warfield , J. Crowcroft, S. Hand, I. Pratt,
“Using packet symmetry to curtail malicious traffic,”
(n.d.).

[5] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D.
Plohmann, C. J. Dietrich, & H. Bos. “Sok: P2PWNED-
modeling and evaluating the resilience of peer-to-peer
botnets,” 2013.

[6] C. Dillon. & M. Berkelaar. “OpenFlow (D)DoS
Mitigation,” Feb. 2014.

[7] C. Dillon. “Peer-to-Peer Botnet Detection Using
NetFlow,” Jul. 2014.

[8] D. Zhao, I. Traore, A. Ghorbani, B. Sayed, S. Saad, W. Lu,
“Peer to Peer Botnet Detection Based on Flow
Intervals,” (n.d.).

[9] Graphical Network Simulator-3. (Documentation).
Retrieved from
https://www.gns3.com/support/docs/

[10] Mandiant. M-trends. “Attack the security gap, Threat
Report, 2013.

[11] M. Benes. “Botnet detection based on network traffic
classification,” 2015.

[12] McAfee. “McAfee Labs Threat Advisory PWS Zbot,”
2014.

[13] P. Marques. “Botnet Detection Using Passive DNS,”
2013/2014.

[14] P. Narang, S. Ray, C. Hota, & V. Venkatakrishnan,
“PeerShark: Detecting Peer-to-Peer Botnets by
Tracking Conversation,” IEEE Security and Privacy
Workshops. 2014.

[15] REN-ISAC Projects, 2013. Retrieved from
https://code.google.com/p/renisac/wiki/

[16] S. Choudhary & B. Srinivasan, “Usage of Netflow in
Security and Monitoring of Computer Networks,”
International Journal of Computer Applications,
Vol.68, No.24. 2013.

[17] Solarwinds. “How-To Configure NetFlow v5 & v9 on
Cisco Routers,” TechTips, (n.d.).

[18] Symantec. Trojan.Zbot. Retrieved from
https://www.symantec.com/security_response
/writeup.jsp?docid=2010-011016-3514-99

[19] VMware. VMware Workstation 12 Pro Documentation.
(n.d.).

[20] Y. Al-Hammadi & U. Aickelin, “Behavioral Correlation
for Detecting P2P Bots,” (n.d.).

