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Abstract - A concept of notional frequencies (or modes) 
of an aperiodic function of time is presented. These notional 
frequencies emerge as the roots of a ‘Companion 
Polynomial’, which latter is constructed such as to 
annihilate (and also be annihilated by) the given function of 
time, of which it is the companion. A method to obtain this 
polynomial is suggested, using which the companion 
polynomial of certain functions of the general exponential 
class and of their polynomial-modulated forms have been 
derived. The notional modes of the said functions of time are 
then extracted from the so derived polynomials. This 
concept and the attendant method has been put to use in 
demonstrating the resonant behaviour of first-order 
electrical circuits subjected to forcing functions with such 
notional modes as to match the natural modes of the 
circuits upon which they are impressed. The complete 
solution of the circuit under such resonant conditions has 
been presented. The generality of the concept of resonance 
has been thus emphasized and its applicability aptly 
extended to include aperiodic forcing functions as well. A 
facile means of recognizing circuit-resonance, in its most 
general form – by virtue of a simple examination of the all 
the participating modes - is thus placed in evidence. 
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1.INTRODUCTION 
 
There exists a fairly widespread sense of agreement upon 
the general meaning of the term ‘Resonance’, with regard 
to system analysis spanning a large variety of engineering 
disciplines. It being: the particular phenomenon arising 
from a certain manner of concordance between the 

driving forces and the driven system. The etymology as 
well as the early technical use of this term indicate its 
origins in the science of acoustics, wherein it is 
understood to mean a ‘sympathetic’ reinforcing of the 
sound waves of matching frequencies (or modes). This 
meaning is generally held to be analogously true in other 
fields as well. Herefrom arises the cogent idea of a ‘match’ 
or a ‘coincidence’ between/among the ’modes’ or 
‘frequencies’ (in some specific sense of these words) as 
being the cause of the phenomenon of resonance. The 
terms ‘Modal matching’ or ‘Modal coincidence’ find 
currency on the above considerations, and are taken to 
connote what they denote, quite literally, as they should 
be. 
 
However, in respect of electrical circuit theory, the term 
‘Resonance’ has been used in a rather restrictive manner, 
and is sometimes used to denote phenomena that do not 
merit such a usage. A careful study of some of the classic 
and current works on circuit theory [1-30] attests to this 
observation. There is usually a tendency to fixate 
resonance with either one kind of signal or with some 
specific network configurations. Attempts to apply and 
appreciate the plenary sense of this term in circumstances 
specific to electrical circuit theory have been routinely 
frustrated by numerous obfuscations and (unfortunately) 
deeply-entrenched perceptions, some of which are listed 
below: 
 
1) Depiction of resonance as being somehow specific and 
exclusive to the sinusoidal steady-state. 
2) Treatment of the unity-power-factor (upf) conditions in 
certain specific network configurations (series/parallel 
RLC or combinations thereof) as instances of resonance 
and proceeding forth to define the ‘resonant’ frequency, in 
such a manner as to denote conditions of mere ‘cresting’ 
(or ‘troughing’) in the swept-radian-frequency domain.  
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3) Portrayal of certain pole-zero cancellations as 
manifestations of an ‘all-frequency’ resonance. 
4) An erroneous consideration of the natural response of 
the second order lossless LC tank as an occurrence of 
resonance. 
5) A baseless assertion of necessitating the conjoint 
presence of an inductor and a capacitor for the occurrence 
of resonance. 
 
Whereas each of the above perceptions is misleading, they 
may be overcome with the power of reason. Nevertheless, 
one may still find oneself stranded for want of a tangible 
measure of the ‘frequency’ of a general function of time, be 
it periodic or not, for the purpose of comparison with the 
natural frequencies of the driven system.. This paper 
attempts to supply such a need by proposing a ‘notion’ of 
frequency or a ‘Notional Frequency’ of any mathematically 
specifiable function of time, and by suggesting a method 
wherewith to compute this metric for a given function of 
time. With this quantification, the process of identifying 
resonance conditions in a given system driven by a forcing 
function of a specific description is reduced to a 
comparison of the natural modes of the system with the 
‘notional’ modes of the forcing function. Should even one 
match be found, the phenomenon of resonance occurs. 
Should there be more than one match, a multi-modal 
resonance instances itself. If there are no matches at all, a 
normal non-resonant response ensues. This concept has 
been illustrated in this paper through examples of 
resonant phenomena occurring in first-order electrical 
circuits driven by aperiodic functions bearing elementary 
mathematical descriptions. The simplicity of the systems 
employed herein for demonstration must not be construed 
to imply triviality of the propounded concept. The concept 
and method presented here stand applicable to systems of 
any order and complexity.  
 
 

2. CHARACTERISTIC POLYNOMIAL AND NATURAL 
MODES OF A SYSTEM 
 

The mathematical operation of differentiation with 
respect to time is denoted [31] by the operator p as in,                        

 

  
 

  
     (1)  

 
For a first-order system described by 

                           
                         (2)     
 

        -   represents the characteristic polynomial 
and its only root      is its natural mode (or frequency). 
   is a real number and is specified in units of nepers per 
second (nep/s or Np/s)or just    .   

  represents the forcing function. The natural 
response of this system may be obtained by setting    . 

This condition is referred to as ‘passivation’ (or 
‘passivization’), under which conditions, the response 
(natural) of the system described in (2) is given by 
   

             (3) 
 

2.1 Test System 1: First-Order Lossless System 
 

The test system along with its passivated form is as 

shown in Fig-1. It has one degree of freedom [4], 
expressible in the energy-indicating variable (or state 
variable)   . 

 

 
Fig-1: Test System 1: A first-order lossless system and its 
passivated form 
  

The governing differential equation of this system is  

            
  

 
   (4) 

 
It is evident that the characteristic polynomial is      
  and that the natural mode of the system is     . (This 
is true of any first-order lossless system.) 
 
The natural response of this system is given by 
                  (5) 
 

2.2 Test System 2: First-Order System with 
Dissipation 
 

The test system along with its passivated form is as 
shown in Fig-2. It has one degree of freedom, expressible 
in the energy-indicating variable (or state variable)   . 
 

 
Fig-2: Test System 2: A first-order system with dissipation 
and its passivated form 
 

The governing differential equation is 

       
 

 
   

  

 
   (6) 

 
It is evident that the characteristic polynomial is 

     (  
 

 
) and that the natural mode of the system is 
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    (
 

 
) nep/s. The natural response of the above 

system is given by, 

      
 (
 

 
)              (7) 

 

3. NOTIONAL MODES OF A FUNCTION      
 

3.1 Definition 
 
Let      be a general ‘singly-describable’ function of 

time; that is, let      have a single mathematical 
description for all  . No periodicity is necessarily implied 
in this description, while no attempt is made to rule it out 
either. 
 

Let there exist a polynomial      with real 
coefficients, composed with the operator   as follows: 
 
                

       
  (8) 

 
This polynomial      is an ‘operational polynomial’ or a 
‘polynomial operator’, which when operating on any 
function     , produces another function which is the 
weighted summation of       derivatives (the zero-
order derivative included). 
  
                      

       
          

 

           ∑   

   

   

  

   
       

 
Let      be so conceived that 
 

                 (9) 
 
Such a polynomial operator      annihilates the 
function     . Equivalently, the function      satisfies the 
operational polynomial     . This companionship or 
concomitance is mutual, and the polynomial      may 
therefore be termed as a ‘Companion’ to the function      
(and vice versa). 
 

Every value of   for which       , or every root of 
the polynomial      is a ‘notional frequency’ or a ‘notional 
mode’ of the companion function     . This term is 
employed to suggest that the frequency (or equivalently 
the period), is not necessarily actual. These notional 
modes are quantifiable in a manner identical with that of 
the natural modes. The number of the notional modes for 
a given      will be the same as the degree of     . As 
with the roots of any polynomial (with real coefficients), 
these notional frequencies could be real, imaginary, or 
complex. 
 

3.2 Examples of Obtaining the Companion 
Polynomial 

 
Given a function     , its companion      is to be 

sought as the barest minimal polynomial form which 
causes the annihilation of     . Having obtained this form 
of     , its roots could then be extracted to yield the 
notional frequencies of     .  

 
In what follows, a companion      has been obtained 

for four choices of     . These forms of the function 
     have been so chosen as to be the forms of forcing 
functions capable of causing resonance in the two test 
systems depicted; that is, so chosen as to have their 
notional frequencies coinciding with the natural modes of 
the test systems. (The test systems 1 and 2 have natural 

modes of 0 and  (
 

 
) respectively.) 

 
In each of the following cases, the companion 

polynomial      is found by one or two successive 
differentiations of the form of      and suitable algebraic 
manipulations thereafter. 
 
1) Forms of      Capable of Causing Resonance in Test 
System 1: The test system 1 has a natural mode of 0 nep/s. 
To be able to cause resonance in this system, the forcing 
function must also have a notional frequency of 0 nep/s. 
The following forms have been considered (      are 
real constants): 

1]         , a non-zero constant. 
2]         , a linear-modulated constant (linear 
ramp). 

 
Table 1 shows the companion pairs      and      for 
these two cases. 
 
Table-1: Companion Pairs      and     : The Constant 
(Zero-Exponential) Function and Linear Modulation 
thereof 

Case 
Forcing 

Function  
     

Companion 
Polynomial  

     

Notional Frequencies 
of      from         

(nep/s) 

1. a)                     

    b)                     
     
      

 
2) Forms of      Capable of Causing Resonance in Test 

System 2: The test system 2 has a natural mode of  (
 

 
)  

nep/s. To be able to cause resonance in this system, the 
forcing function must have a notional frequency of the 
same value. The following forms have been considered 
(       are real constants): 

1]         
  , a real exponential, with    (

 

 
) 

2]          
  , a linear-modulated real 

exponential, with    (
 

 
). 
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(If    (
 

 
), no modal coincidence would take place and 

a normal non-resonant response results.) Table 2 shows 
the companion pairs       and      for these two cases. 
 

Table-2: Companion Pairs      and     : The Real-
Exponential Function and Linear Modulation thereof 

Case 
Forcing Function  

     

Companion 
Polynomial  

     

Notional 
Frequencies 
of      from 

        (nep/s) 

2. a)         
                 

    b)             
               

     
      

 

An illustration of creation of an entry in the Table 2, 
corresponding to the case (2.b) is shown below. 
    

  With           
  , 

         
          

    

  i.e.         
       

             
   

Whence,  

                   
    

           

Thus             and        nep/s. (Two real 
notional modes at   .) 
 

4. RESONANT SITUATIONS IN FIRST-ORDER 
SYSTEMS 

Two first-order electrical circuits are chosen for 
exemplification of the phenomenon of resonance. 
Resonant situations are created by impressing a source 
(forcing function) of such a description as to have its 
notional mode(s) coinciding with that of the circuit. 
Arbitrary initial conditions could be assumed. The 
governing differential equation is formulated and the 
unique solution of the resulting initial-value problem is 
presented. 
 
4.1. First-Order Lossless System 

 
The test system 1 (Fig-1) is placed under 

consideration. The only natural mode of this system is 0 
nep/s. Two cases of resonant conditions are caused in this 
system by impressing forcing functions possessing such 
notional frequencies as to match the natural mode of the 
system. 
1) Constant excitation: Let the description of the voltage 
source be      , a constant. The only notional mode 
associated with         is zero (Table 1). There is thus a 
resonant condition due to modal coincidence. The unique 
solution for    in this case is given by 

           *
  

 
+         (10) 

The waveforms of the source voltage    and of the 
inductor current    pertaining to this case have been 
shown in Fig-3. 
2) Linear ramp excitation: Let the description of the 
voltage source be       . The two notional modes 
associated with          are zero (twice) (Table 1). 
There is thus a resonant condition due to modal 
coincidence. The unique solution for    in this case is given 
by 

          *
  
  
+          (11) 

The waveforms of the source voltage    and of the 
inductor current    pertaining to this case have been 
shown in Figure 4. 

 

 
Fig-3: Resonant response of a first-order lossless system 
subjected to a constant excitation 

 

Fig-4: Resonant response of a first-order lossless system 
subjected to a linear ramp excitation 
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4.2. First-order system with dissipation 
 

The test system 2 (Fig-2) is placed under 
consideration. The natural mode of this system is 

 (
 

 
) nep/s. Two cases of resonant conditions are caused 

in this system by impressing forcing functions possessing 
such notional frequencies as to match the natural mode of 
the system. 
1) Exponential excitation: Let the description of the voltage 

source be       
 
 

 
 . The only notional mode associated 

with this is       (
 

 
) nep/s (Table 2). There is thus a 

resonant condition due to modal coincidence. The unique 
solution for    in this case is given by 
 

           
 
 

 
       *

  

 
+     

  

           (12) 

 
The waveforms of the source voltage    and of the 

inductor current    pertaining to this case have been 
shown in Fig-5. 

 
Fig-5: Resonant response of a first-order dissipative 
system subjected to an exponential excitation 
 
2) Linear-modulated exponential excitation: Let the 

description of the voltage source be         
 
  

 . The 

two notional modes associated with this    are  (
 

 
) 

nep/s (twice) (Table 2). There is thus a resonant condition 
due to modal coincidence. The unique solution for    in this 
case is given by 
 

     
 
 

 
       *

  

  
+      

  

        (13) 

 
The waveforms of the source voltage    and of the 

inductor current    pertaining to this case have been 
shown in the Fig-6. 

 
 

4.3. Summary of the Four Resonant Cases 
 
The expressions for    which have emerged as the 
solutions of the four analyzed cases of first-order 
resonance are summarized in Table 3. 
 

 
Fig-6: Resonant response of a first-order dissipative 
system subjected to a linear-modulated exponential 
excitation 
 
Table-3: Results Depicting the Excitation    and the 
Response    under the Resonant Conditions Analyzed 
 

Case Excitation       
Resonant Response 

      

1. a)                *
  
 
+    

1.  b)                    *
  
  
+     

2. a)       
  
 
 
      

 
 
 
       *

  
 
+     

  
   

2. b)        
  
 
 
      

 
 
 
       *

  
  
+      

  
   

 
5. SUMMARY AND CONCLUSION 

Although a first order system was treated in the foregoing 
discussion, the general essence of the exposition remains 
unchanged for LTI lumped-parameter systems of any 
order. The first-order system was specifically chosen for 
its simplicity and the resulting ease of illustration. This 
choice was also a deliberate one – to secure a release from 
the customary fixation of the phenomenon of resonance 
with a second-order system. Resonance could occur 
whenever there happens to be a coincidence of the 
participating modes – natural modes of the driven system, 
and the notional frequencies of the forcing function – 
regardless of the order of the system. The concept of 
notional frequency aids in the recognition of such a state 
of affairs. 
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The following remarks may be made from the case-studies 
presented: 

1) A resonant condition does not have to necessarily 
cause unbounded growth of the state variable(s). 
There is indeed an unbounded growth in the case 
of lossless systems. Boundless increase can also 
result if the nature of the forcing function (to 
cause resonance) is in itself such as to increase in 
an unbounded manner with time. (Such as in the 
case of a modal match on the right-half of the 
number plane.) 

2) A Linear-modulation does not bring in newer 
notional frequencies, but causes the existing 
notional modes to be replicated. 

3) A system would resonate if a forcing function has 
the form of the system’s own natural response or 
a component thereof. This is how the 
‘sympathetic’ driving causes reinforcement of the 
natural response. 

4) The process of obtaining the companion 
polynomial      for a given function      is 
analogous to the process of synthesizing a 
network whose natural response is     , or 
whose characteristic polynomial is     . 

 
As an end-note, it may be mentioned that a sinusoid 

          could cause resonance in a second-order 
system with natural frequencies of     rad/s; that is, only 
in a lossless LC combination of element values such that 
 

   
    rad/s. RLC circuits can never resonate with a 

sinusoid. They would require a forcing function of the 
           description to do so. 
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