
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1545

Framework of rCUDA: An Overview

Mohamed Hussain1, M.B.Potdar2, Third Viraj Choksi 3

11 Research scholar, VLSI & Embedded Systems, Gujarat Technological University, Ahmedabad, India
2
 Project Director, Bhaskaracharya Institute for Space Applications and Geo-Informatics(BISAG), Gandhinagar,

India
3
 Project Scientist, Bhaskaracharya Institute for Space Applications and Geo-Informatics(BISAG), Gandhinagar,

India

---***---
Abstract - CUDA is a programming module developed and
produced by NVIDIA in 2006.This programming model allows
the programmer to use the power of GPU in general purpose
computation. However using the GPU in the system has some
drawbacks, where it will increase the acquisition cost and
power consumption, in addition, it requires more space to
install the new hardware. To overcome those drawbacks of
using GPU some visualization techniques are used. Those
visualization techniques allow sharing the GPU resource
between the machines in the cluster.by implementing one of
those techniques the client machine (don’t have GPU
processor) will able to access the remote GPU resources on the
server machine. Some of those techniques enable the client
application to distribute its loads between all the GPUs in the
cluster which increase the throughput of the system. Using
those visualization techniques will reduce the number of the
GPUs in the cluster. This will reduce the energy consumption,
maintenance and upgrade the system it will be easier, only add
anew GPU machine to the cluster.
In this paper, we will explain rCUDA framework which is one
of the visualization techniques used for remote GPU accessing,
also the architecture and the overhead presented when
applying rCUDA in the system.in the demo, live application is
used to present the overhead of the system and compere
between CUDA and rCUDA. The reason of using rCUDA because
of its fidelity comparing to other visualization techniques and
its ability to share the GPU between the clients by using
different context like multiplexing.

Key Words: GPU, CUDA, GPU virtualization, rCUDA.

1.INTRODUCTION

GPU-accelerator computing consists of GPU processor to
reduce the execution time of applications as it has an ability
to execute massive part of the code in parallel. This type of
processing is required in applications which have a high
execution time and large number of literation such as some
equations which used in finance, chemical, physics,
computational fluid dynamic, computational algebra and
image analysis.

However, using GPU in the system presents several
drawbacks such as, increase power consumptions, large

space to add the new hardware and high acquisition cost. In
addition to that GPU, utilization is relatively low in the
system. The desktop computers for gaming consume
around 500W which is a non-negligible amount of energy. In
computers with GPU, the power consumption will increase
around 30% [2]. To overcome the drawbacks of using the
GPU processor in any system, remote GPU virtualization
mechanisms can be used. The virtualization allows the
applications which are executed on a computer that doesn’t
have GPU processor to use the remote GPU installed in
another machine. In another word this mechanism allows
sharing the GPU processor installed in one machine between
all machines connected to cluster. This will increase the
overall GPU utilization by allowing all computers connected
to nodes to share the GPU resources, thus reducing the
drawbacks in the system.

There are several visualization frameworks which allow
the applications installed in client PC to access the remote
GPU such as GridCuda, DS-CUDA, gVirtuS, vCUDA , GViM and
rCUDA .

In this paper, we are going to use the rCUDA framework
due to the fact that rCUDA intercepts all the CUDA calls, in
addition to its ability to track the state of the memory area
used by the application in GPU processor , also it has a good
fidelity in sharing GPU comparing to other frameworks. [4]

2. BACKGROUND ON CUDA PROGRAMMING

CUDA stands for computing unified device architecture, it is an

extension of the C programming language developed and

introduced by NVidia in 2006.Using CUDA programming

module allows the programmer to take advantage of the massive

parallel computing power of NVidia graphic cards, in order to

use it for general purpose computation.[6] in this programming

module the programmer will divide the code into two parts ,the

first part of the code will be executed normally on the CPU

while the second part is executed on the GPU. The programmer

decides which part of the program will execute in GPU and

which one will execute in CPU.

The designs of CPU and GPU are significantly different which

make the way of executing the instructions totally different. The

CPU consist of four or eight cores, but the GPU has hundreds or

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1546

thousands of cores. That makes the GPU able to execute

hundreds or thousands of threads or processes in parallel.

Fig -1: CUDA compilation flow [6]

CUDA programming langue provides C/C++ library in addition

to a compiler (NVCC) to compile the code. The source code will

be a combination of CPU and GPU codes. At the compilation

time the NVCC compiler will automatically separate the code in

the source file and send CPU part to common C/C++ compiler

and GPU part to CUDACC [5]. The compilation flow of the

code is as illustrated in the figure below Figure (1).

 3. RCUDA FRAMEWORK

“rCUDA (remote CUDA) is a middleware which enables

sharing remote CUDA-Compatible devices concurrently and

transparently”[1]. rCUDA framework is a client-server

distributed architecture consisting of two software modules one

is the client middleware and the second is the server

middleware. The client middleware has wrappers to CUDA

runtime which is responsible for passing the API calls from

client application to remote server middleware. The server

middleware runs on the machine which hosts the GPUs (the

server can host one or more GPUs).the server will execute the

API calls received from client and send back the result. The

sever always work with more than one client, for that different

GPU contexts like Multiplexing are implemented.

Client-server communication in network will be through TCP/IP

protocol stack or InfiniBand Verbs API. TCP/IP protocol is

always with Ethernet connection and infiniBand networking for

high-speed links. In virtual machines where client and server are

both in the same machine the client can’t directly access the

GPU, It should invoke wrappers to be able to access the GPU in

the server side, which requires a virtual network on the host

machine.

rCUDA provides full compatibility supported by CUDA. It can

also implement all functions in the CUDA run time and Driver

API, although it has some limitations when it’s used for graphics

interoperability.

By implementing rCUDA in the system the execution time will

increase by less than 4% [1] which relatively small considering

the cost and power consumption when a separate GPU processor

is installed in each machine. Another to reduce the impact of

remote CUDA is by increasing the throughput of the system

where rCUDA framework enables the applications to distribute

their loads between all the machines that have GPUs in the

cluster, this method makes the overhead value negligible.

To distribute the load between the nodes the rCUDA has been

integrated with SLURM scheduler, this integration provides an

overall reduction in the execution time of job batches between

25% and 45%, depending on exact composition of the job batch.

[7].

4. RCUDA ARCHITECTURE

rCUDA Architecture consists of two parts server side and client

side, these parts communicate through the network, to enable

client machine in rCUDA to connect to server:

Fig -2: rCUDA Architecture [3]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1547

 The client middleware: consists of a collection of

wrappers these wrappers will be responsible for

forwarding the API calls from the application in the

client computer to server middleware and returning

back the result at run time.

 The server middleware: will be installed on the server

that hosts the GPU. The server will receive the requests

from client, interpret and execute them. To enable the

server to handle different requests from different users

the server middleware will apply the GPU multiplexing

techniques as mentioned previously.

The communication between the client and server in rCUDA

framework, will be through the network. rCUDA uses TCP

sockets with some customized application-level protocols to

make the communication between client-server middleware’s

more effectively.

5. rCUDA DEMO

The purpose of application in the Demo [1] is to present the
overhead of using rCUDA in the system. To do so, two types
of image filters are implemented as explained below:

5.1 Color Image to Grayscale Conversion:

In any computer system to present any colored image, we
use four parameters called RGBA to represent only one pixel
of the image. Where ‘R’ indicates how much red color used in
the pixel, ‘G’ for green color, ‘B’ for blue and ‘A’ for the
opacity of the picture.

To convert the colored image to grayscale image the formula
which recommended by NTSC (National Television System
Committee) equation (1) is used. (Note: the value of Alpha in
the equation is ignored)

I = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B (1)

 According to this formula, the authors developed the
program and installed it on the client machine. The
application will be execute twice, once by local CUDA and the
second time by rCUDA.

5.2 Image Blurring

Image blurring is a type of filtering to reduce the edge

content of the colors and make transition from one color to

another color very smoothly, to accomplish that the relation

between the pixels and their neighbors should be defined,

for example if we have the pixel B we want to bluer it, we

have to consider the values of the pixel and it’s neighbors.

Fig -3: Matrix representing the images pixel [1]

And for that we use this formula (2):

6. Analysis of Demo:

In the demo two types of filters are applied for each image.

First, the image will convert to grayscale using CUDA (local

GPU), and then using rCUDA (remote GPU). This will be for

the top right part of the picture. In the bottom right part the

image will blur using blur filter. This filter also will convert

the image using CUDA (local GPU) and then rCUDA (remote

CUDA).the conversation time for CUDA and rCUDA it will

store separately.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1548

Fig -4: screen shot of the Demo [1]

The application presents some details on the right side of the
screen. It shows the time requires to convert the image to
grayscale and blur the image.

The green bar shows the average time of converting last 20
images using CUDA (local GPU).the blue part of the bar it
shows the overhead presented when implement rCUDA
framework on the system. The table on the right bottom of
the screen represents the size of each image and the
percentage of the overhead of each presented by each filter.

Figure (4) presents the screen shot of the demo, in the demo
245 images were used each image has three different sizes:
1024x768 (2.4MB), 2048x1536 (9.4MB), and 4096x3072
(37.7MB).

7. PERFORMANCE RESULTS

The performance of rCUDA influences by three main

parameters:

1. Data transferring: implementing rCUDA increase the time
required to transfer data, where the client PC will send the
data through the network. Sending the data through network
introduce more delay on the system. The value of this delay
depends on the bandwidth of the network.

2. Computation time: the time employed by CUDA kernel in
GPU to execute is same for CUDA and rCUDA, only the
overhead comes from transferring the data in the network.

3. CUDA calls: when the application sends the call using
rCUDA the call pass through the network to reach the rCUDA
server. For that, the overhead presented by rCUDA depends
on the network latency.

The result in the Chart (1) it shows the average of executing
the last ten images in local and remote GPU. The maximum
Relative Standard Deviation (RSD) observed was 0.077. This
one achieved with converting an image to the grayscale of
size 1024x768. The maximum overhead achieved also by the
grayscale filter with maximum image size used 4096x3072.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1549

Chart -1: CUDA overhead over CUDA when running
grayscale and blur filters [1].

From figure (5) the overhead of converting smallest image
size using blur filter is higher compering to the remaining
bigger size. This is because the blue filter has larger number
of calls to CUDA API larger than grayscale one. The time
require to send the calls through the network represent
higher overhead than time spent in computations.

8. BENEFITS OF USING REMOTE GPU

VIRTUALIZATION

There are many benefits introduced when we implement the
rCUDA, those benefices may reflect on the performance of
the system or the acquisition cost:

1. Reduce power consumptions: the power consumption will
reduce due to reduce the number of GPUs in the cluster.

2. Acquisition cost: by sharing the GPU processor between
the machines is not required to install GPU processor in each
machine which will reduce the cost of the system.

3. More GPUs are available for a single application: where
rCUDA framework enable the application to distribute the
load between all GPUs in the cluster.

4. Overall GPU utilization is also increased.

5. Upgrading the system it will be easier: to increase the
output of the system we only need to add a new GPU to the
cluster.

6. More than one machine can access the same GPU
concurrently: rCUDA implement multiplexing technique to
allow more than one machine to access the GPU.

4. CONCLUSION AND FUTURE WORK

Using GPU processor in the machines it will come with some
drawbacks, like increasing in the cost of the system, the
power consumption and the space required to install the
new hardware. To overcome all those drawback a
visualization technique is implemented in the system. This
visualization technique enable the GPU resource to be
shared between all the devices in the cluster.

In this paper the rCUDA framework are used. The reason of
using rCUDA it’s fidelity in using GPU, ability to intercepts all
CUDA calls and multiplexing the GPU resource between the
clients.

For future work, we are going to implement this system in
one of embedded boards, which are using Linux
environment. Implement this framework in the embedded
systems it will give the system ability to use the GPU
processor, without requirement to use embedded board has
GPU processor.

6. REFERENCES

 [1]C. Reaño, F. Pérez and F. Silla, "On the Design of a Demo
for Exhibiting rCUDA," Cluster, Cloud and Grid Computing
(CCGrid), 2015 15th IEEE/ACM International Symposium on,
Shenzhen, 2015.

 [2]J. Duato, A. J. Peña, F. Silla, R. Mayo and E. S. Quintana-
Ortí, "rCUDA: Reducing the number of GPU-based
accelerators in high performance clusters," HPCS and
Simulation(HPCS), 2010 International Conference on, Caen,
2010.

[3]M. S. Vinaya, N. Vydyanathan and M. Gajjar, "An evaluation
of CUDA-enabled virtualization solutions," Parallel
Distributed and Grid Computing (PDGC), 2012 2nd IEEE
International Conference on, Solan, 2012.

 [4]F. Silla, J. Prades, S. Iserte and C. Reaño, "Remote GPU
Virtualization: Is It Useful?" 2016 2nd IEEE International
Workshop on High-Performance Interconnection Networks
in the Exascale and Big-Data Era (HiPINEB), Barcelona, 2016.

[5] Y. F. Huang and W. C. Chen, "Parallel Query on the In-
Memory Database in a CUDA Platform," 2015 10th
International Conference on P2p, Cloud and Internet
Computing (3PGCIC), Krakow, 2015.

[6] www.nvidia.com

[7] http://rcuda.net/index.php/what-s-rcuda.html

http://www.nvidia.com/
http://rcuda.net/index.php/what-s-rcuda.html

