Experimental investigation of weld characteristics of single pass semi automatic TIG welding with dissimilar stainless steels

I.Justin antony raj¹ Dr.R.Narayana samy ²Dr.M.Durai selvam³ M.Sebastin charle ⁴

¹⁴ Assistant Professor, PG Scholar, Department of Mechanical Engineering, star lion college of engineering and technology, manankorai, Thanjavur-614206-TN-india.

² ³Professor ,Department of production Engineering ,NIT-Tiruchirappalli-TN-India

Abstract:Project application is involved with aero space nuclear and underwater industries where complex geometry and fully automated systems. Main objective of the experimental of factors affecting to mechanical property of austenitic stainless steel with semi automatic Gas Tungsten Arc welding (GTAW)at different welding parameters.SS202 &SS410 stainless steel of 3mm thick is taken for experiments. Research will be applied Taguchi method on an austenitic stainless steel specimen of dimensions 100x100x4mm,which have various arc current, arc voltage , welding torch angle and ultimate tensile strength.

Keywords:Semi automatic GTAW,Stainless material, Taguchi method, Ultimate tensile strength.

1.INTRODUCTION

The different grade material and the parameters were selected and studied.Literature survey is taken and getting some idea from the experts.Materials were purchased and properties are studied.Groove preparation is studied and the ASTM standards are studied.Semi automatic TIG welding process is studied.

2.LITERATURE SURVEY Ramachandran et.al.(Aug.2015), Above researcher conduct experiments on analysis and experimental investigations of weld characteristics for a TIG welding with SS316L. Akash.B.Patel et.al (Jan.2014), Above researcher conduct experiments on the effect of activating flux in Tig welding. V.Anand Rao et. al(2014), Above researcher conduct experiments on experimentalinvestigation for welding aspects of stainless steel 310 for the process of TIG welding .D.Devakumar et.al (Jan.2014), Above researcher conduct experiments on research on gas tungsten arc welding of stainless steel -an overview.Research

Gap: Above researcher is not done with the different grade materials(SS202&SS410)and the parameters(AMPHERE,VOLTAGE,WELDING SPEED)selection and not researched over Taguchi design is for process parameters selection and also groove prepared as per the ASTM standards. **3.EXPERIMENTAL DETAILS**

3.1 TIG WELDING MACHINE SPECIFICATIONS:

Fig-1: TIG welding machine

Table-1: TIG welding

machine specifications	
Uni-Tig	250 JN AC/DC
Voltage	415/440 3 phase
	50/60htz option
Welding current TIG (AC)	27-270A
Duty cycle(AC)	60%@250A
	100%@190A
Duty cycle (DC)	60%@240A
	100%@190A
Ampere settings	24
Remote facility & H/F	Yes
Over load protection	standard
Protection	1p2
Dimensions	H800XL940XW350
Weight	115Kg
Standard Torc	h & Regulator Set Up
Torch	WP26-4
Regulator	UNI-FLAME

3.2 MATERIAL REQUIREMENTS:

Т

In this project we are taken stainless steel 202 & 410 fabrication of Tungsten inert gas welding.Two metal plates are taken with 100mmx100mmx3mm size and the two plates are clamped rigidly by clamps and bolts in the Vice

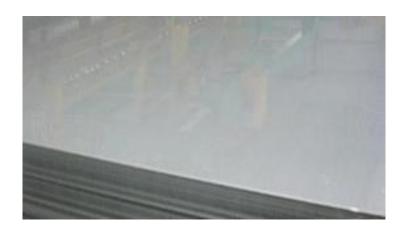


Fig-2: Before welding(SS202 plates)

Fig-3: Before welding(SS410 plates) Table-2:Material specifications

Tuble 2. Material Specifica	erono	
Material	Austenitic s	tainless
	steel(202&410)	
Thickness	3mm	
Length	100mm	
Number of pieces	18	

Table-3: Mechanical properties ofSS202 material

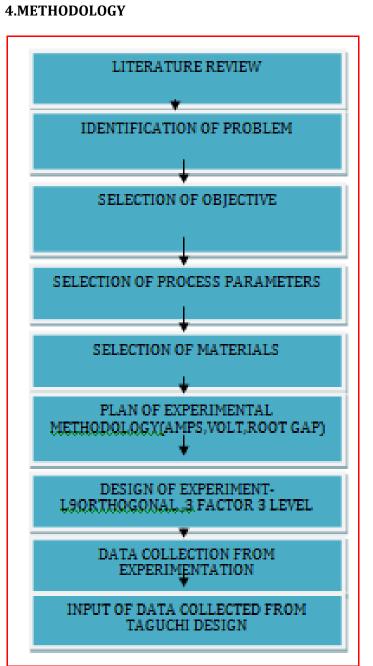
PROPE	RTIES
Density(x1000 kg/m ³)	7.8
Poisson's Ratio	0.27-0.30

© 2016, IRJET

IRJET Volume: 03 Issue: 12 | Dec -2016

www.irjet.net

Elastic Modulus(Gpa)	190-210
Tensile strength(Mpa)	515
Yield strength (Mpa)	275
Elongation(%)	40


Table-4: Mechanical properties ofSS410 material

PRO	PERTIES
Density(x1000 kg/m ³)	7.7
Poisson's Ratio	0.27-0.30
Elastic Modulus(Gpa)	160-200
Tensile strength(Mpa)	517
Tensne strengtn(mpa)	517
Yield strength (Mpa)	265
Elongation(%)	30

Fig-4.TIG welding Process Table-3.TIG welding Weldability parameters

Stainless steel	Austenitic
Preheat temperature	550ºF(260ºC)
Post weld heat treating	Not required
Filler wire	AWS E/ER410,410NiMo and 309L

Fig-5.Experimental plan

- The dissimilarity of the metals may arise due to the difference in chemical composition .The chemical composition of the steel affects weldability and other mechanical properties and several elements are purposefully added in the production of structural steel.
- The present study would be beneficial in gaining an understanding of different heat input combinations.
- Dissimilar joints are to be conducted for better mechanical properties

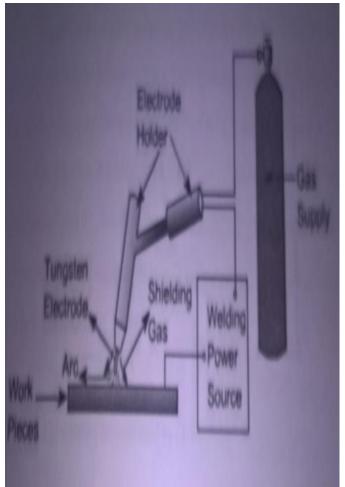
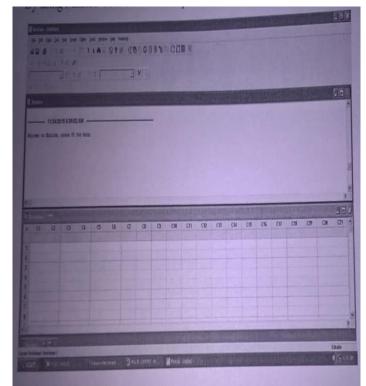


Fig-6.Schematic Diagram of TIG Welding system.

- \geq The electric arc can produce temperatures of upto 20,000°C.
- ➤ Austenitic stainless steels (202 & 410)is selected because of its low cost ,easy availability in the market.
- > Semi automatic TIG welding process are chosen to carryout the experimental analysis on austenitic stainless steels.
- In this project nine samples plates (9 pieces \geq of AISI 202 and 9 pieces AISI 410)of austenitic stainless steels are taken for experiments.


5. RESULT AND DISCUSSION **5.1 TAGUCHI DESIGN**

Welding experiments are conducted on TIG welding machine with different welding parameters .The taguchi design is for getting the input welding parameters.SSplates(100x100x3mm) are involved welding for optimizing the with welding parameters with Taguchi analysis.

Leves			
		Process parame	ters
	AMPHERE	VOLT	WELDING
	А	V	SPEED m/sec
1	130	80	50
2	140	90	60
3	150	100	70

Table-4. Design of Experiment

Table-4 shows the Process parameters and \triangleright their levels responses for all noise factors for the given factor level combination

Fig-7.Experimental plan

- By using Minitab-16 software have optimized the welding parameters
- Create Taguchi Design is selected as shown in fig-8.Then a window of Taguchi design is opened.

pich D	- 1232018 1 22108, 3 1451gn	8 12 15 27 3 cm 71 1	7 PM toc belg-					-												
	a Maricala, 2 Design	penn II i	tor belp					-												
pich D	a Maricala, 2 Design	penn II i	tor belp					-												
pich D	a Maricala, 2 Design	penn II i	tor belp		*			-												
pich D	a Maricala, 2 Design	penn II i	tor belp																	
pich D	Hsign																			
	ALL DESCRIPTION OF	- Caller																		
			100																	
	Contraction of																			
201																				
		-			-	-		-		-	-	-	a later	-	Distant.	and other	Contrast.	-	and the second	
											172				-		-	-		
					100	0	Cl	C)	C10	CII	C12	C13			C16	C17	C18	CH	620	1
	2	a	ÇI	CS .	CF	54	C.a					10	C14	C15						
MPS-	VOLT	SPEED		CS	a	u	G					CID	CI4.	CD						
MPS IS	VOLT 80	SPEED SD		CS	0	u	G					0	LH	Q13						
UPS EX	VOLT 80 80 90	SPEED SD SD		C	0	u	G						1.14	0						
IIII II II II	130V 08 8 09 9 001 0	57FEED 50 80 70		C	0	G.	u						14	613						Contract of the local division of the local
	110V 08 0 07 0 07 0 00 0 00 0	57880 50 50 70 50		G	9	G	u					(1)	LH	CID						and the second se
1145 12 12 12 12 12 12 12 12 12 12 12 12 12	130V 08 80 97 9 07 9 08 8 0 00 10 10 10 10 10 10 10 10 10 10 10 10 10 1	SPEED SD SD TD SD TD TD		C	0	u	u						LH							and the second se
MPS III III III III III III III	130V 08 8 07 0 07 0 08 0 08 0 00 0	57 EED 50 50 70 50 50 50 50		G	0	u	u						LH	(1)						
「日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	130V 08 8 07 0 07 0 00 0 00 8 00 0 00 0	57 EED 50 60 70 60 70 50 70		G	9	u							LH							and the second se
IIII II II II	130V 08 0 09 0 00 0	57FEED 50 80 70		CS	0	u	G							613						
1145 IS IS IS IS IS	130V 08 80 97 9 07 9 08 8 0 00 10 10 10 10 10 10 10 10 10 10 10 10 10 1	57PEED 50 50 70 50 70		C	0	u	u					(1)	LH	CID						
INFS III III III III III III III	130V 08 8 07 0 07 0 08 0 08 0 00 0	57 EED 50 50 70 50 50 50 50		G	0	u	u						LH							
INFS III III III III III III III	130V 08 8 07 0 07 0 08 0 08 0 00 0	57 EED 50 50 70 50 50 50 50		G	0	u	u						LH	(1)						
INFS III III III III III III III	130V 08 8 07 0 07 0 08 0 08 0 00 0	57 EED 50 50 70 50 50 50 50		G	0	u	u						LH	(1)						and the second se
「日日日日日日日日日	130V 08 8 07 0 07 0 00 0 00 8 00 0 00 0	57 EED 50 60 70 60 70 50 70		G	0	u							LH	(1)						and the second se
MPS III III III III III III III	130V 08 8 07 0 07 0 00 0 00 8 00 0 00 0	57 EED 50 60 70 60 70 50 70		G	9	u							LH							the second se

Fig-8.Experimental plan
Table-4.Process parameters

SL.NO	AMPS	VOLT	WELDING
			SPEED
1	130	80	50
2	130	90	60
3	130	100	70
4	140	80	60
5	140	90	70
6	140	100	50
7	150	80	70
8	150	90	50
9	150	100	60

6. CONCLUSIONS

The different grade material(SS202 & SS410) and the parameters (AMPHERE,VOLTAGE,WELDING SPEED)were selected.

Literature survey is taken and getting ideas from experts.

Materials are purchased according to the standards and groove prepared as per the ASTM standards.

The semi automatic TIG welding is carried out successfully.

Taguchi design is for process parameters selection.Post weld heat treating is not required.

REFERENCES

- [1] R.Ramachandran,"Analysis and experimental investigations of weld characteristics for a TIG welding with SS316L",Vol.10,Issue-02,August 2015,pp.9-25,e-ISSN:2231-5152.International Journal of Advances in Engineering Research.
- Sreejith S Nair,"Experimental investigation of multipass TIG welding using response surface methodology ",Vol.02,Issue-03,July 2013,pp.242-254,ISSN:2278-0149.International Journal of mechanical Engineering and Robotics Research.
- [3] R.Sathish,"Weldability and process parameter optimization of dissimilar pipe joints using GTAW",Vol.02,Issue-03,May 2012,pp.2525-2530,ISSN:2248-9622.International journal of Engineering Research and Applications(IJERA).
- [4] V.Anand Rao,"Experimental investigation for welding Aspects of stainless steel 310 for the process of TIG welding ",Vol.97,2014,pp.902-908,doi:10.1016/j.proeng.2014.12.365.procedi a Engineering.
- [5] D.Devakumar,"Research on Gas Tungsten Arc welding of stainless steel –An overview",Vol.05,Issue-01,January 2014,pp.1612-1618,ISSN:2229-5518.International Journal of scientific & Engineering Research.

[6] S.S.Sathe,"Optimization of process parameters in Tig welding of dissimilar metals by using activated flux powder ",Vol.04,Issue-06,June2015,pp.2149-2152,ISSN(on line):2319-7064.International Journal of science and Research (IJSR).

[7] Mohit singhmar ,"Experimental study for welding aspects of Austenitic stainless steel(AISI 304)on Tensile strength by Taguchi

Т

Technique",Vol.04,Issue -01,January2015,pp.493-503,ISSN:2278-0149.International Journal of mechanical Engineering and Robotics Research.

- [8] Rajendra singh,"Analysis of Defects in metal inert gas welding of A312tp316L stainless steel pipe using Taguchi optimization method and Testing ",Vol.03,Issue-06,2014,pp.11-22.ISSN(e):2319-1813.The international Journal of Engineering And science(IJES).
- [9] N.Ramakrishnan,"Experimental investigation and predict GTAW process parameters on AA6063",Vol.02,Issue-07,2016,pp.1161-1167,ISSN:2454-1362.Imperial Journal of inter disciplinary Research(IJIR).
- [10] Akash.B.Patel,"The effect of Activating flux in Tig welding ",Vol.04,Issue-01,January 2015,pp.65-70,ISSN:22350-3005.International Journal of computational Engineering Research.