
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1488

Removing Web Application Vulnerabilities with Static Analysis.

Ritesh Phegade , Rishabh Jain , Abhishek Randhir , Pritesh Kadav

Ritesh Phegade , SKNSITS LONAVALA Tal:-Maval Dist:-Pune Pin:-410401
Rishabh Jain, SKNSITS LONAVALA Tal:-Maval Dist:-Pune Pin:-410401

Guided By: Prof.Jacob John , Dept. of Computer Engineering, SKNSITS college Lonavala, Maharashtra,India

---***---
Abstract - Web application security is an major issue in
today’s internet. A major reason of this status is that many
developers do not have satisfactory knowledge about secure
coding, so they leave applications with vulnerabilities. An
approach to solve this issue is to use source code static
examination to discover these bugs, but these tools are known
to report numerous false positives that make hard the task of
correcting the application. This paper analyses the use of a
mixture of techniques to detect vulnerabilities with less false
positives. After an initial step that uses taint analysis to flag
candidate vulnerabilities, our approach uses data mining to
predict the existence of false positives. This approach achieves
an exchange off between two obviously inverse methodologies,
people coding the knowledge about vulnerabilities (for taint
analysis) versus naturally obtaining that information (with
machine learning, for data mining). Given this more exact type
of recognition, we do programmed code correction by
inserting fixes in the source code. The approach was executed
in the WAP tool and an experimental evaluation was
performed with a large set of open source PHP applications.

Key Words: Data mining, PHP source code, Software,
security, Input validation vulnerabilities ,Web
applications .

1. INTRODUCTION

Removing web application vulnerabilities and static analysis
is an approach for naturally protecting web applications
while keeping the software engineer the up and up. The
approach comprises in investigating the web application
source code looking for vulnerabilities and remedies the
source code. The developer can understand where the
vulnerabilities were found and how they were redressed.
This approach helps for the security of web applications by
evacuating vulnerabilities, and giving the software engineers
a chance to gain from their errors. This last perspective is
enabled by embeddings fixes that follow common security
coding practices, so developers can take in these practices by
observing the vulnerabilities and how they were evacuated.
Static investigation is an effective way to discover
vulnerabilities in source code, yet it causes numerous false
positives (non-vulnerabilities) because of its undesirability.
This issue is especially difficult with languages for example,

PHP that are weakly typed and not formally determined. In
this manner, we supplement a type of static examination –
pollute investigation – with the utilization of data mining to
foresee the presence of false positives. This approach
consolidates two evidently inverse methodologies: people
coding the information about vulnerabilities (for pollute
investigation) versus naturally getting that information
(with directed machine learning supporting data mining).
Interestingly this division has been available for long in
another zone of security, intrusion detection. As its name
suggests, signature or knowledge-based intrusion detection
relies on knowledge about intrusions coded by humans
(signatures), though anomaly-based detection relies on
models of normal behavior created using machine learning.
Nevertheless, irregularity based detection has been highly
criticized and has very limited commercial used today. We
demonstrate that the mix of the two broad approaches of
human-coded information and learning can be effective for
vulnerability detection.

2. Proposed System
Proposed system shows an approach for finding and
correcting vulnerabilities in web applications, and a tool that
executes the approach for PHP projects and input validation
vulnerabilities. The approach and the tool search for
vulnerabilities using a combination of two techniques: static
source code examination, and data mining. Data mining is
utilized to distinguish false positives utilizing the main 3
machine learning classifiers, and to justify their nearness
utilizing an acceptance govern classifier. All classifiers were
chosen after a careful examination of a few options. mix of
detection procedures can't provide entirely correct results.
The static investigation issue is not decidable, and depending
on data mining can't go around this undesirability, yet just
give probabilistic results. The tool corrects the code by
inserting fixes, i.e. purification and validation functions.
Testing is utilized to check if the fixes really evacuate the
vulnerabilities and don't compromise the (correct) behavior
of the applications. The tool was experimented with using
synthetic code with vulnerabilities inserted on purpose, and
with an impressive number of open source PHP applications.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1489

3. System Architecture

Fig -1: Architecture including main modules, and data
structures[1]

4. Algorithm
Graphical and Symbolic Algorithms: This class includes

algorithms that represent using a graphical model. Random

Tree, and Random Forest classifiers, the graphical model is a

decision tree. They use the information gain rate metric to

decide how relevant an attribute is to classify an instance in

a class (a leaf of the tree). An attribute with a small

information gain has big entropy (degree of impurity of

attribute or information quantity that the attribute offers to

the obtaining the class), so it is less relevant for a class than

another with a higher information gain. [1]

 Probabilistic Algorithms: This category includes Naïve
Bayes (NB), K-Nearest Neighbor (KNN), and Logistic
Regression (LR). They classify an instance in the class that

has the highest probability. NB is a simple probabilistic
classifier based on Bayes theorem, based on the assumption
of conditional independence of the probability

distributions of the attributes. K-NN classifies an instance in

the class of its neighbors. LR uses regression analysis to

classify an instance.[1]

Neural Network Algorithms: This category has two
algorithms: Multi-Layer Perceptron (MLP), and Support
Vector Machine (SVM). These algorithms are inspired on the
functioning of the neurons of the human brain. MLP is an
artificial neural network classifier that maps sets of input
data (values of attributes) onto a set of appropriate outputs
(our class attributes, Yes or No). SVM is an evolution of MLP.

5. Discussion
The WAP tool, similar to whatever other static examination

approach, can just recognize vulnerabilities it is modified to.

WAP can, however, be extended to handle more classes of

input validation vulnerabilities. We talk about it considering

WAP's three fundamental segments: corrupt analyzer, data

mining component, and code corrector. The corrupt analyzer

has three bits of data about each class of vulnerabilities:

entry points, sensitive sinks, and sanitization functions. The

entry points are always a variant of the same set (functions

that read input parameters, e.g., $_GET), while the rest have a

tendency to be easy to recognize once the helplessness class

is known. The data mining segment must be prepared with

new learning about false positives for the new class. his

preparation might be skipped at to start with, and enhanced

incrementally when more information get to be accessible.

For the preparation, we found data about candidate

vulnerabilities of that kind found by the corrupt analyzer,

which must be marked as genuine or false positives. At that

point, the credits related to the false positives must be

utilized to arrange the classifier. The code corrector needs

data about what sanitization function has to be used to

handle that class of vulnerability, and where it should be

embedded. Once more, getting this data is feasible once the

new class is known and caught on. A limitation of WAP

derives from the lack of formal specification of PHP. During

the experimentation of the tool with many open source

applications (Section VII-A), few times WAP was not able

parse the source code for absence of a punctuation govern to

manage weird developments. With time, these principles

where included, and these issues quit showing up.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1490

Fig -2: Use Case Diagram

6. CONCLUSION

This report introduces an approach for finding and

correcting vulnerabilities in web applications and an

instrument that executes the approach for PHP projects and

info approval vulnerabilities. The approach and the tool

search vulnerabilities utilizing a mix of two systems: static

source code investigation, and data mining. Data mining is

utilized to recognize false positives utilizing the main 3

machine learning classifiers, and to justify their nearness

utilizing an acceptance control classifier. All classifiers were

chosen after a careful examination of a few choices. Note that

this mix of location procedures can't provide entirely correct

out comes. The static investigation issue is undecidable , and

turning to information mining can't circumvent this

undecidability, yet just give probabilistic results. The tool

corrects the code by inserting fixes, i.e., purification and

approval capacities. Testing is utilized to check if the fixes

really remove the vulnerabilities and do not compromise the

(correct) behavior of the applications. The tool was tried

different things with utilizing engineered code with

vulnerabilities embedded deliberately, and with an extensive

number of open source PHP applications. It was likewise

contrasted and two source code investigation instruments:

Pixy, and PHP Miner-II. This evaluation recommends that the

device can identify and revise the vulnerabilities of the

classes it is modified to handle. It could discover 388

vulnerabilities in 1.4 million lines of code. Its exactness and

accuracy were around 5%better than PHP Miner-II's, and

45% better than Pixy's.

References

[1] Ibéria Medeiros, Nuno Neves,”Detecting and

Removing Web Application Vulnerabilities with

Static Analysis and Data Mining”,vol.65,March

2016.

[2] L. K. Shar, H. B. K. Tan, and L. C. Briand, “Mining SQL

injection and cross site scripting vulnerabilities

using hybrid program analysis,” in 2013

[3] Sonam Panda, Ramani S, “Protection of Web

Application against SQL Injection Attacks” In 2013

[4] Symantec, Internet threat report. 2012 trends, vol.

18, Apr. 2013.

[5] AshwaniGarg, Shekhar Singh, “A Review on Web

Application Security Vulnerabilities” in 2013.

[6] L. K. Shar and H. B. K. Tan, “Automated removal of

cross site scripting vulnerabilities in web

applications,” in 2012.

[7] L. K. Shar “Predicting common web application

vulnerabilities from input validation and

sanitization code patterns,” in 2012

[8] R. Banabic and G. Candea, “Fast black-box testing of

system recovery code,” in 2012.

[9] Y.W. Huang et al., “Web application security

assessment by fault injection and behavior

monitoring,” in 2003

[10] N. L. de Poel, “Automated security review of PHP

web applications with static code analysis,” in May

2010.

[11] Y.W. Huang et al., “Securing web application code by

static analysis and runtime protection,” in 2004.

