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Abstract - JavaScript-based browser extensions (JSEs) 
enhance the core functionality of web browsers by 
improving their look and feel, and are widely available 
for commodity browsers. To enable a rich set of 
functionalities, browsers typically execute JSEs with 
elevated privileges. For example, unlike JavaScript code 
in a web application, code in a JSE is not constrained by 
the same-origin policy. Malicious JSEs can misuse these 
privileges to compromise confidentiality and integrity, 
e.g., by stealing sensitive information, such as cookies 
and saved passwords, or executing arbitrary code on 
the host system. Even if a JSE is not overtly malicious, 
vulnerabilities in the JSE and the browser may allow a 
remote attacker to compromise browser security. We 
present SABRE (Security Architecture for Browser 
Extensions), a system that uses in-browser information-
flow tracking to analyze JSEs. SABRE associates a label 
with each in-memory JavaScript object in the browser, 
which determines whether the object contains sensitive 
information. Sabre propagates labels as objects are 
modified by the JSE and passed between browser 
subsystems. Sabre raises an alert if an object containing 
sensitive information is accessed in an unsafe way, e.g., 
if a JSE attempts to send the object over the network or 
write it to a file. We implemented Sabre by modifying 
the Firefox browser and evaluated it using both 
malicious JSEs as well as benign ones that contained 
exploitable vulnerabilities. Our experiments show that 
Sabre can precisely identify potential information flow 
violations by JSEs. 
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1. INTRODUCTION  
 
Modern web browsers support an architecture that 
lets third-party extensions enhance the core 
functionality of the browser. Such extensions enhance 
the look and feel of the browser and help render rich 
web content, such as multimedia. Extensions are 
widely available for commodity browsers as plug-in 
(e.g., PDF readers, Flash players, ActiveX), browser 

helper objects (BHOs) and add-ons. This paper 
concerns JavaScript-based browser extensions (JSEs). 
Such extensions are written primarily in JavaScript, 
and are widely available and immensely popular (as 
“add-ons”) for Firefox [4] and related tools, such as 
Thunderbird. Notable examples of JSEs for Firefox 
include Grease monkey [5], which allows user-defined 
scripts to customize how web pages are rendered, 
Firebug [3], a JavaScript development environment, 
and No Script [8], a JSE that aims to improve security 
by blocking script execution from certain websites. 
Other browsers like Internet Explorer and Google 
Chrome also support extensions (e.g., scriptable plug-
in and ActiveX controls) that contain or interact with 
JavaScript code. However, recent attacks show that 
JSEs pose a threat to browser security. Two factors 
contribute to this threat: 
(1) Inadequate sandboxing of JavaScript in a JSE. 
Unlike JavaScript code in a web application, which 
executes with restricted privileges [9], JavaScript code 
in a JSE executes with the privileges of the browser. 
JSEs are not constrained by the same-origin policy 
[38], and can freely access sensitive entities, such as 
the cookie store and browsing history. For instance, 
JavaScript in a JSE is allowed to send an 
XMLHttpRequest to any web domain. Even though 
JavaScript only provides restricted language-level 
constructs for I/O, browsers typically provide cross-
domain interfaces that enable a JSE to perform I/O. 
For example, although JavaScript does not have 
language-level primitives to interact with the file 
system, JSEs in Firefox can access the file system via 
constructs provided by the XPCOM (cross-domain 
component object model) interface [7]. Importantly, 
these features are necessary to create expressive JSEs 
that support a rich set of functionalities. For example, 
JSEs that provide cookie/password management 
functionality rely critically on the ability to access the 
cookie/password stores. However, JSEs from 
untrusted third parties may contain malicious 
functionality that exploits the privileges that the 
browser affords to JavaScript code in an extension. 
Examples of such JSEs exist in the wild. They are 
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extremely easy to create and can avoid detection 
using stealth techniques [11, 13, 14, 15, 18, 41]. 
Indeed, we wrote several such JSEs during the course 
of this research work. 
 
 (2) Browser and JSE vulnerabilities. Even if a JSE is 
not malicious, vulnerabilities in the browser and in 
JSEs may allow a malicious website to access and 
misuse the privileges of a JSE [12, 35, 39, 40, 45]. 
Vulnerabilities in older versions of Firefox/Grease 
monkey allowed a remote attacker to access the file 
system on the host machine [35, 45]. Similarly, 
vulnerabilities in Firebug [12, 39] allowed remote 
attackers to execute arbitrary commands on the host 
machine using exploits akin to cross-site scripting. 
These attacks exploit subtle interactions between the 
browser and JSEs. While there is much prior work on 
the security of untrusted browser extensions such as 
plug-in and BHOs (which are distributed as binary 
executables) particularly in the context of spyware 
[22, 30, 31], there is relatively little work on analyzing 
the security of JSEs. Existing techniques to protect 
against an untrusted JSE rely on load time verification 
of the integrity of the JSE, e.g., by ensuring that scripts 
are digitally signed by a trustworthy source. 
 
To summarize, the main contributions of this paper 
are: 
• Sabre, an information flow tracker for JSEs. Sabre 
handles explicit information flows, some forms of 
implicit flows, as well as cross-domain flows. We have 
implemented a prototype of Sabre in Firefox. 
• Evaluation on 24 JSEs. We evaluated Sabre using 
malicious JSEs as well as benign ones that contained 
exploitable vulnerabilities. In these cases, Sabre 
precisely identified information flow violations. We 
also tested Sabre using benign JSEs. In these 
experiments, Sabre precisely identified potentially 
suspicious flows that we manually analyzed and white 
listed. We chose Firefox as our implementation and 
evaluation Platform because of the popularity and 
wide availability of JSEs for Firefox. The techniques 
described in this paper are therefore relevant and 
applicable to such browsers as well. 
 

2 BACKGROUND AND MOTIVATING EXAMPLES 

 Writing browser extensions in JavaScript offers a 
number of advantages that will ensure that JSEs 
remain relevant in future browsers as well. JavaScript 
has emerged as the lingua franca of the Web and is 
supported by all major browsers. It offers several 

primitives that are ideally suited for web browsing 
(e.g., handlers for user-generated events, such as 
mouse clicks and keystrokes) and allow easy 
interaction with web applications (e.g., primitives to 
access the DOM). The problem is exacerbated by the 
lack of good environments and tools, such as static 
bug finders, for code development in JavaScript. 
Moreover, because subtle bugs only manifest when a 
JSE is used with certain versions of the browser, 
comprehensive testing of JSEs for security 
vulnerabilities is 
    <script type="text/javascript"> 
      window._GM_xmlhttpRequest = null; 
    function trapGM(...) { 
    window._GM_xmlhttpRequest= 
window.GM_xmlhttpRequest; 
     . ... 
     } 
     function checkGM() { 
    if (window._GM_xmlhttpRequest) { 
    window._GM_xmlhttpRequest( 
    {method: ‘GET’, url: ‘file:///c:/boot.ini’, 
     onload: function(Response) { 
     document.formname.textfield.value= 
Response.responseText; 
       }}); 
       } 
       } 
      if (typeof window.addEventListener != ‘undefined’) 
{ 
    window.watch(‘GM_apis’, trapGM); 
    window.addEventListener(‘load’, checkGM, true); 
      } 
    </script> 
Figure 1. Example of malicious JavaScrip code that exploits the 
Greasemon key vulnerability to read the contents of boot.ini 
from disk 

 
The remainder of this section presents motivating 
examples that demonstrate how JSEs can compromise 
confidentiality and integrity. The first example shows 
how a remote attacker can exploit vulnerabilities in 
an otherwise benign JSE, while the second example 
presents a malicious JSE. In each case, we also 
describe how information-flow tracking, as 
implemented in Sabre, would have discovered the 
attack.  
 
2.1 Grease monkey/Firefox Vulnerability 
 
Grease monkey is a popular JSE that allows user-
defined scripts to make changes to web pages on the 
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fly. For example, a user could register a script with 
Grease monkey that would customize the background 
of web pages that he visits. Grease monkey exports a 
set of APIs (prefixed with “GM”) those user-defined 
scripts can be programmed against. These APIs 
execute with elevated privileges because user-defined 
scripts must have the ability to read and modify 
arbitrary web pages. For example, the GM xml http 
Request API allows a user-defined script to execute an 
XMLHttpRequest to an arbitrary web domain, and is 
not constrained by the same-origin policy. Although 
the script simply modifies the DOM to store the 
contents of the boot.ini file, it could instead use a 
POST to transmit this data over the network to a 
remote attacker. Information-flow tracking as 
implemented in Sabre detects this attack because 
sensitive user data (boot.ini) is accessed in unsafe 
ways. In particular, Sabre marks as sensitive all data 
that a JSE reads from a pre-defined set of sensitive 
sources, including the local file system. 
 
function do_sniff() { 
var hesla = 
window.content.document.getElementsByTagName("i
nput"); 
data = ""; 
for (var i = 0; i < hesla.length; i++) { 
if (hesla[i].value != "") { 
... 
data += hesla[i].type + ":" + hesla[i].name 
+ ":" + hesla[i].value + "\n"; 
... 
} 
} 
// the rest of the code sends ‘data’ via an email 
message. 
} 
Figure 2. A snippet of code from FFsniFF, a malicious JSE. 

 
JavaScript code from Grease monkey to access the 
local file system consequently and response. Response 
Text, which this function returns, is also marked 
sensitive. Sabre raises an alert when the browser 
attempts to send contents of the DOM over the 
network, e.g., when the user clicks a “submit” button. 
This example illustrates how a malicious website can 
exploit JSE/browser vulnerabilities to steal 
confidential user data. It also illustrates the need to 
precisely track security labels across browser 
subsystems. For instance, Sabre detects the above 
attack because it also modifies the browser’s DOM 
subsystem to store labels with DOM nodes. Doing so 

allows Sabre to determine whether a sensitive DOM 
node is transmitted over the network. An approach 
that only tracks security labels associated with 
JavaScript objects (e.g., [16, 42]) will be unable to 
precisely detect this attack. 
 
2.2 A Malicious JSE 
 
FFsniFF (Firefox Sniffer) [13] is a malicious JSE that, if 
installed, attempts to steal user data entered on HTML 
forms. When a user “submits” an HTML form, FFsniFF 
iterates through all non-empty input fields in the 
form, including password entries, and saves their 
values. It then constructs SMTP commands and 
transmits the saved form entries to the attacker (the 
attack requires the vulnerable host to run an SMTP 
server). FFsniFF also attempts to hide itself from the 
user by exploiting vulnerability in the Firefox 
extension manager (CVE-2006-6585) to delete its 
entry from the add-ons list presented by Firefox. 
Sabre detects FFsniFF because it considers all data 
received from form fields on a web page as sensitive. 
This sensitive data is propagated to both the array 
hesla and the variable data via a series of assignment 
statements. Sabre raises an alert when FFsniFF 
attempts to send the contents of the sensitive data 
variable along with SMTP Commands over an output 
channel (a low-sensitivity sink) to the SMTP server 
running on the host machine. 
 
2.3 Tracking Information Flow with Sabre had 

three goals: 

(1) Monitor all JavaScript execution. Sabre must 
monitor all JavaScript code executed by the browser. 
This includes code in web applications, JSEs, as well as 
JavaScript code executed by the browser core, e.g., 
code in browser menus and XUL elements [10].  
 
(2) Ease action attribution. When Sabre reports an 
information flow violation by a JSE, an analyst may 
need to determine whether the violation is because of 
an attack or whether the offending flow is part of the 
advertised behavior of the JSE. In the latter case, the 
analyst must white list the flow.  
 
(3) Track information flow across browser 
subsystems JavaScript code.  In a browser and its 
JSEs interacts heavily with other subsystems, such as 
the DOM and persistent storage, including cookies, 
saved passwords, and even the local file system. Sabre 
must precisely monitor information flows across 
these subsystems because attacks enabled by JSEs 
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often involve multiple browser subsystems. We 
implemented Sabre by modifying Spider Monkey, the 
JavaScript interpreter in Firefox, to track information 
flow. We modified Spider Monkey’s representation of 
JavaScript objects to include security labels. We also 
enhanced the interpretation of JavaScript byte code 
instructions to modify labels, thereby propagating 
information flow. We also modified other browser 
subsystems, including the DOM subsystem (e.g., 
HTML, XUL and SVG elements) and XPCOM, to store 
and propagate security labels, thereby allowing 
information flow tracking across browser subsystems. 
This approach allows us to satisfy our design goals. All 
JavaScript code is executed by the interpreter, thereby 
ensuring complete mediation even in the face of 
browser vulnerabilities. Moreover, associating 
security labels directly with JavaScript objects and 
tracking these labels within the interpreter and other 
browser subsystems makes our approach robust to 
obfuscated JavaScript code, e.g., as may be found in 
drive-by-download websites that attempt to exploit 
browser and JSE vulnerabilities. Finally, the 
interpreter can readily identify the source of the 
JavaScript byte code currently being interpreted, 
thereby allowing for easy action attribution. Although 
Sabre’s approach of using browser modifications to 
ensure JSE security is not as readily portable as, say, 
language restrictions [1, 2, 33], this approach also 
ensures compatibility with legacy JSEs.  
 
3. SECURITY 

3.1. Security Labels 
Sabre associates each in-memory JavaScript object 
with a pair of security labels. One label tracks the flow 
of sensitive information while the second tracks the 
flow of low-integrity information (to detect, 
respectively, violations of confidentiality and 
integrity). We restrict our discussion to tracking flows 
of sensitive information because confidentiality and 
integrity are largely symmetric. Each security label 
stores three pieces of information: 
(i)  A sensitivity level, which determines whether the 
object associated with the label stores sensitive 
information; 
(ii) A Boolean flag, which determines whether the 
object was modified by JavaScript code in a JSE; and 
 (iii) The name(s) of the JSE(s) and web domains that 
have modified the object.  
 
The sensitivity level is used to determine possible 
information flow violations, e.g., if data derived from a 

sensitive source is written to a low-sensitivity sink. 
However, Sabre raises an alert only if the object was 
modified by a JSE. In this case, Sabre reports the 
name(s) of the JSE(s) that have modified the object. 
The DOM node that stores the response from the GM 
xml http Request call is marked sensitive. Further, the 
data contained in the node is modified by executing 
code contained in Grease monkey, via the return value 
from GM xml http Request. Consequently, Sabre raises 
an alert when the browser attempts to transmit the 
DOM node via HTTP, e.g., when the user submits a 
form containing this node. Sabre’s policy of raising an 
alert only when an object is modified by a JSE is key to 
avoiding false positives. Recall that Sabre tracks the 
execution of all JavaScript code, including code in web 
applications and in the browser core. Although such 
tracking is necessary to detect attacks via 
compromised/malicious files in the browser core, e.g., 
overlays from malicious JSEs, it can also report 
confidentiality violations when sensitive data is 
accessed in legal ways, such as when JavaScript in a 
web application accesses cookies. Such accesses are 
sandboxed using other mechanisms, e.g., the same-
origin policy. We therefore restrict Sabre to report an 
information-flow violation only when a sensitive 
object modified by JavaScript code in a JSE (or overlay 
code derived from JSEs) is written to a low-sensitivity 
sink. Security labels in Sabre allow for fine-grained 
information flow tracking. Sabre associates a security 
label with each JavaScript object, including objects of 
base type (e.g., int, bool), as well as with complex 
objects such as arrays and compound objects with 
properties.  
 
A JavaScript object inherits all the properties of its 
ancestor prototypes. Therefore an object’s properties 
may not directly be associated with the object itself. 
For example, an object obj may access a property 
obj.prop, which in turn may result in a chain of 
lookups to locate the property prop in an ancestor 
prototype of obj. In this case, the sensitivity level of 
obj.prop is the sensitivity of the value stored in prop. 
Sabre stores the label of the property prop with the 
in-memory representation of prop. Its label can 
therefore be accessed conveniently, even if an access 
to prop involves a chain of multiple prototype lookups 
to locate the property. Moreover, objects in JavaScript 
are passed by reference. Therefore, any operations 
that modify the object via a reference to it, such as 
those in a function to which the object is passed as a 
parameter, will also modify its label appropriately 
when the interpreter accesses the in-memory 
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representation of that object. JavaScript in a browser 
closely interacts with several browser subsystems. 
Notably, the browser provides the document and 
window interfaces via which JavaScript code can 
interact with the DOM, e.g., a JSE can access and 
modify window Location. However, such browser 
objects are not stored and managed by the JavaScript 
interpreter. Rather, each access to a browser object 
results in a cross domain call that gets/sets the value 
of the browser object. To store security labels for such 
objects, Sabre also modifies the browser’s DOM 
subsystem to store security labels. Each DOM node 
has an associated security label. This label is accessed 
and transmitted by the browser to the JavaScript 
interpreter when the DOM node is accessed in a JSE. 
In addition to the DOM, cross-domain interfaces such 
as XPCOM allow a JSE to interact with other browser 
subsystems, such as storage and networking. For 
example, the following  
 
snippet uses XPCOM’s cookie manager. 
Var cookieMgr 
=Components.classes["@mozilla.org/cookiemana
ger;1"]. 
getService 
(Components.interfaces.nsICookieManager); 
var e = cookieMgr.enumerator; 
 
In this case, the reference to enumerator is resolved 
via a cross-domain call to the cookie manager. Sabre 
must separately manage the security labels of 
cookieMgr and those of its properties because 
cookieMgr is not a JavaScript object. Sabre assigns a 
default security label to cross-domain objects. It also 
ensures that properties that are resolved via cross-
domain calls inherit the labels of their parent objects, 
e.g., cookieMgr. Enumerator inherits the label of 
cookieMgr. 
 
3.2. Sources and Sinks 
 
Sabre detects flows from sensitive sources to low 
sensitivity sinks. We consider several sensitive 
sources which primarily deal with access to DOM 
elements, as well as sources enabled by cross-domain 
access including those that allow access to persistent 
storage. Any data received over these interfaces is 
considered sensitive. Low-sensitivity sinks accessible 
from the JavaScript interpreter include the file system 
and the network. In addition to modifying the 
JavaScript interpreter to raise an alert when a 
sensitive object is written to a low sensitivity sink, 

Sabre also modifies the browser’s document interface 
to raise an alert when a DOM node that stores 
sensitive data derived from a JSE is sent over the 
network. For example, Sabre raises an alert when a 
form or a script element that contains sensitive data 
(i.e., data derived from the cookie or password store) 
is transmitted over the network. The browser itself 
may perform several operations that result in 
information flows from sensitive sources to low 
sensitivity sinks. For example, the file system is listed 
both as a sensitive source and a low-sensitivity sink. 
This is because a JSE may potentially leak confidential 
data from a web application by storing this data on 
the file system, which may then be accessed by other 
JSEs or malware on the host machine.  

 
3.3. Propagating Labels 
 
Sabre modifies the interpreter to additionally 
propagate security labels. JavaScript instructions can 
roughly be categorized into assignments, function 
calls and control structures, such as conditionals and 
loops. Explicit flows. Sabre handles assignments in the 
standard way by propagating the label of the RHS of 
an assignment to its LHS. If the RHS is a complex 
arithmetic/logic operation, the result is considered 
sensitive if any of the arguments is sensitive. 
Assignments to complex objects deserve special care 
because JavaScript supports dynamic creation of new 
object properties. For example, the assignment 
obj.prop= 0 adds a new integer property prop to obj if 
it does not already exist. Recall that Sabre associates a 
separate label with obj and obj.prop. In this case, the 
property prop inherits the label of obj when it is 
initially created, but the label may change because of 
further assignments to prop. An aggregate operation 
on the entire object (e.g., a length operation on an 
array) will use the label of the object. In this case, the 
label of the object is calculated (lazily, when the object 
is used) to be the aggregate of the labels of its child 
properties, i.e., an object is considered sensitive if any 
of its constituent properties stores sensitive 
information. In particular, there is a control 
dependency between a conditional expression and the 
statements executed within the conditional. Thus, for 
instance, all statements in both the T and F blocks in 
the following statement must be considered sensitive, 
because document Cookie. Length is a considered 
sensitive: 
if (document.cookie.length > 0) then {T} else {F} Sabre 
handles implicit flows using labeled scopes. Each 
conditional induces a scope for both its true and false 
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branches. The scope of each branch inherits the label 
of its conditional; scopes also nest in the natural way. 
All objects modified within each branch inherit the 
label of the scope in which they are executed. 
 
x = false; y = false; 
If (document.cookie.length > 0) 
Then {x = true} else {y = true} 
If (x == false) {A}; if (y == false) {B} 
 
Figure 3. An implicit flow that cannot be detected using labeled 
scopes 
 

While scopes handle a limited class of implicit 
information flows, it is well-known that they cannot 
prevent all implicit flows. There is an implicit 
information flow from document.cookie.length to both 
x and y. However, a dynamic approach that uses 
scopes will only mark one of x or y as sensitive, 
thereby missing the implicit flow. Precisely detecting 
such implicit flows requires static analysis. However, 
we are not aware of static analysis techniques for 
JavaScript that can detect all such instances of implicit 
flow. Our current prototype of Sabre therefore cannot 
precisely detect all instances of implicit flows. In 
future work, we plan to investigate a hybrid approach 
that alternates static and dynamic analysis to soundly 
detect all instances of implicit flows. In addition to 
propagating sensitivity values, Sabre uses the 
provenance of each Java Scrip instruction to 
determine whether a JavaScript object is modified by 
a JSE.  
 
3.4. Declassifying and Endorsing Flows 
 
JSE can contain information flows that may potentially 
be classified as violations of confidentiality or 
integrity. For example, consider the Pwd Hash [37] 
JSE, which customizes passwords to prevent phishing 
attacks. This JSE reads and modifies a sensitive 
resource (i.e., a password) from a web form, which is 
then transmitted over the network when the user 
submits the web form. Sabre raises an alert because 
an untrusted JSE can use a similar technique to 
transmit passwords to a remote attacker. However, 
Pwd Hash customizes an input password passwd to a 
domain by converting it into SHA1 (passwd||domain), 
which is then written back to a DOM element whose 
origin is domain. In doing so, Pwd-Hash effectively 
declassifies the sensitive password. Consequently, this 
information flow can be white listed by Sabre. To 
support declassification of sensitive information, 
Sabre extends the JavaScript interpreter with the 

ability to declassify flows. A security analyst supplies 
a declassification policy, which specifies how the 
browser must declassify a sensitive object. Flows that 
violate integrity can similarly be handled with an 
endorsement policy. Sabre supports two kinds of 
declassification (and endorsement) policies: sink-
specific and JSE-specific. A sink-specific policy permits 
fine-grained declassification of objects by allowing an 
analyst to specify the location of a byte code 
instruction and the object externalized by that 
instruction. In turn, the browser reduces the 
sensitivity of the object when that instruction is 
executed. For example, the security analyst would 
specify the file, function and line number at which to 
execute the declassification byte code on the object 
being externalized. In case of Pwd Hash, the policy 
would be the tuple <stanford-pwdhash.js, finish, 330, 
field. value>. In contrast, a JSE-specific policy permits 
declassification of all flows from a JSE and can be used 
when a JSE is trusted. Declassification (and 
endorsement) policies must be supplied with care 
because declassification causes Sabre to allow 
potentially unsafe flows.  

 

4. EVALUATION & PERFORMANCE 

We evaluated Sabre using a suite of 24 JSEs, 
comprising over 120K lines of JavaScript code. Our 
goals were to Test both the effectiveness of Sabre at 
analyzing information flows and to evaluate its 
runtime overhead. 
 
4.1. Effectiveness 
Our test suite included both JSEs with known 
instances of malicious flows as well as those with 
unknown flows. In the latter case, we used Sabre to 
understand the flows and determine whether they 
were potentially malicious. 
 
4.1.1 JSEs with known malicious flows 
 
We evaluated Sabre with four JSEs that had known 
instances of malicious flows. These included two JSEs 
that contained exploitable vulnerabilities (Grease 
monkey v0.3.3 and Firebug v1.01) and two publicly-
available malicious JSEs (FFSniFF [13] and Browser 
Spy). To test vulnerable JSEs, we adapted information 
available in public fora [12] to write web pages 
containing malicious scripts. The exploit against 
Grease monkey attempted to transmit the contents of 
a file on the host to an attacker, thereby violating 
confidentiality, while exploits against Firebug 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 12 | Dec -2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 74 
 

attempted to start a process on the host and modify 
the contents of a file on disk, thereby violating 
integrity. In each case, Sabre precisely identified the 
information flow violation. We also confirmed that 
Sabre did not raise an alert when we used a JSE-
enhanced browser to visit Benign web pages. To test 
malicious JSEs, we considered FFSniFF and Browser 
Spy, both of which exhibit the same behavior—they 
steal passwords and other sensitive entries from web 
forms and hide their presence from the user by 
removing themselves from the browser’s extension 
manager. Nevertheless, because Sabre records the 
provenance of each JavaScript byte code instruction 
executed, it raised an alert when FFSniFF and 
Browser Spy attempted to transmit passwords to a 
remote attacker via the network. In addition to the 
above JSEs, we also wrote a number of malicious JSEs, 
both to demonstrate the ease with which malicious 
JSEs can be written and to evaluate Sabre’s ability to 
detect them. Each of our JSEs comprised fewer than 
100 lines of JavaScript code, and was written by an 
undergraduate student with only a rudimentary 
knowledge of JavaScript.  

 
4.2. Performance 
 
We evaluated the performance of Sabre by integrating 
it with Spider Monkey in Firefox 2.0.0.9. Our test 
platform was a 2.33 GHz Intel Core2 Duo machine 
running Ubuntu 7.10 with 3GB RAM. We used the Sun 
Spider and V8 JavaScript benchmark suites to 
evaluate the performance of Sabre. Our 
measurements were averaged over ten runs. With the 
V8 suite, a Sabre-enabled browser reported a mean 
score of 29.16 versus 97.91 for an unmodified 
browser, an overhead of 2.36×, while with Sun Spider; 
a Sabre-enabled browser had an overhead of 6.1×. We 
found that the higher overhead in Sun Spider was 
because of three benchmarks (3d-morph, access-
nsieve and bitops-nsievebits). Discounting these three 
benchmarks, Sabre’s overhead with Sun Spider was 
1.6×. Despite these overheads, the performance of the 
browser was not noticeably slower during normal 
web browsing, even with JavaScript-heavy web pages, 
such as Google maps and street views. The main 
reason for the high runtime overhead reported above 
is that Sabre monitors the provenance of each 
JavaScript byte code instruction to determine whether 
the instruction is from a JSE. Monitoring each 
instruction is important, primarily because code 
included in overlays (distributed with JSEs) is 
included in the browser core and may be executed at 

any time. If such overlays can separately be verified to 
be benign, these checks can be disabled. In particular, 
when we disabled this check, we observed a 
manageable overhead of 77% and 42% with the V8 
and Sun Spider suites, respectively. Ongoing efforts by 
Eichet al. [23, 24] to track information flow in 
JavaScript also incur comparable (20%-70%) 
overheads. 
 

4. CONCLUSION  

 

This research review presented Sabre, an in-browser 
information flow tracker that can detect 
confidentiality and integrity violations in JSEs, 
enabled either because of malicious functionality in 
JSEs or because of exploitable vulnerabilities in the 
code of a JSE. In future work, we plan to improve the 
performance of Sabre by exploring static analysis of 
JavaScript code. For example, static analysis can be 
used to create summaries of fragments of JavaScript 
code that do not contain complex constructs (e.g., 
eval). These summaries record how the labels of 
objects accessed by the fragments are modified. Sabre 
can use these summaries to update labels when the 
Fragment is executed, thereby avoiding the need to 
propagate security labels for each byte code 
instruction. 
 
REFERENCES 

 [1] T. Austin and C. Flanagan. Efficient purely-dynamic 
information flowanalysis. In ACM PLAS, June 2009. 
 
[2] P. Beaucamps and D. Reynaud. Malicious Firefox 
extensions. In Symp. Sur La Securite Des Technologies De 
L’Information Et Des Communications, June 2008 
 
[3] L. Cavallaro, P. Saxena, and R. Sekar. On the limits of 
information flow techniques for malware analysis and  
containment. In DIMVA,July 2008. 
 
[4] R. Chugh, J. Meister, R. Jhala, and S. Lerner. Staged 
information flow for JavaScript. In PLDI, June 2009. 
 
[5] M. Dhawan and V. Ganapathy. Analyzing information 
flow in JavaScript-based browser extensions. Technical 
Report DCS-TR-648, Rutgers University, April 2009. 
 
[6] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. 
Dynamic spyware analysis. In USENIX Annual Technical, 
June 2007. 
 
[7] B. Eich. Better security for JavaScript, March 2009. 
Dagstuhl Seminar 09141: Web Application Security. 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 12 | Dec -2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 75 
 

 
[8] B. Eich. JavaScript security: Let’s fix it, May 2009. Web 
2.0 Security and Privacy Workshop. 
 
[9] U. Erlingsson, Y. Xie, and B. Livshits. End-to-end web 
application security. In HotOS, May 2007. 
 
[10] B. Yee et al.. Native client: A sandbox for portable, 
untrusted x86 native code. In IEEE S&P, May 2009. 
 
[11] C. Grier, S. Tang, and S. T. King. Secure web browsing 
with the OP web browser. In IEEE S&P, May 2008. 
 
[12] A. Guha, S. Krishnamurthi, and T. Jim. Using static 
analysis for Ajax intrusion detection. In WWW, April 2009. 
 
[13] O. Hallaraker and G. Vigna. Detecting malicious 
JavaScript code in Mozilla. In 10th IEEE Conf. on 
Engineering Complex Computer Systems, June 2005. 
 
[14] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. 
Kemmerer. Behavior-based spyware detection. In USENIX 
Security, August 2006. 
 
[15] Z. Li, X. Wang, and J. Y. Choi. SpyShield: Preserving 
privacy from spy add-ons. In RAID, September 2007. 
 
[16] B. Livshits and S. Guarnieri. Gatekeeper: Mostly static 
enforcement of security and reliability policies for 
JavaScript code. Technical Report MSR-TR-2009-16, 
Microsoft Research, 2009. 
 
[17] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. 
Caja: Safe active content in sanitized JavaScript, June 2008. 
 
[18] P. H. Phung, D. Sands, and A. Chudnov. Lightweight 
self-protecting JavaScript. In ASIACCS, March 2009. 
 
[19] M. Pilgrim. Greasemonkey for secure data over 
insecure networks/sites, July 2005. 
http://mozdev.org/pipermail/ greasemonkey/2005-
July/003994.html. 
 
[20] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. 
Esmeir. Browsershield: Vulnerability-driven filtering of 
dynamic HTML. In ACM/USENIX OSDI, November 2006. 
 
[21] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. 
Mitchell. Stronger password authentication using browser 
extensions. In USENIX Security, August 2005. 
 
[22] J. Ruderman. The same-origin policy, August 2001. 
http://www.mozilla.org/projects/security/components/sa
me-origin.html. 
 

[23] Secunia Advisory SA24743/CVE-2007-1878/CVE-
2007-1947.Mozilla Firefox Firebug extension two cross-
context scripting vulnerabilities. 
 
[24] Secunia Advisory SA30284. FireFTP extension for 
Firefox directory traversal vulnerability. 
 
[25] M. Ter-Louw, J. S. Lim, and V. N. Venkatakrishnan. 
Enhancing web browser security against malware 
extensions. Journal of Computer Virology, 4(3), August 
2008. 
 
[26] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, 
and G. Vigna. Cross site scripting prevention with dynamic 
data tainting and static analysis. In NDSS, February 2007. 
 
[27] D. Wagner and P. Soto. Mimicry attacks on host-based 
intrusion detection systems. In ACM CCS, November 2002. 
 
[28] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. 
Choudhury, and H. Venter. The multi-principal OS 
construction of the Gazelle web browser. Technical Report 
MSR-TR-2009-16, Microsoft Research, February 2009. 
 
[29] S. Willison. Understanding the Greasemonkey 
vulnerability, July 2005. 
http://simonwillison.net/2005/Jul/20/vulnerability. 
 
[30] A. Yip, N. Narula, M. Krohn, and R. Morris. Privacy-
preserving browser-side scripting with bflow. In EuroSys, 
April 2009. 
 
[31] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript 
instrumentation for browser security. In ACM POPL, 
January 2007. 

 

http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://simonwillison.net/2005/Jul/20/vulnerability

