
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 485

YCSB+T: Bench-marking Web-Scale Transactional Databases

 Varun Razdan1, Rahul Jobanputra2, Aman Modi3, Shruti Dumbare4

1234Student, Dept. Of CE, Sinhgad Institute of Technology, Maharashtra, India

Abstract- Yahoo Cloud Service Benchmark Client (YCSB). It
can be used to benchmark new cloud database systems i.e. TPC-
C and TPCE focus on emulating database applications to
compare different DBMS implementations. It has ready
adapters for different NoSQL Databases. YCSB allows
benchmarking multiple systems and comparing them by
creating “workloads”. One can create and run on multiple
systems on the same hardware configuration, and same
workloads against each system. Many factors go into deciding
which data store should be used for production applications,
including basic features, data model, and the performance
characteristics for a given type of workload. It’s critical to have
the ability to compare multiple data stores intelligently and
objectively so that you can make sound architectural decisions.
The Yahoo! Cloud Serving Benchmark (YCSB), an open source
framework for evaluating and comparing the performance of
multiple types of data-serving systems has long been the open
standard for this purpose. In this paper, we designed a specific
workload called Closed Economy Workload (CEW), which can
run within the YCSB+T framework.
 In YCSB+T we develop new workload i.e. Closed
Economy Workload (CEW) extended from workload from
YCSB.As well as we concentrate on additional methods used to
loads data or execute the workload on the database to validate
its consistency. We observed that the number of transactions
scales linearly up to 16 client threads. Our main motto is deal
with data management access i.e. SELECT/UPDATE, with a
large collection of items and operations that access and modify
those items (get/put). We share our experience with using CEW
to evaluate some NoSQL systems.

Key Words: Closed Economy Workload (CEW), TPC-C and TPC-
E, AWS’ S3, Scale-out, workload executor.

I. INTRODUCTION

There has been an explosion of new systems for data storage

and management “in the cloud.” Some systems are offered

only as cloud services, either directly in the case of Amazon

Simple DB and Microsoft Azure SQL Services, or as part of a

programming environment like Google’s App Engine or

Yahoo!’s SQL. Still other systems are used only within. The

large variety has made it difficult for developers to choose

the appropriate system. The most obvious differences are

between the various data models, such as the column-group

oriented BigTable model used in Cassandra and HBase versus

the simple hash table model of Voldemort or the document

model of CouchDB. However, the data models can be

documented and compared qualitatively. Comparing the

performance of various systems is a harder problem. Some

systems have made the decision to optimize for writes by

using on-disk structures that can be maintained using

sequential I/O (as in the case of Cassandra and HBase), while

others have optimized for random reads by using a more

traditional buffer-pool architecture (as in the case of PNUTS).

Furthermore, decisions about data partitioning and

placement, replication, transactional consistency, and so on

all have an impact on performance.

 Understanding the performance implications of

these decisions for a given type of application is challenging.

Developers of various systems report performance numbers

for the “sweet spot” workloads for their system, which may

not match the workload of a target application.

II. PROBLEM CONTEXT

In context, we explain our work briefly to set of some
common points as well as how extend YCSB to YCSB+T
benchmark.

A. YCSB Benchmark

YCSB was developed at Yahoo! Labs to provide a framework
and common set of workloads for evaluating the
performance of different key-value stores. It has two parts:

 The YCSB Client, an extensible workload generator.

 The core workloads, a set of workload scenarios to
be executed by the generator.

We care about query latency and overall system throughput.
When take a closer look, however, the queries are very
different. TPC-C contains several diverse types of queries
meant to mimic a company warehouse environment. Some
queries execute to the transactions over multiple tables;
some are heavier in weight than others.
In contrast, the web applications we are benchmarking tend
to run a huge number of extremely simple queries. Consider a
table where each record holds a user’s profile information.
Every query touches only a single record, The YCSB “core

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 486

workload” accesses entire records at a time, and executes
range queries over small portions of the table.

A.1.1) Workloads

YCSB includes a set of core workloads that define a basic
benchmark for cloud systems.

The core workloads are a useful first step, and obtaining
these benchmark numbers for a variety of different systems
would allow you to understand the performance tradeoffs of
different systems.

The core workloads consist of six different workloads:

Workload A: Update heavy workload

This workload has a mix of 50/50 reads and writes. An
application example is a session store recording recent
actions.

Workload B: Read mostly workload

This workload has a 95/5 reads/write mix. Application
example: photo tagging; add a tag is an update, but most
operations are to read tags.

Workload C: Read only

This workload is 100% read. Application example: user
profile cache, where profiles are constructed elsewhere.

Workload D: Read latest workload

In this workload, new records are inserted, and the most
recently inserted records are the most popular. Application
example: user status updates; people want to read the latest.

Workload E: Short ranges

In this workload, short ranges of records are queried, instead
of individual records. Application example: threaded
conversations, where each scan is for the posts in a given
thread (assumed to be clustered by thread id).

Workload F: Read-modify-write

In this workload, the client will read a record, modify it, and
write back the changes. Application example: user database,
where user records are read and modified by the user or to
record user activity.

B. About NoSQL and Overview

The YCSB+T benchmark appears to be the best to date for

measuring the scalability of SQL and NoSQL systems.

NoSQL databases are fast becoming the standard data
platform for applications that make heavy use of
telecommunication or Internet-enabled devices (i.e. browser-
based, sensor-driven, or mobile) as a front end. While there
are many NoSQL databases on the market, various industry
trends suggest that the top three in use today are MongoDB,
Apache Cassandra, and HBase.

Our experience with PNUTS tells us there are many design

decisions to make when building one of these systems, and

those decisions have a huge impact on how the system

performs for different workloads (e.g., read-heavy workloads

vs. write-heavy workloads), how it scales, how it handles

failures, ease of operation and tuning, etc.

C. Other Recommendations and YCSB+T

YCSB+T is an important first step towards transactional

benchmarking of scale-out data stores and provides a useful
basis for quantifying the overhead introduced by wrapping
CRUD operations in a transaction. However, the inclusion of
the availability and replication tiers for transactional
benchmarking which have already been proposed in the
original YCSB.
 NoSQL OLTP benchmarking is an active research topic
and the boundaries of what is achievable in the field of
distributed databases are being probed by both scientists and
practitioners. Arguably, the most popular and most widely
accepted OLTP benchmark for NoSQL databases is YCSB
which facilitates measuring operational throughput and
request latency for generic CRUD workload mixes.
 In YCSB, read operations may read () a single row or
scan () a range of consecutive rows and update operations
may either insert () a new row or update () an existing one.
Operations are issued one at a time per client thread and
their distributions are based on parameters specified in the
workload parameter files for a benchmark. The YCSB
distribution includes five default workload files (called
Workloads A, B, C, D and E) that generate specific read
intensive, update-intensive and scan-intensive workloads.
The current YCSB distribution provides DB client modules

with wrappers for HBase, Cassandra, MongoDB and
Voldemort; YCSB++ adds a new client for Accumulo.
Accumulo is the iterator framework that embeds user-
programmed functionality into the different LSM-tree stages.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 487

C.1.1) Architecture of YCSB+T

We implement YCSB+T which is extended by YCSB
benchmark system. In YCSB+T we develop new workload i.e.
Closed Economy Workload (CEW) extended from workload
from YCSB.As well as we concentrate on additional methods
used to loads data or execute the workload on the database
to validate its consistency. We observed that the number of
transactions scales linearly up to 16 client threads. Our main
motto is deal with data management access i.e.
SELECT/UPDATE, with a large collection of items and
operations that access and modify those items (get/put).

Fig -1: YCSB+T Architecture

D. Tiers and CEW

To the four tiers defined in the original YCSB contribution

(performance, scalability, availability and replication) by

introducing two new tiers transactional overhead and

consistency. The Transactional overhead tier measures the

latency of transactional operations (read, scan, insert, update,

delete, read-and-modify) and transaction demarcation (start,

abort, commit). To achieve this, a so-called Closed Economy

Workload (CEW) is defined. It simulates bank account

transactions in a closed system where money neither enters

nor exits. This workload executes operations similar to YCSB,

but wrapped in a single transactional context. For instance,

doTransactionalReadModifyWrite reads two account records,

transfers some money from one to the other and writes both

records back. We have to create a new workload also.

 The evaluation of YCSB+T demonstrates the usage

for one particular system, but lacks a comparison of different

transactional data stores. Benchmarking different scale-out

transactional systems remains an important open issue in

this field. YCSB+T furthermore does not detect transaction

anomalies; it is limited to verifying state-based consistency

constraints. The close economy workload is implement with

the help of extend the workload class and some extra

methods are implemented.

III. MATHEMATICAL EVOLUTIONS

Integrated mathematical steps necessary for
implementation. The first expression to final all include input
of our system with the help of mathematical parameter. In
this section, we design mathematical expressions with the
help of our existing and proposed system of our system.

A. Equations

The workload is most important parameter which is
specifying by ‘w’. Workload defines the data that will be
loaded into the database during the loading phase, and the
operations that will be executed against the data set during
the transaction phase.

Typically, a workload is a combination of:

 Workload files.

 Parameter of workload file.

Because the properties of the dataset must be known during

the loading phase (so that the proper kind of record can be

constructed and inserted) and during the transaction phase

(so that the correct record ids and fields can be referred to) a

single set of properties is shared among both phases. Thus,

the parameter file is used in both phases. The workload java

class uses those properties to either insert records (loading

phase) or execute transactions against those records

(transaction phase).

For core workloads are 6. We can also implement new

workload using our own parameter file with new values for

the read/write mix, request distribution and extended our

workload class.

 (1)

Where ‘Wc’ for core workload which is start from a up to f.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 488

 (2)

These workloads are choosing with specific appropriate
runtime parameters i.e threads, target and status.

 (3)

Where f(x) is the set of workloads which is come from our
equation (1) and (2).

IV. UNITS

YCSB+T creates number of threads running on command
line that can query the system which is under test. It can
record latency in microseconds and calculate throughput in
operations per second. We can measure replications,
elasticity, availability, scalability and performance with
YCSB+T benchmark which include extra transaction.

 We are using same number of operation number and
record number for every workload having range of 10000,
25000, 50000, 75000, 100000, 225000, 500000 and
1000000

(1 million) records. In each workload, there will be a loading
stage in which insert operation takes place which is basically
loading performance for each workload while it is easy to
obtained running performance from every workload.

 TABLE I

 UNITS FOR MAGNETIC PROPERTIES

Symb

ol Explanation

Conversion from Second and

Millisecond and Microsecond

and Other

t throughput 1 Ope/Sec 10
3
/Sec =

10
6
Ms

l latency 1 Msec 10
3
 MiSec.

db database 1 DB Load Any One

W workload

Choose basic or new.

RMW Read modify 1 Ope/sec 100103

COP commit operation 1 Ope/Sec 1000000

with thread 16

U Update operation

with thread 16

1 Ope/Sec 200206

AOP actual operation 1 Ope/Sec= 10
5
/Sec

ASC anomaly score 1 score/sec = 2.9E−5

OP operations 1 Ope/Sec =100000

CEW Closed economy

workload

Average Latency 6134.37

s microseconds T s

,

maximum latency 1 depend on thread

 minimum latency 1 depend on thread

Above tables shows all mathematical notions are used in

development with their values.

V. CONCLUSION

The performance of the Proposed System and scalability of
large-scale distributed NoSQL systems like Yahoo! PNUTS as
well as traditional database management systems like
MySQL. We implement YCSB+T which is extended by YCSB
benchmark system. In YCSB+T we develop new workload i.e.
Closed Economy Workload (CEW) extended from workload
from YCSB.As well as we concentrate on additional methods
used to loads data or execute the workload on the database
to validate its consistency.

 REFERENCES

[1] Wei Wei, Qi Yong. Information potential fields navigation
in wireless Ad-Hoc sensor networks[J]. Sensors, 2011,
11(5): 4794-4807.

[2] Song, Houbing, and Maité Brandt-Pearce. "A 2-D discrete-
time model of physical impairments in wavelength-
division multiplexing systems." Journal of Lightwave
Technology 30.5 (2012): 713-726.

[3] Ion Stoica, Robert Morris, David Liben-nowell, David R.
Karger, M. Frans Kaashoek, Frank Dabek, and Hari
Balakrishnan. Chord: a scalable peer-to-peer lookup

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 489

protocol for internet applications. IEEE/ACM
Transactions on Networking, 11:17–32, 2003.

[4] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi,
“CloudTPS: Scalable Transactions for Web Applications
in the Cloud,” IEEE TRANSACTIONS ON SERVICES
COMPUTING, VOL. 5, NO. 4, OCTOBER-DECEMBER 2012

[5] W. Vogels, “Data Access Patterns in the Amazon.com
Technology Platform,” Proc. 33rd Int’l Conf. Very Large
Databases (VLDB), 2007.

[6] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T.
Kraska, “Building a Database on S3,” Proc. SIGMOD Int’l
Conf. Management of Data, pp. 251-264, 2008.

[7] J. Gray, editor. The Benchmark Handbook for Database
and Transaction Processing Systems. Morgan Kaufmann,
2003

[8] “PL/SQL User’s Guide and Reference, Version 3.0,” Part
800-V1.0, Oracle Corp., 2004.

[9] M. Stonebraker et al. C-store: a column-oriented DBMS.
In VLDB, 2005.

[10] Amazon SimpleDB.
 http://aws.amazon.com/simpledb/.

[11] Google App Engine. http://appengine.google.com.

[12] Yahoo! Query Language.
 http://developer.yahoo.com/yql/.

[13] P. Shivam et al. Cutting corners: Workbench
 automation for server benchmarking. In Proc.
 USENIX Annual Technical Conference, 2008.

[14] http://www.ibm.com/developerworks/opensour

 ce/library/os-couchdb/index.html. Exploring
 Couch DB.

[15] Java development 2.0: MongoDB: A NoSQL

 datastore with (all the right) RDBMS moves.
 http://www.ibm.com/developerworks/java/libra
 ry/j-javadev2-12/.

[16] Bringing Big Data to the Enterprise. http://www-

 01.ibm.com/software/data/bigdata/.

